Last updated: 2018-08-29

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180613)

    The command set.seed(20180613) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: bb65514

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    code_RCC/.DS_Store
        Ignored:    data/.DS_Store
    
    Untracked files:
        Untracked:  analysis/ATACseq_footprint_profiles_GGR_Duke.Rmd
        Untracked:  analysis/ATACseq_footprint_profiles_OliviaGray.Rmd
        Untracked:  analysis/ATACseq_footprint_profiles_OliviaGray_HAEC.Rmd
        Untracked:  analysis/ATACseq_preprocessing_pipeline_GGR_hg38.Rmd
        Untracked:  code_RCC/update_bamnames.R
        Untracked:  docs/figure/ATACseq_footprint_profiles_GGR_Duke.Rmd/
        Untracked:  docs/figure/ATACseq_footprint_profiles_OliviaGray.Rmd/
        Untracked:  docs/figure/ATACseq_footprint_profiles_OliviaGray_HAEC.Rmd/
        Untracked:  docs/figure/ATACseq_footprint_profiles_smooth.Rmd/
        Untracked:  workflow_setup.R
    
    Unstaged changes:
        Modified:   analysis/ATACseq_preprocessing_pipeline.Rmd
        Modified:   code_RCC/fimo_jaspar_motif_rcc.sh
        Modified:   code_RCC/genome_coverage_bamToBigwig_GGR_hg38.sh
        Modified:   code_RCC/get_motif_count_matrices_GGR_hg38.sh
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd bb65514 kevinlkx 2018-08-29 plot DNase footprint profiles of CTCF and REST using ENCODE data
    html 98209cf kevinlkx 2018-08-29 Build site.
    Rmd 2f894eb kevinlkx 2018-08-29 plot DNase footprint profiles of CTCF and REST using ENCODE data
    html 0e20593 kevinlkx 2018-08-29 Build site.
    Rmd a233f11 kevinlkx 2018-08-29 plot DNase footprint profiles of CTCF and REST using ENCODE data
    html b182c05 kevinlkx 2018-08-29 Build site.
    Rmd 09836f9 kevinlkx 2018-08-29 plot DNase footprint profiles of CTCF and REST using ENCODE data
    html 35c5feb kevinlkx 2018-08-29 Build site.
    Rmd f318dd5 kevinlkx 2018-08-29 plot DNase footprint profiles of CTCF and REST using ENCODE data


functions

##### Functions #####
## load and combine count matrices
load_combine_counts <- function(tf_name, pwm_name, dir_count_matrix){
  cat("Loading count matrices ... \n")
  counts_fwd.df <- read.table(paste0(dir_count_matrix, "/", tf_name, "/", pwm_name, "_hg19_dnase_fwdcounts.m.gz"))
  counts_rev.df <- read.table(paste0(dir_count_matrix, "/", tf_name, "/", pwm_name, "_hg19_dnase_revcounts.m.gz"))
  
  ## the first 5 columns from "bwtool extract" are chr, start, end, name, and the number of data points
  counts_fwd.df <- counts_fwd.df[, -c(1:5)]
  counts_rev.df <- counts_rev.df[, -c(1:5)]
  
  colnames(counts_fwd.df) <- paste0("fwd", 1:ncol(counts_fwd.df))
  colnames(counts_rev.df) <- paste0("rev", 1:ncol(counts_rev.df))
  
  counts_combined.m <- as.matrix(cbind(counts_fwd.df, counts_rev.df))
  
  return(counts_combined.m)
}

## select candidate sites by mapability and PWM score cutoffs
select_sites <- function(sites.df, thresh_mapability=NULL, thresh_PWMscore=NULL, readstats_name=NULL){
  #  cat("loading sites ...\n")
  cat("Select candidate sites \n")
  
  if(!is.null(thresh_mapability) || !is.na(thresh_mapability)){
    cat("Select candidate sites with mapability >=", thresh_mapability, "\n")
    idx_mapability <- (sites.df[,"mapability"] >= thresh_mapability)
  }else{
    idx_mapability <- rep(TRUE, nrow(sites.df))
  }
  
  if(!is.null(thresh_PWMscore) || !is.na(thresh_PWMscore)){
    cat("Select candidate sites with PWM score >=", thresh_PWMscore, "\n")
    idx_pwm <- (sites.df[,"pwm_score"] >= thresh_PWMscore)
  }else{
    idx_pwm <- rep(TRUE, nrow(sites.df))
  }
  
  if(!is.null(readstats_name)){
    readstats.df <- read.table(readstats_name, header = F)
    ## if the readstats.df contains chrY, then it means the cell type is male, then the candidate sites should contain chrY,
    ## otherwise, the cell type is female, then the candidate sites on chrY should be removed.
    if( "chrY" %in% readstats.df[,1] ){
      cat("include chrY sites \n")
      idx_chr <- (sites.df[,1] != "")
    }else{
      cat("chrY NOT in the bam file, filter out chrY sites \n")
      ## remove chrY from candidate (motif) sites
      idx_chr <- (sites.df[,1] != "chrY")
    }
    
