Ali Afroozeh

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Anastasia [zmaylova

{ali.afroozeh, anastasia.izmaylova}@cwi.nl

Operator Precedence for Data-Dependent Grammars

Abstract

Constructing parsers based on declarative specification of operator
precedence is a very old research topic, and there are various
existing approaches. However, these approaches are either tied to
a particular parsing technique, or cannot deal with all corner cases
found in programming languages.

In this paper we present an implementation of declarative spec-
ification of operator precedence for general parsing that (1) is inde-
pendent of the underlying parsing algorithm, (2) does not require
any grammar transformation that increases the size of the grammar,
(3) preserves the shape of parse trees of the original, natural gram-
mar, and (4) can deal with intricate cases of operator precedence
found in functional programming languages such as OCaml.

Our new approach to operator precedence is formulated using
data-dependent grammars, which extend context-free grammars
with arbitrary computation, variable binding and constraints. We
implemented our approach using Iguana, a data-dependent pars-
ing framework, and evaluated it by parsing Java and OCaml source
files. The results show that our approach is practical for parsing pro-
gramming languages with complicated operator precedence rules.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Syntax; D.3.4 [Pro-
gramming Languages): Processors—Parsing

Keywords Parsing, data-dependent grammars, disambiguation,
operator precedence, declarative syntax definition

1. Introduction

Expressions are basic blocks of programming languages, and per-
haps, one of the most difficult parts when it comes to parsing. In ref-
erence manuals of programming languages it is common to spec-
ify the semantics of expressions using the precedence and asso-
ciativity of operators. For example, consider an excerpt of OCaml
expression grammar [22] in Figure 1 (left) and its accompanying
precedence table (right). Expression grammars in their concise and
natural form, e.g., in Figure 1, are ambiguous, which makes con-
structing parsers from such grammars challenging.

A common approach to unambiguously parse expression gram-
mars is to encode operator precedence rules by rewriting the gram-
mar. This rewriting, which introduces a new nonterminal for each

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive version was published in the following publication:

PEPM’16, January 18-19, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-4097-7/16/01...
http://dx.doi.org/10.1145/2847538.2847540

expr ::= expr '.' field Operator Associativity
| expr expr _
I e)—(prefgr expr function appl left
| expr '+' expr - (unary) -
| expr '-' expr * left
| 'if' expr 'then' expr +- left
| expr ';' expr if -
| *(' expr ") ; right
g

Figure 1. A simplified excerpt of OCaml expression grammar
(left), and its corresponding table of operator precedence (right).

precedence level, is not trivial for grammars of real programming
languages, and leads to large grammars. This rewriting is particu-
larly problematic in parsing techniques that do not support left re-
cursion, as the resulting parse trees are considerably different from
the ones of the original grammar.

Instead of rewriting the grammar, it iS more convenient to use
an ambiguous grammar and a set of declarative constructs to spec-
ify operator precedence. Constructing parsers based on declarative
specification of operator precedence is a very old research topic,
dating back to the work of Floyd [11] on operator precedence gram-
mars in 1963. Floyd’s operator precedence grammars are a limited
subset of deterministic grammars, and are not used in practice to
fully specify a grammar. Rather, they are mainly used in handwrit-
ten recursive-descent parsers for efficient parsing of expressions.

One of the most-widely used operator precedence techniques
is presented by Aho et al. [5]. This approach, which is based on
LR parsing and implemented in Yacc [16], maps operator prece-
dence information to shift/reduce conflicts. The Yacc-style opera-
tor precedence is efficient and powerful. For example, the parser for
OCaml, which has one of the most complicated expression gram-
mars, is written using ocamlyacc, an OCaml port of Yacc.

When machine resources were scarce, only deterministic pars-
ing techniques were considered. The success of Yacc [16], and its
underlying LR parsing theory [8, 21] that has been developed in
the 70s, enabled generation of linear parsers from a BNF gram-
mar specification. Deterministic parsing techniques are efficient,
and guarantee that no ambiguity will be left in the grammar. The
main problem with deterministic parsing techniques is that they are
not expressive enough to support the syntax of programming lan-
guages out of the box. This means that the grammar writer needs to
massage a grammar into a deterministic form.

As machines became more powerful and the need for front-
ends in areas other than traditional compiler construction increased,
more expressive parsing techniques were considered. For example,
in areas such as source code analysis and development of domain-
specific languages (DSLs), it is desirable to quickly construct (pro-
totype) a parser. General parsing algorithms [9, 26, 29] can deal
with any context-free grammar, and therefore, free the user from the

expr ::= expr '.' field
> expr expr left
> '-' expr
> expr 'x' expr left
> (expr '+' expr | expr '-' expr) left
> 'if' expr 'then' expr
> expr ';' expr right
| (' expr ')

Figure 2. A simplified excerpt of OCaml expression grammar
augmented with declarative operator precedence constructs.

restrictions of a particular deterministic parsing technique. More-
over, general parsers can run nearly linearly on grammars of real
programming languages, while keeping the cubic bound on worst-
case, highly ambiguous grammars [26, 27]. Of course, the machin-
ery of a general parser imposes performance overhead, but the per-
formance of general parsing [17] is not a reason to avoid them.

The main fear of using general parsing algorithms is ambiguity.
Sentences can be ambiguous, and it is not always easy to pinpoint
the cause of ambiguity and resolve it. Disambiguation is the pro-
cess of selecting a parse tree from a set of resulting parse trees.
Theoretically, disambiguation can be considered as post-parse fil-
tering of a parse forest. However, in practice, it is desirable to apply
disambiguation while parsing, to reduce nondeterminism, and to
terminate parsing paths that lead to ambiguity as early as possible.

In a declarative syntax definition formalism, such as SDF [19],
disambiguation constructs are declared by the user, rather than be-
ing imposed by the underlying parsing technique, e.g., order of al-
ternatives in PEGs [12]. For example, in a declarative approach, op-
erator precedence information in Figure 1(right) can be expressed
using >, left and right, as shown in Figure 2. As can be seen,
the precedence information is specified using the > construct, and it
is decreasing: the first alternative has the highest precedence. Asso-
ciativity is described using left and right. In case of + and -, which
have the same precedence, but are left-associative with respect to
each other, a left associativity group is used.

