Last updated: 2017-10-12
Code version: 8e822f0
Here we use CONFESS to perform FUCCI and DAPI image analysis. CONFESS is built on EBImage and has been previously used to quantify cell cycle phase for 200+ HeLa cells. Their results are described in a bioRxiv paper (http://dx.doi.org/10.1101/088500).
In this document, I report results for four different FUCCI plates (18855_18511, 18870_18855, 18870_19101, 19101_19098). Additional results are reported for 18855_18511 comparing analysis on two sets of images differing in crop sizes.
Load RDS.
confess_18855_18511_crop1 <- readRDS(file = "../data/18855_18511_crop_09052017.rds")
confess_18855_18511_crop2 <- readRDS(file = "../data/18855_18511_crop_09072017.rds")
confess_18870_18855 <- readRDS(file = "../data/18870_18855_crop_09072017.rds")
confess_18870_19101 <- readRDS(file = "../data/18870_19101_crop_09122017.rds")
confess_19101_19098 <- readRDS(file = "../data/19101_19098_crop_09122017.rds")
Functions for exploratory data analysis.
# make three plots
# 1. log2 foreground versus log2 background intensity for Red channel
# 2. log2 foreground versus log2 background intensity for Green channel
# 3. signal-to-noise ratio of green versus red
eda <- function(data, plot_title) {
with(data, {
xlim_red <- ylim_red <- range(c(log2(back_Red), log2(fore_Red)))
xlim_green <- ylim_green <- range(c(log2(back_Green), log2(fore_Green)))
par(mfrow = c(2,2))
plot(x = log2(back_Red), y = log2(fore_Red), pch = 16, cex = .7,
xlim = xlim_red, ylim = ylim_red); abline(0, 1)
plot(x = log2(back_Green), y = log2(fore_Green), pch = 16, cex = .7,
xlim = xlim_green, ylim = ylim_green); abline(0, 1)
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
plot(x = StN.green.norm, y = StN.red.norm,
pch = 16, cex = .7); abline(v=.5, h = .5)
title(main = plot_title, outer = TRUE, line = -1)
})
}
In summary,
eda(confess_18870_18855, "18870_18855")
with(confess_18870_18855, {
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
green_pos <- StN.green.norm > .5
red_pos <- StN.red.norm > .5
table(red_pos, green_pos)
})
green_pos
red_pos FALSE TRUE
FALSE 28 48
TRUE 0 20
eda(confess_18870_19101, "18870_19101")
with(confess_18870_19101, {
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
green_pos <- StN.green.norm > .5
red_pos <- StN.red.norm > .5
table(red_pos, green_pos)
})
green_pos
red_pos FALSE TRUE
FALSE 33 39
TRUE 0 24
eda(confess_19101_19098, "19101_19098")
with(confess_19101_19098, {
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
green_pos <- StN.green.norm > .5
red_pos <- StN.red.norm > .5
table(red_pos, green_pos)
})
green_pos
red_pos FALSE TRUE
FALSE 32 49
TRUE 0 15
eda(confess_18855_18511_crop1, "18855_18511, crop1")
with(confess_18855_18511_crop1, {
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
green_pos <- StN.green.norm > .5
red_pos <- StN.red.norm > .5
table(red_pos, green_pos)
})
green_pos
red_pos FALSE TRUE
FALSE 28 46
TRUE 1 21
eda(confess_18855_18511_crop2, "18855_18511, crop2")
with(confess_18855_18511_crop2, {
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
green_pos <- StN.green.norm > .5
red_pos <- StN.red.norm > .5
table(red_pos, green_pos)
})
green_pos
red_pos FALSE TRUE
FALSE 25 47
TRUE 2 22
Take 18870_18855. Let’s look at the log2fore_red verus log2back_red, which ones are very similar?
with(confess_18870_18855, {
# xlim_red <- ylim_red <- range(c(log2(back_Red), log2(fore_Red)))
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
which_cell <- StN.green.norm < .5 & StN.red.norm < .2
xy <- cbind(log2(back_Red), log2(fore_Red))
# xy <- xy[which(abs(log2(fore_Red)-log2(back_Red)) < .05),]
xy <- xy[which_cell,]
par(mfrow = c(1,1))
plot(xy,
xlim = c(14.35,14.6), ylim = c(14.35,14.6),
xlab = "log2(Red background)",
ylab = "log2(Red foreground)",
pch = 16,
# pch = as.character(1:96)[which(log(back_Red) < 14.5)],
cex = .8); abline(0, 1)
})
Consider the cells which foreground Red and Background Red are very similar. Of these 28 cells, about half have no DAPI signals and the ones with DAPI signal exhibit green signal.
with(confess_18870_18855, {
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
print(which(StN.green.norm < .5 & StN.red.norm < .2))
})
[1] 14 16 20 21 22 28 30 33 35 39 41 43 44 46 48 49 54 58 60 62 63 64 68
[24] 71 72 74 75 95
DAPI/Red/Green 14: Y/N/Y 16: N/N/N 20: ?/N/N 21: Y/N/Y 22: Y/?/Y 28: Y/?/Y 30: Y/N/Y 33: ?/N/Y 35: ?/N/? 39: ?/N/? 41: ?/N/? 43: N/N/? 44: N/?/N 46: Y/N/Y 48: N/N/N 49: N/N/? 54: Y/N/Y 58: Y/?/Y 60: Y/N/Y 62: N/N/N 63: Y/N/Y 64: Y/N/Y 68: N/N/? 71: N/N/? 72: Y/N/Y 74: ?/N/Y 75: Y/Y/Y 95: ?/N/?