  }else{
    idx_chr <- rep(TRUE, nrow(sites.df))
  }
  
  idx_select <- which(idx_mapability & idx_pwm & idx_chr)
  
  return(idx_select)
}

parameters

ver_genome <- "hg19"
flank <- 100
thresh_mapability <- 0.8
thresh_PWMscore <- 10
num_top_sites <- 1000 # plot top sites
max_cuts <- 20 # Clip extreme values
dir_data <- "~/Dropbox/research/ATAC_DNase/"

CTCF in GM12878 cell type

load DNase footprint data

cell_type <- "GM12878"
tf_name <- "CTCF"
pwm_name <- "CTCF_MA0139.1_1e-5"

dir_count_matrix <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/DNaseSeq/DNase_tagcount_matrix/")
dir_sites_chip <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/ChIPSeq/")

filename_sites <- paste0(dir_sites_chip, "/", "chipseq_", cell_type, "_", pwm_name, "_flank", flank, "_exp1.totalcount")

sites.df <- read.table(filename_sites, header = T, comment.char = "!", stringsAsFactors = F)
sites.df <- sites.df[, c("chr", "start", "end", "site", "pwmScore", "strand", "pValue", "mapability", "ChIP_mean")]
colnames(sites.df) = c("chr", "start", "end", "name", "pwm_score", "strand", "p_value", "mapability", "ChIP")

idx_select <- select_sites(sites.df, thresh_mapability, thresh_PWMscore)
Select candidate sites 
Select candidate sites with mapability >= 0.8 
Select candidate sites with PWM score >= 10 
sites.df <- sites.df[idx_select, ]
cat("Number of sites:", nrow(sites.df), "\n")
Number of sites: 54859 
counts_combined.m <- load_combine_counts(tf_name, pwm_name, dir_count_matrix)
Loading count matrices ... 
counts_combined.m <- counts_combined.m[idx_select,]

## Clip extreme values
counts_combined.m[counts_combined.m > max_cuts] <- max_cuts

cat("Dimension of", dim(counts_combined.m), "\n")
Dimension of 54859 436 
if(nrow(counts_combined.m) != nrow(sites.df)){
  stop("Sites not matched!")
}

plot footprint profiles of highest occupancy

order_selected <- order(sites.df$ChIP, decreasing = T)[1:num_top_sites]
counts_selected.m <- counts_combined.m[order_selected,]
counts_profile <- apply(counts_selected.m, 2, mean)

par(mfrow = c(1,2))
counts <- counts_profile[1:(length(counts_profile)/2)]
plot(counts, type = "l", col = "blue", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "forward strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

counts <- counts_profile[(length(counts_profile)/2+1): length(counts_profile)]

plot(counts, type = "l", col = "red", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "reverse strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
35c5feb kevinlkx 2018-08-29

## save counts matrix
rds_name <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/DNaseSeq/DNase_tagcount_matrix/", tf_name, "/",
                                  pwm_name, "_hg19_dnase_counts_selected_sites.rds")
saveRDS(counts_selected.m, rds_name)

plot footprint profiles of most accessible sites

order_selected <- order(rowSums(counts_combined.m), decreasing = T)[1:num_top_sites]
counts_selected.m <- counts_combined.m[order_selected,]
counts_profile <- apply(counts_selected.m, 2, mean)

par(mfrow = c(1,2))
counts <- counts_profile[1:(length(counts_profile)/2)]
plot(counts, type = "l", col = "blue", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "forward strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

counts <- counts_profile[(length(counts_profile)/2+1): length(counts_profile)]

plot(counts, type = "l", col = "red", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "reverse strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

Expand here to see past versions of unnamed-chunk-5-1.png:
Version Author Date
35c5feb kevinlkx 2018-08-29