We distinguish between the notation, semantics, and implemen-
tation of an operator precedence approach. For example, in Yacc,
the precedence of operators is globally specified based on tokens,
as opposed to Figure 2 where precedence is locally defined for al-
ternatives of an expression nonterminal. A token-based notation for
specifying operator precedence has two shortcomings. First, an ex-
tra mechanism is needed to distinguish between tokens that have
different meanings in different rules, e.g., unary and binary minus.
Second, there is no native way to specify the operator precedence
of an invisible operator. For example, the function application oper-
ator, expr ::= expr expr, in Figure 1. The semantics of Yacc-style
operator precedence is described in terms of shift/reduce conflicts
in LR parsing, which is exactly how it is implemented. While Yacc
is powerful and widely used, its operator precedence semantics is
bound to the internal workings of LR parsing, and cannot be ported
to non-LR parsing algorithms.

There has been much work [1, 6, 20, 28, 33] that provide a
parser-independent semantics of operator precedence. We discuss
these work in detail in Section 5. Among them, SDF2 [33] is of par-
ticular importance as it provides an intuitive tree-based semantics
of operator precedence, and is implemented in context of general
parsing, Scannerless GLR (SGLR) [31]. The operator precedence
semantics of SDF2 works for most cases, but in some cases it is
too strong, removing sentences from the language when there is no
ambiguity, and in some cases, it cannot deal with corner cases of
operator precedence in programming languages such as OCaml.

In our previous work [4], we proposed an extension of SDF2
semantics that does not remove sentences from the language when

there is no operator precedence ambiguity, while being able to
cover corner cases of operator precedence ambiguity in program-
ming languages such as OCaml. This semantics has the same effect
as Yacc semantics, but does not depend on a specific aspect of a
parsing algorithm, e.g., shift/reduce conflicts in LALR parsing, and
can be implemented in the context of different parsing techniques.
We proposed a grammar rewriting [4] to implement this semantics.
This rewriting preserves the shape of derivation trees. However, it
leads to large grammars and introduces unnecessary nondetermin-
ism to the grammar.

Data-dependent grammars [15] extend traditional context-free
grammars with arbitrary computation, parametrized nonterminals,
variable binding and constraints. Jim ez al. [15] present the seman-
tics of data-dependent grammars that does not depend on a partic-
ular general parsing algorithm, and is rather straightforward. In our
recent work [3], we showed that data-dependent grammars can be
used as an intermediate layer for parser-independent implementa-
tion of various disambiguation strategies. We provided an imple-
mentation of the operator precedence semantics of [4], by desugar-
ing the high-level operator precedence notation (>, left ,and right)
to data-dependent grammars [3]. Compared to the grammar rewrit-
ing in [4], the desugaring preserves the size of the original gram-
mar, while having comparable performance in practice.

In this paper we extend and improve our previous translation [3]
of operator precedence to data-dependent grammars. We extend
it to support indirect operator precedence and thus being able to
parse OCaml. We improve its performance by using a new strategy
for left-recursive nonterminals. Our translation can deal with deep
and indirect precedence cases in programming languages such as
OCaml. We evaluate our approach by parsing real OCaml and Java
source files using the Iguana parsing framework [2, 3].

The rest of this paper is organized as follows. Section 2 de-
scribes the problem of operator precedence in parsing. Section 3 in-
troduces our solution to operator precedence using data-dependent
grammars. Section 4 presents the evaluation of our technique using
grammars of Java and OCaml. Section 5 discusses related work,
and Section 6 concludes.

2. The Problem of Operator Precedence

In this section we discuss expression grammars and operator prece-
dence in detail. When explaining the examples, we use two dif-
ferent semantics of operator precedence, namely, Aho et al.’s
approach [5] based on shift/reduce conflicts, which we refer to
as Yacc-style semantics, and the SDF2 semantics [33] based on
tree patterns. Understanding the difference between Yacc-style and
SDF2-style semantics helps to understand the problem, and moti-
vates our approach to operator precedence in Section 3.

2.1 Binary Operators

Consider a simple expression grammar with two binary operators
'x' and '+'. Parsing a+axa with this grammar results in two deriva-
tion trees, corresponding to the groupings a+(axa) and (a+a)*a:

E '+' E ())
£ e & © /g}é&@)
FOo® FoOwB

Based on operator precedence in arithmetics, the first grouping
is correct. Both Yacc-style and SDF2-style semantics of operator
precedence can deal with this case. We first consider Yacc. This
grammar leads to shift/reduce conflicts in the following LR states:

(1) E ::=E .'"+' E (2) E ::=E .'"x' E
E::=E '+' E. E::=E 'x'E
E ::=E .'"x" E E::=E .'"+'" E

In the first state, the shift/reduce conflict between E ::= E '+' E.
andE ::= E .'x' E corresponds to the precedence of '+' and '*'.
If we give '+ higher precedence than '+', Yacc resolves this con-
flict in favor of shifting '+'. The shift/reduce conflict between
E ::=E '+ E.andE ::= E .'+' Ecorresponds to the associativ-
ity of '+'. If we define '+' left-associative, this conflict will be re-
solved in favor of reduce. The same holds for the second LR state.

SDF2 [33] uses an operator precedence semantics based on
patterns in derivation trees. This parser-independent semantics al-
lows the language engineer to think in terms of tree patterns rather
than shift/reduce conflicts. In SDF2, > defines a precedence rela-
tionship between two alternatives of a nonterminal. For example,
E::=E 'x' E>E ::=E '+' E! means that all E's in the body
of the '«'-rule cannot derive E ::= E '+' E. This effectively dis-
allows derivation trees that correspond to the grouping of '+' un-
der '+'. Associativity in SDF2 is specified using left and right.
For example, E ::= E 'x' E left means that the second E in the
body of the '*'-rule cannot derive itself. SDF2 semantics can be
applied during parsing, by modifying parse tables to remove violat-
ing derivation trees, or as a post-parse filtering step. In this paper,
we are concerned with the semantics of SDF2, and not a particular
implementation.

2.2 Unary and Binary Operators

Combining both unary and binary operators makes the implemen-
tation of operator precedence more complicated. In this section we
consider two common examples: one from the basic arithmetics
and one from functional programming languages.