Consider 18870_19101. Results are similar to 18870_18855.
with(confess_18870_19101, {
xlim_red <- ylim_red <- range(c(log2(back_Red), log2(fore_Red)))
xlim_green <- ylim_green <- range(c(log2(back_Green), log2(fore_Green)))
par(mfrow = c(2,2))
plot(x = log2(back_Red), y = log2(fore_Red),
xlim = xlim_red, ylim = ylim_red); abline(0, 1)
plot(x = log2(back_Green), y = log2(fore_Green),
xlim = xlim_green, ylim = ylim_green); abline(0, 1)
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
plot(x = StN.green.norm,
y = StN.red.norm); abline(v=.5, h = .5)
})
Look at the log2fore_red verus log2back_red, which ones are very similar?
with(confess_18870_19101, {
# xlim_red <- ylim_red <- range(c(log2(back_Red), log2(fore_Red)))
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
which_cell <- StN.green.norm < .3 & StN.red.norm < .3
xy <- cbind(log2(back_Red), log2(fore_Red))
# xy <- xy[which(abs(log2(fore_Red)-log2(back_Red)) < .05),]
xy <- xy[which_cell,]
par(mfrow = c(1,1))
plot(xy,
xlim = c(14.28,14.6), ylim = c(14.28,14.6),
xlab = "log2(Red background)",
ylab = "log2(Red foreground)",
pch = 16,
# pch = as.character(1:96)[which(log(back_Red) < 14.5)],
cex = .8); abline(0, 1)
})
Consider the cells which foreground Red and Background Red are very similar. Of these 28 cells, about half have no DAPI signals and the ones with DAPI signal exhibit green signal.
with(confess_18870_19101, {
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
print(which(StN.green.norm < .3 & StN.red.norm < .3))
})
[1] 2 9 11 12 16 18 21 23 28 30 34 35 36 37 38 45 47 55 61 66 72 73 75
[24] 76 78 87
Observe that 19 out of 28 cells that are called as both Green and Red negative were estimated using BF method. There are other two methods: Both.Channels and One.channel. What’s the difference between these? TBD.
with(confess_18870_18855, {
xlim_red <- ylim_red <- range(c(log2(back_Red), log2(fore_Red)))
xlim_green <- ylim_green <- range(c(log2(back_Green), log2(fore_Green)))
par(mfrow = c(2,2))
plot(x = log2(back_Red), y = log2(fore_Red),
xlim = xlim_red, ylim = ylim_red); abline(0, 1)
plot(x = log2(back_Green), y = log2(fore_Green),
xlim = xlim_green, ylim = ylim_green); abline(0, 1)
StN.red <- log2(fore_Red) - min(log2(back_Red))
StN.green <- log2(fore_Green) - min(log2(back_Green))
StN.red.norm <- (StN.red-min(StN.red))/(max(StN.red)-min(StN.red))
StN.green.norm <- (StN.green-min(StN.green))/(max(StN.green)-min(StN.green))
plot(x = StN.green.norm,
y = StN.red.norm); abline(v=.5, h = .5)
which_cell <- StN.green.norm < .5 & StN.red.norm < .5
print(table(which_cell, Estimation.Type))
print(which(which_cell))
})
Estimation.Type
which_cell BF Both.Channels One.Channel
FALSE 1 46 21
TRUE 19 4 5
[1] 14 16 20 21 22 28 30 33 35 39 41 43 44 46 48 49 54 58 60 62 63 64 68
[24] 71 72 74 75 95
sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 17.04
Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.7.0
LAPACK: /usr/lib/lapack/liblapack.so.3.7.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] compiler_3.4.2 backports_1.1.1 magrittr_1.5 rprojroot_1.2
[5] tools_3.4.2 htmltools_0.3.6 yaml_2.1.14 Rcpp_0.12.11
[9] stringi_1.1.5 rmarkdown_1.6 knitr_1.17 git2r_0.19.0
[13] stringr_1.2.0 digest_0.6.12 evaluate_0.10.1
sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 17.04
Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.7.0
LAPACK: /usr/lib/lapack/liblapack.so.3.7.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] compiler_3.4.2 backports_1.1.1 magrittr_1.5 rprojroot_1.2
[5] tools_3.4.2 htmltools_0.3.6 yaml_2.1.14 Rcpp_0.12.11
[9] stringi_1.1.5 rmarkdown_1.6 knitr_1.17 git2r_0.19.0
[13] stringr_1.2.0 digest_0.6.12 evaluate_0.10.1
This R Markdown site was created with workflowr