CTCF in K562 cell type

load DNase footprint data

cell_type <- "K562"
tf_name <- "CTCF"
pwm_name <- "CTCF_MA0139.1_1e-5"

dir_count_matrix <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/DNaseSeq/DNase_tagcount_matrix/")
dir_sites_chip <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/ChIPSeq/")

filename_sites <- paste0(dir_sites_chip, "/", "chipseq_", cell_type, "_", pwm_name, "_flank", flank, "_exp1.totalcount")

sites.df <- read.table(filename_sites, header = T, comment.char = "!", stringsAsFactors = F)
sites.df <- sites.df[, c("chr", "start", "end", "site", "pwmScore", "strand", "pValue", "mapability", "ChIP_mean")]
colnames(sites.df) = c("chr", "start", "end", "name", "pwm_score", "strand", "p_value", "mapability", "ChIP")

idx_select <- select_sites(sites.df, thresh_mapability, thresh_PWMscore)
Select candidate sites 
Select candidate sites with mapability >= 0.8 
Select candidate sites with PWM score >= 10 
sites.df <- sites.df[idx_select, ]
cat("Number of sites:", nrow(sites.df), "\n")
Number of sites: 54859 
counts_combined.m <- load_combine_counts(tf_name, pwm_name, dir_count_matrix)
Loading count matrices ... 
counts_combined.m <- counts_combined.m[idx_select,]

## Clip extreme values
counts_combined.m[counts_combined.m > max_cuts] <- max_cuts

cat("Dimension of", dim(counts_combined.m), "\n")
Dimension of 54859 436 
if(nrow(counts_combined.m) != nrow(sites.df)){
  stop("Sites not matched!")
}

plot footprint profiles of highest occupancy sites

order_selected <- order(sites.df$ChIP, decreasing = T)[1:num_top_sites]
counts_selected.m <- counts_combined.m[order_selected,]
counts_profile <- apply(counts_selected.m, 2, mean)

par(mfrow = c(1,2))
counts <- counts_profile[1:(length(counts_profile)/2)]
plot(counts, type = "l", col = "blue", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "forward strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

counts <- counts_profile[(length(counts_profile)/2+1): length(counts_profile)]

plot(counts, type = "l", col = "red", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "reverse strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

Expand here to see past versions of unnamed-chunk-7-1.png:
Version Author Date
35c5feb kevinlkx 2018-08-29

## save counts matrix
rds_name <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/DNaseSeq/DNase_tagcount_matrix/", tf_name, "/",
                                  pwm_name, "_hg19_dnase_counts_selected_sites.rds")
saveRDS(counts_selected.m, rds_name)

REST in GM12878 cell type

load DNase footprint data

cell_type <- "GM12878"
tf_name <- "REST"
pwm_name <- "REST_MA0138.2_1e-5"

dir_count_matrix <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/DNaseSeq/DNase_tagcount_matrix/")
dir_sites_chip <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/ChIPSeq/")

filename_sites <- paste0(dir_sites_chip, "/", "chipseq_", cell_type, "_", pwm_name, "_flank", flank, "_exp1.totalcount")

sites.df <- read.table(filename_sites, header = T, comment.char = "!", stringsAsFactors = F)
sites.df <- sites.df[, c("chr", "start", "end", "site", "pwmScore", "strand", "pValue", "mapability", "ChIP_mean")]
colnames(sites.df) = c("chr", "start", "end", "name", "pwm_score", "strand", "p_value", "mapability", "ChIP")

idx_select <- select_sites(sites.df, thresh_mapability, thresh_PWMscore)
Select candidate sites 
Select candidate sites with mapability >= 0.8 
Select candidate sites with PWM score >= 10 
sites.df <- sites.df[idx_select, ]
cat("Number of sites:", nrow(sites.df), "\n")
Number of sites: 54533 
counts_combined.m <- load_combine_counts(tf_name, pwm_name, dir_count_matrix)
Loading count matrices ... 
counts_combined.m <- counts_combined.m[idx_select,]

## Clip extreme values
counts_combined.m[counts_combined.m > max_cuts] <- max_cuts

cat("Dimension of", dim(counts_combined.m), "\n")
Dimension of 54533 440 
if(nrow(counts_combined.m) != nrow(sites.df)){
  stop("Sites not matched!")
}

plot footprint profiles of highest occupancy sites

order_selected <- order(sites.df$ChIP, decreasing = T)[1:num_top_sites]
counts_selected.m <- counts_combined.m[order_selected,]
counts_profile <- apply(counts_selected.m, 2, mean)

par(mfrow = c(1,2))
counts <- counts_profile[1:(length(counts_profile)/2)]
plot(counts, type = "l", col = "blue", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "forward strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

counts <- counts_profile[(length(counts_profile)/2+1): length(counts_profile)]

plot(counts, type = "l", col = "red", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "reverse strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