Arithmetics We consider a combination of unary '-' and binary
'+' operators. Parsing -a+a with such a grammar results in two
derivation trees, corresponding to the groupings - (a+a) or (-a)+a:

(1) 2)
I.EI+ E @
®E0® O ®

Based on operator precedence in arithmetics, where unary '-' has
higher precedence than binary '+', the second derivation tree is cor-
rect. Both Yacc-style and SDF2-style semantics can disambiguate
this case. The explanation is similar to the one we gave for the
binary-only example of the previous section.

Functional languages So far, we focused on expression gram-
mars that have conventional precedence rules as in basic arith-
metics. However, in functional programming languages, there are
some combinations of precedence rules which are not found in ba-
sic arithmetics. In this paper, we focus on OCaml [22], a popular
dialect of ML, which allows imperative, object-oriented and func-
tional styles of programming. The syntax of OCaml can be seen as
a large expression grammar, as almost each construct is an expres-
sion. For example, consider the following conditional expression:

if b then x else x + 1

In OCaml, 'if-then-else' acts as a unary prefix operator that
has lower precedence than binary infix operators. Therefore, this
expression should be grouped as if b then x else (x + 1) and
not as (if b then x else x) + 1.

To observe Yacc’s behavior on this grammar, we consider the
following conflicting LR states:

(1) E ::= "if' E 'then' E 'else' E. (2) E::=E .'"+' E
E ::=E .'"+" E E ::=E '+'E.

' SDF?2 adheres to algebraic notation and writes A ::= & as & — A. In this
paper, we use an EBNF-like notation for writing grammar rules.

State (2) corresponds to the associativity of the '+' operator, which
we discussed in the previous section. State (1) corresponds to the
precedence of 'if-then-else' and '+'. As can be seen, in this state
we can either reduce the 'if-then-else' rule or shift '+'. Given
that '+' in OCaml has higher precedence that 'if-then-else', the
shift action is performed, producing the correct derivation tree.

For this input, the SDF2 semantics can also produce the correct
derivation tree. Recall that SDF2 uses > to define precedence, and,
in this case, E ::= E '+' E > E ::= 'if' E 'then' E 'else' E
means that the E’s in the body of the '+'-rule cannot derive
'if-then-else', preventing the wrong derivation. We now con-
sider a slightly different input:

1 + if b then x else x

where the 'if-then-else' expression is the right operand of '+'.
This expression is in fact unambiguous and can only have one
grouping: 1 + (if b then x else x). Yacc can successfully parse
this expression, producing the expected derivation tree. However,
SDF?2 gives a parse error for this example. As '+' has higher prece-
dence than 'if-then-else', no E in the body of the '+' can derive
'if-then-else', and therefore, this input is rejected. To observe
this behavior of the SDF2 semantics, we need a binary operator
with higher precedence than a unary operator. In arithmetics, this
case only happens for the power operator (*~'), for example, for
the input1 ~ - 1.

The last example shows that in some cases SDF2 semantics is
too strong and can remove sentences from the language even if
there is no ambiguity. Therefore, the SDF2 semantics for operator
precedence is not safe. We call a disambiguation mechanism safe iff
it does not remove sentences from a language [4]. In other words,
when there is no ambiguity, a safe disambiguation mechanism must
not apply. Although many disambiguation mechanisms are not safe,
for example, longest match, for the operator precedence ambiguity
we can ensure safety.

In SDF2, one can fine-tune the behavior of > by specifying the
exact nonterminal under which filtering should happen. For exam-
ple, to enforce that filtering should only happen under the left E, we
can write E ::= E '+' E <0> > 'if' E 'then' E 'else' E. Here,
<0> specifies that filtering should only happen under the nontermi-
nal at position zero. This way of specifying precedence is tedious
as the <i> operator is not transitive across alternatives, but even if
we consider a transitive version, there is another problem with this
tree-based semantics of operator precedence: in some cases, this
semantic is too weak and cannot disambiguate an operator prece-
dence ambiguity. Consider the following example:

1+ if b then x else x + 1

According to the precedence and associativity rules in OCaml, this
example should be parsed as:

(a) 1 + (if b then x else (x + 1))
and not as two other alternative derivation trees:

(b) (1 + (if b then x else x)) + 1
(c) 1 + ((if b then x else x) + 1)

The last two interpretations are precedence-incorrect as they corre-
spond to the cases where 'if-then-else' binds stronger than '+',
and '+' is right-associative.

Yacc can deal with this input and produces the expected deriva-
tion tree (a). In the conflicting state (1), shown before, Yacc prefers
to shift '+', which effectively prevents 'if-then-else' to bind
stronger when it is followed by '+', as in the derivations (b) and
(c). In contrast, the SDF2 semantics cannot disambiguate this case,
producing the derivation trees (a) and (b). The derivation tree (c) is
rejected based on left associativity of '+'. To show the parent/child

relationships in derivation trees, the two remaining derivation trees
are shown below:

The SDF2 semantics for operator precedence is defined as a one-
level relationship between a parent and a child rule. Based on this
relationship, a derivation step from a nonterminal in the body of
the parent rule is prohibited. If we examine the derivation trees
above, the nodes in both trees are precedence correct with respect
to their immediate children: E ::= E + E does not appear under the
rightmost E in the '+'-rule, and E ::= 'if' E 'then' E 'else' E
does not appear under the leftmost E in the '+'-rule.

The last example illustrates that in order to disambiguate this
case, a semantics of operator precedence should only restrict
derivation of 'if-then-else' under the rightmost E of the '+' rule
when this E is derived from the leftmost E of the '+'-rule. We call
such cases of operator precedence deep. Deep cases commonly,
but not only, happen when a left-associative binary operator has
higher precedence than a unary prefix operator. This also holds for
a right-associative binary operator with higher precedence than a
unary postfix operator. Such cases do not happen in arithmetics,
but are essential to allow natural writing (without parentheses) of
expressions in languages such as OCaml.

In a previous work [4], we provided a semantics of operator
precedence that can deal with such deep cases (see Section 3.1). We
also presented a grammar rewriting technique [4] that implements
this semantics. There are mainly two problems with this rewriting
technique. First, the size of the generated grammar can be rather
large. We have not done a formal analysis, but it appears that the
size of the generated grammar is quadratic with respect to the orig-
inal grammar. To preserve the shape of the original derivation trees,
many intermediate nonterminals are introduced. These intermedi-
ate nonterminals may introduce nondeterminism into the grammar,
and lead to inefficiency in parsing (see Section 3.6).

