Last updated: 2018-08-08

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 457f59b

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
    
    Untracked files:
        Untracked:  analysis/table-s1.txt
        Untracked:  analysis/table-s2.txt
        Untracked:  code/tb-scratch.R
        Untracked:  data/counts_per_sample.txt
        Untracked:  docs/table-s1.txt
        Untracked:  docs/table-s2.txt
        Untracked:  factorial-dox.rds
    
    Unstaged changes:
        Modified:   data/cll-eset.rds
        Modified:   data/cll-fit2.rds
        Modified:   data/cll.RData
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 457f59b John Blischak 2018-08-08 Organize analysis of Arabidopsis used in slides to demo 2x2 factorial study.


2x2 design to study effect of low temperature in plants:

  • 2 types of Arabidopsis thaliana: col, vte2
  • 2 temperatures: normal, low
  • Maeda et al. 2010

Setup

library(Biobase)
library(GEOquery)
library(limma)
library(stringr)
rds <- "../data/arabidopsis-eset.rds"
if (!file.exists(rds)) {
  gset <- getGEO("GSE53990", GSEMatrix = TRUE, getGPL = FALSE)
  if (length(gset) > 1) idx <- grep("GPL198", attr(gset, "names")) else idx <- 1
  gset <- gset[[idx]]
  eset <- gset
  dim(eset)
  plotDensities(eset, legend = FALSE)
  
  # RMA normalization already applied
  #
  # > Raw chip data were analyzed with R/Bioconductor. Only perfect match (PM)
  # > intensities were used. RMA function as implemented in the affy package was
  # > used for background adjustment, normalization and summarization.
  
  sum(rowMeans(exprs(eset)) > 5)
  plotDensities(eset[rowMeans(exprs(eset)) > 5, ], legend = FALSE)
  eset <- eset[rowMeans(exprs(eset)) > 5, ]
  
  pData(eset) <- pData(eset)[, c("title", "genotype:ch1", "lt treatment time:ch1")]
  colnames(pData(eset)) <- c("title", "type", "temp")
  
  # Remove 48h sample. More noticeable effect at 120h (authors note that 48 hour
  # timepoint is more interesting to them since it is more likely to give insight
  # into mechanism since by 120h lots of downstream singaling has started.
  # However, the effect is much more minimal, and thus not as useful for my
  # pedagological needs)
  eset <- eset[, pData(eset)[, "temp"] != "48h"]
  
  # Clean up names
  pData(eset)[, "type"] <- tolower(pData(eset)[, "type"])
  pData(eset)[, "temp"] <- ifelse(pData(eset)[, "temp"] == "0h", "normal", "low")
  pData(eset)[, "rep"] <- sprintf("r%d",
                                  as.integer(str_sub(pData(eset)[, "title"], -1, -1)))
  pData(eset)[, "title"] <- NULL
  colnames(eset) <- paste(pData(eset)[, "type"],
                          pData(eset)[, "temp"],
                          pData(eset)[, "rep"], sep = "_")
  head(pData(eset))
  
  saveRDS(eset, file = "../data/arabidopsis-eset.rds")
} else {
  eset <- readRDS(rds)
}

dim(eset)
Features  Samples 
   11871       12 
table(pData(eset)[, c("type", "temp")])
      temp
type   low normal
  col    3      3
  vte2   3      3

Design matrix

# Create single variable
group <- with(pData(eset), paste(type, temp, sep = "."))
group <- factor(group)

# Create design matrix with no intercept
design <- model.matrix(~0 + group)
colnames(design) <- levels(group)
head(design, 3)
  col.low col.normal vte2.low vte2.normal
1       0          1        0           0
2       0          1        0           0
3       0          1        0           0
# Count the number of samples modeled by each coefficient
colSums(design)
    col.low  col.normal    vte2.low vte2.normal 
          3           3           3           3 

Contrasts matrix

# Create a contrasts matrix
cm <- makeContrasts(type_normal = vte2.normal - col.normal,
                    type_low = vte2.low - col.low,
                    temp_vte2 = vte2.low - vte2.normal,
                    temp_col = col.low - col.normal,
                    interaction = (vte2.low - vte2.normal) - (col.low - col.normal),
                    levels = design)

# View the contrasts matrix
cm
             Contrasts
Levels        type_normal type_low temp_vte2 temp_col interaction
  col.low               0       -1         0        1          -1
  col.normal           -1        0         0       -1           1
  vte2.low              0        1         1        0           1
  vte2.normal           1        0        -1        0          -1

Differential expression

# Fit the model
fit <- lmFit(eset, design)

# Fit the contrasts
fit2 <- contrasts.fit(fit, contrasts = cm)

# Calculate the t-statistics for the contrasts
fit2 <- eBayes(fit2)

# Summarize results
results <- decideTests(fit2)
summary(results)
   type_normal type_low temp_vte2 temp_col interaction
-1           0      466      1635     1885         128
0        11871    10915      7635     6989       11640
1            0      490      2601     2997         103

Session information

sessionInfo()
R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] stringr_1.3.1       limma_3.32.2        GEOquery_2.42.0    
[4] Biobase_2.36.2      BiocGenerics_0.22.1

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18         knitr_1.20           whisker_0.3-2       
 [4] magrittr_1.5         workflowr_1.1.1.9000 R6_2.2.2            
 [7] httr_1.3.1           tools_3.4.4          R.oo_1.22.0         
[10] git2r_0.23.0         htmltools_0.3.6      yaml_2.2.0          
[13] rprojroot_1.3-2      digest_0.6.15        R.utils_2.6.0       
[16] bitops_1.0-6         RCurl_1.95-4.11      evaluate_0.11       
[19] rmarkdown_1.10       stringi_1.2.4        compiler_3.4.4      
[22] backports_1.1.2-9000 R.methodsS3_1.7.1    XML_3.98-1.11       

This reproducible R Markdown analysis was created with workflowr 1.1.1.9000