Expand here to see past versions of unnamed-chunk-9-1.png:
Version Author Date
0e20593 kevinlkx 2018-08-29

## save counts matrix
rds_name <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/DNaseSeq/DNase_tagcount_matrix/", tf_name, "/",
                                  pwm_name, "_hg19_dnase_counts_selected_sites.rds")
saveRDS(counts_selected.m, rds_name)

plot footprint profiles of most accessible sites

order_selected <- order(rowSums(counts_combined.m), decreasing = T)[1:num_top_sites]
counts_selected.m <- counts_combined.m[order_selected,]
counts_profile <- apply(counts_selected.m, 2, mean)

par(mfrow = c(1,2))
counts <- counts_profile[1:(length(counts_profile)/2)]
plot(counts, type = "l", col = "blue", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "forward strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

counts <- counts_profile[(length(counts_profile)/2+1): length(counts_profile)]

plot(counts, type = "l", col = "red", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "reverse strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

Expand here to see past versions of unnamed-chunk-10-1.png:
Version Author Date
0e20593 kevinlkx 2018-08-29
35c5feb kevinlkx 2018-08-29

REST in K562 cell type

load DNase footprint data

cell_type <- "K562"
tf_name <- "REST"
pwm_name <- "REST_MA0138.2_1e-5"


dir_count_matrix <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/DNaseSeq/DNase_tagcount_matrix/")
dir_sites_chip <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/ChIPSeq/")

filename_sites <- paste0(dir_sites_chip, "/", "chipseq_", cell_type, "_", pwm_name, "_flank", flank, "_exp1.totalcount")

sites.df <- read.table(filename_sites, header = T, comment.char = "!", stringsAsFactors = F)
sites.df <- sites.df[, c("chr", "start", "end", "site", "pwmScore", "strand", "pValue", "mapability", "ChIP_mean")]
colnames(sites.df) = c("chr", "start", "end", "name", "pwm_score", "strand", "p_value", "mapability", "ChIP")

idx_select <- select_sites(sites.df, thresh_mapability, thresh_PWMscore)
Select candidate sites 
Select candidate sites with mapability >= 0.8 
Select candidate sites with PWM score >= 10 
sites.df <- sites.df[idx_select, ]
cat("Number of sites:", nrow(sites.df), "\n")
Number of sites: 54533 
counts_combined.m <- load_combine_counts(tf_name, pwm_name, dir_count_matrix)
Loading count matrices ... 
counts_combined.m <- counts_combined.m[idx_select,]

## Clip extreme values
counts_combined.m[counts_combined.m > max_cuts] <- max_cuts

cat("Dimension of", dim(counts_combined.m), "\n")
Dimension of 54533 440 
if(nrow(counts_combined.m) != nrow(sites.df)){
  stop("Sites not matched!")
}

plot footprint profiles of highest occupancy sites

order_selected <- order(sites.df$ChIP, decreasing = T)[1:num_top_sites]
counts_selected.m <- counts_combined.m[order_selected,]
counts_profile <- apply(counts_selected.m, 2, mean)


par(mfrow = c(1,2))
counts <- counts_profile[1:(length(counts_profile)/2)]
plot(counts, type = "l", col = "blue", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "forward strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

counts <- counts_profile[(length(counts_profile)/2+1): length(counts_profile)]

plot(counts, type = "l", col = "red", xlab = "Relative position (bp)", ylab = "Average counts", 
     main = "", xaxt = "n")
mtext(text = paste(tf_name, cell_type, "reverse strand"), side = 3, line = 1, cex = 1)
axis(1,at=c(1, flank+1, length(counts)-flank, length(counts)), labels=c(-flank, '','' ,flank), 
     cex.axis = 1, tck=-0.03, tick = T, cex = 1)

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
0e20593 kevinlkx 2018-08-29

## save counts matrix
rds_name <- paste0(dir_data, "/DNase-seq_ENCODE/", cell_type, "/DNaseSeq/DNase_tagcount_matrix/", tf_name, "/",
                                  pwm_name, "_hg19_dnase_counts_selected_sites.rds")
saveRDS(counts_selected.m, rds_name)

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.1.1   Rcpp_0.12.16      digest_0.6.15    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.21.0      magrittr_1.5      evaluate_0.10.1  
[10] stringi_1.1.7     whisker_0.3-2     R.oo_1.22.0      
[13] R.utils_2.6.0     rmarkdown_1.9     tools_3.4.3      
[16] stringr_1.3.0     yaml_2.1.18       compiler_3.4.3   
[19] htmltools_0.3.6   knitr_1.20       

This reproducible R Markdown analysis was created with workflowr 1.1.1