2.3 Indirect Recursive Nonterminals

Dealing with deep cases alone is not enough to resolve all prece-
dence ambiguities in OCaml. For example, consider the following
(simplified) rules from the OCaml language specification:

expr ::= expr '+' expr

| 'match' expr 'with' pattern-matching
| 'function' pattern-matching

| 'try' expr 'with' pattern-matching

pattern-matching ::= pattern '->' expr

As can be seen, the common pattern matching syntax is factored out
into a separate pattern-matching nonterminal. As pattern-matching
ends with expr, it can cause precedence ambiguity. All these unary
prefix operators, 'match', 'function', and try, have lower prece-
dence than binary operators in OCaml, thus, an input string such as
function x -> x + 1should be parsed as function x -> (x + 1),
and not as (function x -> x) + 1:

In a declarative syntax formalism with support for operator prece-
dence, we would like the following definition to be able to return
the correct derivation tree.

expr ::= expr '+' expr
> 'function' pattern-matching

In [4], we only conjectured on the implementation of such indirect
cases, by copying the full grammar part reachable from an indirect
nonterminal and rewriting left or rightmost recursive ends. In this
paper, we show a dynamic, more systematic way of dealing with
indirect cases of operator precedence. It should be noted that the
Yacc-style semantics can deal with indirect cases, for example, in
this case, when the token '->' is given higher precedence than '+
(Yacc considers the precedence of the last terminal of a rule as the
precedence of the rule). The reason why Yacc can deal with indirect
cases directly corresponds to how an LR automaton is constructed,
more specifically closure on LR items. In our example, the closure
on the item pattern-matching ::= pattern '->' . expr imports
the item expr ::= . expr '+' expr, leading to the following LR
state after a transition on expr:

pattern-matching ::= pattern '->' expr .
expr ::= expr .'+' expr

This state leads to a shift/reduce conflict that can be resolved based
on the precedence relationship between '+' and ' ->'.

2.4 Discussion

So far, we discussed the problem of operator precedence in pars-
ing using Yacc and SDF2 as two leading semantics. The Yacc-style
semantics is safe, and can deal with deep and indirect cases. How-
ever, this semantics is bound to the inner workings of LR parsing,
and cannot be ported to other non-LR parsing techniques. In fact,
Yacc was designed to work with LALR grammars, not arbitrary
context-free grammars. As a result, for example, the Yacc-style op-
erator precedence cannot be used in a scannerless GLR parser that
inserts layout (whitespace and comment) between symbols.

Our goal is to provide a declarative semantics of operator prece-
dence, so that the grammar writer can think in terms of the gram-
mar, rather than inner workings of a parsing algorithm. In this pa-
per we use a semantics of operator precedence that is defined in
terms of derivation trees. Our semantics (Section 3.1) can be seen
as an extension of SDF2 semantics, that makes it safe, and allows
for deep and indirect operator precedence cases. The main con-
tribution of this paper is how to implement this semantics using
data-dependent grammars. Our implementation preserves the size
of the original grammar, does not depend on a particular parsing
algorithm and is efficient.

3. Operator Precedence for Data-Dependent
Grammars
3.1 Notation and Semantics for Operator Precedence

We use > as a high-level construct for declarative specification of
operator precedence. In our semantics, > defines a partial order on
alternatives of a nonterminal. For any two grammar rules r; and r;
with the same head E, r; > r, applies if one of the rules is left-
recursive (E ::= Ef) and the other is right-recursive (E ::= QE).
This means that rules that are neither left- nor right-recursive, e.g.,
E ::= '('" E ')' are not affected by >.

We define operator precedence as a relationship between alter-
natives of a nonterminal, and not tokens. We consider three possible
types of rules. Unary prefix rules (E ::= oE) where « is nonempty
and does not start with E, unary postfix rules (E ::= Ef3) where 3
is nonempty and does not end with E, and binary rules of the form

[1=
[1=
[1=

E::=E'. Id E(p) ::= [3>=p] 1=E(p)
| E".['E ']’ | [3>=p] 1=E(p)
>E '+ E | [2>=p] 1=E(p)
> 'if' E 'then' E | 'if' E(0)
| (" E ") | (' E(0)
| ra ! ‘a’

oy

=0||1>=3] '.' Id {0} // 3
=0 |1>=3] '.[' E(0) ']' {0} // 3
=0||1>=2] '+' r=E(2) {r==0 ? 2 : min(r,2)} // 2
'then' E(1) {1} // 1
{0} // -
{6} // -

Figure 3. Translation of precedence rules into data-dependent grammars.

E ::= EYE, where 7 is a possibly empty sequence of symbols. In
this setting, o, B and ¥ act as operators.

The reason why we only consider left- and right-recursive rules
is that only left- and right-recursive ends can participate in an op-
erator precedence ambiguity. In an operator precedence ambiguity
involving two operators, the derivations differ in steps correspond-
ing to the order of application of the respective operator rules. For
example, for the binary operators in Section 2.1 we have the fol-
lowing leftmost derivations for the input a+axa:

E=E+E=a+E=a+ExE E=ExE=E+ExE=a+ExE

The presence of two derivations for an operator ambiguity, and the
fact that > only removes one of them, is the basic reasoning behind
the safety of our operator precedence technique. More generally,
for any two left- and right-recursive rules E ::= Ef} and E ::= E
we have the following two leftmost derivations:

(l)uE:>/,taE[_—*>quy:>/,tvEBy
m
(2) EY=EBY-> uEBY=uaEBY-> uVEBY

where both derivations have identical sub-derivations o=v. The
parse trees corresponding to these derivations have the shapes:

In the first parse tree, binds stronger than ¢, and vice versa for the
second parse tree. As can be seen, there can be an arbitrary distance
(=) between the application of E ::= aE and E ::= EB. This
captures the deep cases of operator precedence. If E ::= aE > Ef3,
the first derivation tree should be removed and vice versa. We
discuss indirect cases in Section 3.5.

The semantics of associativity constructs, left and right, is
similar to the one of the precedence. However, in contrast to prece-
dence, we define associativity to affect only binary operators and
apply only at one level and not arbitrary deep. The latter decision
is based on the fact that we could not find a practical example,
where deep application of associativity rules was useful, and where
other precedence mechanism could not be used instead. We also
support the nonassoc notation for defining non-associativity, e.g.,
for E ::= E '>' E, where no nesting of the same rule is allowed.
In contrast to left and right, nonassoc is not safe as it removes
sentences from the language.

3.2 Data-Dependent Grammars

Data-dependent grammars [15] are an extension of context-free
grammars that support arbitrary computation, parameters, variable
binding, and constraints. In a context-free grammar, a rule is de-
fined as A ::= o, where A (head) is a nonterminal, and o (body)

is a possibly empty sequence of terminal and nonterminals. Data-
dependent grammars allow definition of parametrized nontermi-
nals, e.g., A(p), similar to the way a function is defined. In addition
to terminal and nonterminals, the body of rules in data-dependent
grammars can have the following new types of symbols:

* Constraints of the form [c]. If ¢ evaluates to false, the current
parsing path terminates.

* Bindings of the form x = A(a), where a is an argument to A,
and x is a variable holding the value returned by the call A(a).

* Arbitrary expressions of the form {e}.

Our data-dependent framework [3] also supports return values. An
expression {e} as the last symbol of a rule defines the return value.

Jim et al. [15] introduce the data-dependent automata to repre-
sent data-dependent grammars and use these automata to provide a
stack-evaluation-based, nondeterministic operational semantics for
data-dependent grammars. This semantics is very intuitive. For ex-
ample, consider the following definition of a fixed-length iteration
of a nonterminal A:

Iter(n) ::= [n > 0] Iter(n - 1) A | [n==0] &

Here, Iter gets an integer parameter n which is used to deter-
mine the choice of the alternative. If n > 0, the first alternative
is selected, otherwise, the second. Using this definition, Iter(5)
is much like a function call in a backtracking, recursive-descent
parser. Direct implementation of this semantics of data-dependent
grammars can result in exponential runtime and nontermination
in presence of left-recursive rules. Therefore, to implement data-
dependent grammars, Jim et al. use a modified Earley parsing algo-
rithm, and we use our modified GLL parsing algorithm [2, 3].

3.3 Precedence

In this section, we show how grammars that specify precedence
rules using > are translated into data-dependent counterparts. In
our discussion we use the grammar of Figure 3 (left) as a running
example. The translation scheme consists of the following steps:

Assign a precedence level to a rule A number pr;, the precedence
level of a rule, is assigned to each left- and/or right-recursive alter-
native of a nonterminal, where i indicates the i-th alternative. Num-
bering follows the reverse order of the alternatives and uses the cur-
rent value of a counter. The counter starts from 1 and increments
each time > is encountered.

In Figure 3 (left), nonterminal E has four left- and/or right-
recursive alternatives. The first two (from the top) act as postfix
operators, the third as a binary operator, and the fourth as a prefix
operator. The number assigned to each alternative is shown in the
comment next to the alternative (Figure 3, right). There are two
observations. First, as precedence rules do not apply between two
postfix or two prefix operators, | is used instead of > between the
first two alternatives, resulting in the same number assigned to both
of them. Second, the alternatives that are not left- or right-recursive
do not get a number.

Pass a precedence level The nonterminal gets a parameter p, so
that the precedence level of an alternative can be passed. The ar-

guments to the left- and/or right-recursive ends of the i-th alterna-
tive are defined as follows. Each right-recursive alternative passes
its precedence level to its right end: E(p) ::= oE(pr;). Each left-
recursive alternative passes the precedence level of a parent alter-
native to its left end: E(p) ::= E(p)o. The argument 0 is passed to
the nonterminal when it occurs at a position other than the left or
right recursive end, i.e., where the precedence rules do not apply.
In Figure 3 (right), p is passed to all the left ends, 2 to the right end
of binary '+', and 1 to the right end of prefix 'if'.

Return a precedence level In addition to passing the precedence
level to its right end, each right-recursive alternative also returns
a value that depends on its precedence level. We distinguish the
following two cases for a right-recursive alternative:
1. If there is a prefix operator of lower precedence than the
alternative, the return expression is defined as follows:
E(p) ::= o r=E(pr;) {r=0? pr; : min(r,pr;)},
where variable r holds the value returned by the call to the right end.
The construct _?_: _ defines a conditional expression such that if
the value of r is equal to 0, the alternative returns its precedence
level, otherwise the value is defined as min(r, pr;). Intuitively, min
will propagate the lowest precedence level upwards, in the chain of
the recursive calls corresponding to the rightmost recursive ends.
2. If there is no such a prefix operator, the alternative simply
returns its precedence level: E(p) ::= ot E(pr;) {pr;}.

Finally, we also need to provide a default return value for alterna-
tives that are not right recursive, i.e., postfix operators or alterna-
tives without recursive ends. We use O as the default value.

In Figure 3 (right), only the binary and prefix operators return a
non-zero value: prefix 'if' returns its precedence level, and binary
'+' returns r==0 ? 2 : min(r,2) as there is prefix 'if' which is of
lower precedence than binary '+'.

Add constraints to a rule based on its precedence level Finally,
each left-recursive alternative gets two constraints:

E(p) = [pr; > p] I=E(p) [I=0]|1 = pr;] a,

where variable / holds the value returned by the call to the left end.
The first constraint, [pr; > p], is a precondition to the alternative.
This constraint effectively excludes the current left-recursive alter-
native from the right end of a parent right-recursive alternative if the
current alternative is of lower precedence than the parent one. Pass-
ing 0 to E makes any precondition true, therefore we refer to E(0)
as the unrestricted use of E. The second constraint, [/ =01/ > pr;],
is a postcondition to the first symbol of the alternative. This con-
straint terminates the current left-recursive alternative if the value
produced by the left end corresponds to a child alternative of lower
precedence than the current alternative.

3.3.1 Discussion on Semantics and Implementation

We now discuss how our data-dependent encoding prevents unde-
sired, precedence-violating derivation trees by restricting the left
and right end of an alternative. Similar to Section 3.1, we consider
a grammar with a left-recursive alternative E ::= Ef3 and a right-
recursive alternative E ::= otE. In addition, we assume that the
grammar has other left- and right-recursive alternatives: E ::= Eo;,
1 <i<m,and E ::= y;E, 1 < j < k. We use the following leftmost
derivations:

() E=EB l:*>,uEﬁ = paEP, where = indicates zero or more

m

intermediate steps deriving the right-recursive alternatives E ::=
Y;E, such that yl[——*>v|,...,ykl——*>vk, and i = vy...Vy is a possibly
m m
empty sequence of terminals.
Q) E= oE>VE=VEc = VEBG, where a=>v, and the sec-
Im Im

Im

ond = indicates zero or more intermediate steps deriving the left-

recursive alternatives E ::= E0;, such that 6 = G, ... 07 is a possi-
bly empty sequence of terminals and nonterminals.

First, we consider derivation (1) and the case of direct nesting,
i.e., zero intermediate steps. According to the precedence seman-
tics of Section 3.1, the derivation step Ef = aE 3 should only be
valid if E ::= aF has the same or higher precedence than E ::= Ef3.
We now look at how our encoding to data-dependent grammars
achieves this. In our translation scheme, each left-recursive alter-
native E ::= Ef is translated into:

E(p) = [prp > p) I=E(p) [1=0]|1 > prg] B.

We consider an unrestricted call E(0) (restricted calls E (pr), pr > 0,
are discussed later in the context of derivation (2)). The precondi-
tion evaluates to true, and the alternative can only succeed if the
postcondition to the recursive call is also true. As postfix opera-
tors and alternatives without recursive ends return 0, the postcon-
dition permits these forms of alternatives at the left end. The post-
condition, however, permits a right-recursive alternative E(p) ::=
OE(pry) {pry} only if it is of the same or higher precedence than
the current alternative, thus enforcing pr,, > prg.

To enforce precedence rules at arbitrary depth (the case of mul-
tiple intermediate steps in the derivation), our translation scheme
introduces min to the return expression of a right-recursive alterna-
tive. This propagates the lowest precedence level upwards, in the
chain of the recursive calls corresponding to the rightmost recur-
sive ends, to the left end of the current alternative. For example,
consider the following chain of such recursive calls, where each
call (—) is shown in the context of the respective right-recursive
alternative and is made from its right end:

Y1 ri=E(pry,) = -+ = % ne=E(pry) — o r=E(pry).

Here, rj, 1 < j <k, and r hold the value returned by the respec-
tive call. As our translation adds return expression r=0 ? pr,, :
min(r,pry,) to right-recursive rule E ::= yjE, these calls, when
return, produce the following bindings: ry = min(r,pry), rj_1 =
min(rj7pr},/_), 2 < j <k, and finally, l:min(rhpr},l). Thus, the
postcondition above also requires that all £ ::= ¥;E and E ::= aE
are of the same or higher precedence than E ::= Ef3.

The observant reader will note, however, that the return expres-
sion of a right-recursive alternative depends on whether there is a
prefix operator of lower precedence. Below we discuss the role of
the precondition to a left-recursive alternative. After that, it can be
seen that it is sufficient to simply return the precedence level for a
right-recursive alternative (no min is needed) if there is no prefix
operator of lower precedence than the alternative.

Now, we consider derivation (2) and the case of zero interme-
diate steps in the second =, According to the precedence seman-
tics of Section 3.1, the last derivation step should only be valid if
E ::= Ef3 has the same or higher precedence than E ::= aE. In our
translation, each right-recursive alternative passes its precedence
level to the right end: E(p) ::= aE(pr,) (for brevity, we omitted
the return expression). Given that only left-recursive alternatives
are guarded with a precondition, call E(pr,) will try all prefix op-
erators and alternatives without recursive ends. However, the call
will only try the left-recursive alternative E ::= E if its precondi-
tion is true (see the translation above), thus enforcing prg > pry,.

To enforce precedence rules at arbitrary depth (the case of mul-

tiple intermediate steps in the second =), if the precondition to the
left-recursive alternative is true, the precedence level of the par-
ent alternative is passed to the left end of the current alternative.
This way, the precedence level of the parent alternative, pr,, also
restricts the chain of recursive calls corresponding to the leftmost
recursive ends: E(pry)o; — --- — E(pry)om — E(pry)B, where
each consecutive call to E is made from the left end of the respec-
tive left-recursive alternative. In our translation, each of these calls

is guarded by the precondition: prs, > p, 1 <i < m, and prg > p,
thus enforcing all E ::= Eo; and E ::= Ef} to be of the same or
higher precedence than E ::= oE.

3.4 Associativity

Using data dependency, associativity rules can be encoded in a
similar way to precedence. We consider left- and right-associative
rules, declared using left and right, and non-associative rules, de-
clared using nonassoc. Our general scheme to handle both prece-
dence and associativity consists of the following steps:

Assign a unique number to a rule specifying associativity We
use the same counter as before. However, now, the counter also
increments when an alternative specifying associativity is encoun-
tered, but only if this alternative shares the same precedence with
the next or previous alternative. The current value of the counter
is then assigned to the alternative, thus giving it a unique num-
ber within the same precedence group. All the alternatives within
the same precedence group that do not specify associativity are as-
signed the same number. Consider E ::= oy > o3 | left | o >
0, where | binds stronger than >, each E ::= ¢ is left- and/or
right-recursive, and E ::= ¢ is binary. If the value of the counter
when encountering the first > (in the reverse order of the alter-
natives) is 1, the counter increments, and the number assigned to
E ::= oy is 2. The next alternative, E ::= o, specifies associativity
and has the same precedence as E ::= ¢ and E ::= 0g. Thus, the
counter increments again, and the number assigned to E ::= @ is
3. E ::= o3 is assigned 2, which is the same as for E ::= .

This way, alternatives of the same precedence are now described
by arange [pr;, pr j}, pr; < prj, i < j, where the i-th alternative is the
first alternative after the last occurrence of >, and the j-th alternative
is the alternative with the largest number before the next occurrence
of >. We use pry € [pr;, pr j] to refer to the number assigned to the
alternatives that do not specify associativity within the group.

Pass the rule’s unique number along with the precedence level
The nonterminal gets two parameters, the first one to pass a prece-
dence level, and the second one to pass its unique number. If a
binary alternative is defined as left- or non-associative, its unique
number is passed to its right end along with its precedence level:
E(p,p’) := aE(pry,pr;), where pry is used as the alternative’s
precedence level. Otherwise, O is passed as the second argument
to the right end: E(p, p') ::= A E(pry,0).

All left-recursive rules of the nonterminal, i.e., binary and postfix
operators, pass 0, along with the precedence level of a parent
alternative, to its left end: E(p, p’) ::= E(p,0) a. Passing 0 to the
left end of an alternative prevents deep application of associativity
rules, in contrast to precedence.

Return the rule’s unique number along with the precedence level
If a binary alternative is defined as right- or non-associative, its
unique number is returned along with its precedence level. If there
is no prefix operator of lower precedence than the alternative:

E(p,p’) == a E(pry,0) {(pry,pr;)} (right-associative)
E(p,p') := a E(pry,pr;) {(pr,pr;)} (non-associative)

where (pry,pr;) is a tuple expression. If there is such a prefix
operator, the return expressions above are replaced with (r.1 =
0 ? pry : min(r.1,pry), pr;), where variable r (see Section 3.3) holds
the value returned by the call to the right end, and r.1 accesses
the first element of the tuple. For all the other alternatives of the
nonterminal, 0 is used as the second element of the tuple.

Add constraints to the rule based on its unique number If a bi-
nary alternative is defined as left- or non-associative, precondition
p’ #pr; is also added to the alternative, resulting in [pry > p, p’ #

expr(p) ::=
[7>=p] l=expr(p) [1==0||1>=7] '.' field {0}
| [6>=p] l=expr(p)[1==0]|1>=6] r=expr(7)

{(r==0)? 6 : min(r,6)}
| '-' r=expr(5) {(r==0)? 5 : min(r,5)}
| [4>=p] l=expr(p) [1==0]|1>=4] '«' r=expr(5)

{(r==0)? 4 : min(r,4)}
| [3>=p] l=expr(p) [1==0]|1>=3] '-' r=expr(4)

{(r==0)? 3 : min(r,3)}
| [3>=p] l=expr(p) [1==0]|1>=3] '+' r=expr(4)

{(r==0)? 3 : min(r,3)}
| 'if' expr(0) 'then' expr(2) {2}
| [1>=p] l=expr(p) [1==0]|1>=2] ';"' expr(1) {1}
| "(' expr(0) ')’ {0}

Figure 4. The translation of the OCaml excerpt from Figure 2 into
a data-dependent grammar.

pr;], where the comma inside the brackets defines logical AND. If a
binary alternative is defined as right- or non-associative, postcondi-
tion /.2 #pr; is added to the alternative, resulting in [[.1=01]1.1>
pry, 1.2 % pr;], where variable [(see Section 3.3) holds the value
returned by the call to the left end, and /.1 and /.2 access the first
and second elements of the tuple, respectively.

Associativity groups The general scheme above is also applicable
for binary alternatives forming an associativity group. For example,
two binary operators, such as + and - (Figure 2), can be specified to
be left-associative with respect to each other. In such cases, the left
or/and right ends of a binary alternative in an associativity group
must exclude the other binary alternatives of the group including
the alternative itself. To encode this, all the binary alternatives
of the associativity group are assigned the same unique number,
say pr,,. This way, associativity related constraints, p’ # pr,, and
1.2#pr,,, effectively exclude all the alternatives of an associativity
group from the left and/or right ends of the alternatives.

3.4.1 Optimization

Is it always necessary to operate with two arguments and tuples
when both precedence and associativity rules are used? The an-
swer is no. The translation can use one argument and return a sin-
gle number when alternatives specifying associativity do not share
the same precedence with other alternatives, and, in case of an as-
sociativity group, when alternatives inside the group do not share
the same precedence with alternatives outside the group. This cor-
responds to cases where pr; =pr;, i < j, and when our general
scheme produces, for example, the following translation for a left-
associative alternative (here, we assume the case of no prefix oper-
ator of lower precedence):

E(p.p') == [pr; = p,p' #pr;] & E(pr;,pr;) {(pr;,0)}

Instead, in such cases, we simplify the translation to:

E(p) == [pr;> p| o E(pr;+1) {pr;}

This translation uses only one argument and passes the precedence
level plus one to the right end, thus also excluding the alterna-
tive itself and disallowing right-associative derivation trees. The
call E(pr;+1) will propagate its argument to the left end of left-
recursive alternatives. However, in this case, it cannot lead to deep
application of the associativity rule, as only left-recursive alterna-
tives of (strictly) higher precedence than E ::= aE can be tried,
thus disallowing deep nesting of E ::= oE. Similarly, for the left
end of a right-associative alternative, the simplified translation is:

E(p) == [pr;= p| I=E(p) [I=0]|l > pr;+1] o,
where pr;+1, the lower bound on /, excludes from the left end
alternatives of lower precedence and the alternative itself, thus

disallowing left-associative derivation trees. The translation of the
OCaml excerpt from Figure 2 into a data-dependent grammar is
shown in Figure 4. This translation requires only one parameter.

3.5 Support for Indirect Cases

To extend the derivations of Section 3.1 to indirect cases, we con-
sider more general forms of left- and right-recursive rules: E ::=Y 3

and E ::= aX, where Yl:*>EG and XI:*M'E. Then, we have:
m m

1) ,uE:>/.1aX%uer%ueryiuerﬁy% UvtEGBy
m m m

(2) Ey=YBy=EcBy=>uEcBy=naXopy=uviEcpy
m m m

In other words, nonterminals Y and X indirectly derive the left and
right E-end, respectively. In addition, sub-derivations correspond-
ing to the second and the last = in (1) and (2) permit multiple
intermediate nonterminals. Thus, in general, the rules containing
the left and right E-end, such as Z ::= E0; and W ::= 6,F, may
have a different head (Z and W) than Y and X.

In our translation, we rely on reachability analysis that com-
putes indirectly derivable left and right ends. The basic idea of our
translation is to propagate the precedence level to/from the nonter-
minal’s indirect left (Z ::= E0;) and right (W ::= 6,E) ends via
intermediate nonterminals by passing and returning values. Our
translation adds parameter pg to Y, X, Z and W. The argument
passed to X or Y, and propagated via W or Z, depends on how X or
Y is used in E. We distinguish two cases: (a) X and Y represent the
same nonterminal that occurs in E as both the left and right end;
and (b) X and Y represent distinct nonterminals, Y occurs in E only
as the left end, and X only as the right end. In case (a), pg is a tuple
that encodes the left and right uses of X as follows:

E(p) :=X((p,$)) B, E(p)::=aX(($,pre)),

where the first element of the tuple is undefined (we use $ for unde-
fined values) when X is the right end, and the second element of the
tuple is undefined when X is the left end. The other elements of the
tuple are defined as if X was E. These arguments are propagated to
Z and W, via X, and are used as follows:

Z(pE) o= E(pE.1:$?OIpE.1) 91

W(pE) L= 02E(p5.2=$?02p15.2)

where pg.1 and pg.2 access the first and the second element of
the tuple, respectively. In other words, the left end of Z ::= E 0, is
only restricted if X is called as the left end, and the right end of
W ::= 6,F is only restricted if X is called as the right end.

In case (b), it is possible to directly use p and pr, without
the need to introduce a tuple. In the following, we only focus on
case (a) as a more general case. Also, we only consider the case
of one parameter to E as our discussion can be straightforwardly
generalized to the case of two parameters.

In addition to getting parameters and arguments, X, Z and W
return values. This way, the precedence level can be propagated
upwards from the indirect left and right ends, via Z or W, to the
uses of X. In case (a), the return values are also tuples:

Z(pE) w=1=E(pe.1=$20:pg.1) 6; {(,$)}

W(pg) =6, r=E(pp.2=$20:pg.2) {($,r)}

and are used in E as follows:

E(p) :=x=X((p,$)) [x.1=8 | (prg = p, x.1=0]|x.1=prg)] B
E(p) = ax=X((8$,pry)) {*.2=$20:(x.2=07pr, :min(x.2,pry))}
where x.1=§ and x.2=3$ check the presence of the indirect left and
right end, respectively. In the second case, the check affects the re-
turn value: O if the value of x.2 corresponds to an alternative without
the indirect right end for E, otherwise the value computed as if X
was E (here, we only show the return expression for the case where
there is a prefix operator of lower precedence than E ::= ¢X). In
the first case, the check affects pre- and postconditions. In the gen-

eral case, the condition prg > p has to become a postcondition,
except for the case when x.1 is never equal to $, and none of pre-
and postconditions is triggered if the value of x.1 corresponds to an
alternative without the indirect left end for E.

3.6 Comparison with our Previous Translation Scheme

Finally, we discuss the design decision in our translation scheme
that relates to the use of both parameters and return values. The
use of return values is the main difference between the translation
scheme we propose in this paper and our previous work [3]. Specif-
ically, to restrict the left and right ends of a nonterminal, we pass
an argument to a right end, and propagate the argument passed by a
parent alternative and use return values to restrict a left end. General
parsing algorithms are efficient in dealing with left-recursive rules.
For example, in GLL, left recursion is terminated after the first re-
cursive call at the same input position, allowing non-left-recursive
rules to produce results. Then, the left-recursive rules are re-tried,
in a form of a loop, as long as new results can be produced.

Our experience with the grammar rewriting technique of [4]
shows that the introduction of new, indexed nonterminals for the
left ends, which also involves copying the rules to the new nonter-
minals, directly affects the efficiency in dealing with left recursion.
In particular, it increases the stack of leftmost calls, correspond-
ing to the new nonterminals, and does not allow sharing of parsing
results corresponding to the copied rules. Our previous translation
scheme introduces the same inefficiency problem as the rewriting
technique. In that scheme, we do not use return values to restrict
left ends, and the use of parameters and arguments for left ends
essentially simulates introduction of indices to the left ends.

In contrast to the rewriting and our previous scheme, our current
translation does not increase the stack of leftmost calls, as the
argument of a parent alternative is passed to the left ends, thus
allowing termination of left recursion as soon as possible. When the
left-recursive alternatives are further re-tried in a loop, there is just
an extra, precedence-related condition that needs to be checked. For
right-recursive rules, however, the context of the current alternative
can be used to restrict its right end, and therefore, our translation
passes the precedence level to the right end of the alternative. In
practice, we observed that the median and maximum speedup of
parsers for Java using our new translation compared to the rewriting
and previous translation are (1.5, 2.5) and (1.7, 3), respectively.

4. Evaluation

In this section we evaluate the performance of our approach to
operator precedence using the Iguana parsing framework [3]2, an
implementation of data-dependent grammars on top of the GLL
parsing algorithm. For the evaluation we use the grammars of Java
and OCaml®. The experiments were carried out on a machine with
a quad-core Intel Core i7 2.6 GHz CPU and 16 GB of memory,
running Mac OS X 10.10.5 and a 64-Bit Oracle HotSpot™ JVM
version 1.8.0_51. Each file was parsed 10 times and the mean
running time (CPU user time) was reported. The three first runs
of each file were skipped to allow for JIT optimization.

4.1 Java

We have chosen the grammar of Java 7 from the main part of the
Java language specification [13]. This grammar has an unambigu-
ous, left-recursive expression part that encodes operator precedence
by introducing new nonterminals for each precedence level. We
have replaced the expression part of the Java specification grammar
with a natural expression grammar, and specified operator prece-

2 https://github.com/iguana-parser
3https://github.com/iguana-parser/grammars

@ T y=1.135x-3.19
R? =0.9924

CPU time (ms) in log10

o p
—— Regression line

T T T
3 4 5

size (#characters) in log10

=

80 e o y=121x-333
= R?=0.9205
g o 1

=

S

g —

g

o © -

£

=]

9

©)

—— Regression line

T T T T T
1 2 3 4 5

size (#characters) in log10

Figure 5. Running time of Iguana on the natural grammar of Java.

Runtime

095 1 105 1.1 1.15

Figure 6. Runtime performance of Iguana using the natural gram-
mar of Java vs. the specification grammar of Java.

dence and associativity using >, left and right. We parsed 7449
files from the source distribution of JDK 1.7.0_60-b19. All files
parsed successfully and without ambiguity.

Figure 5 shows the results of parsing Java files in a log-log
(base 10) plot. The goodness of the fit is indicated by the R? value
of 0.9924, and the equation of the regression line (log-log scale)
is written in the plot. As the regression is calculated after a log
transform of the original data, and the coefficient (1.135) is close to
1, we can conclude that the parser runs nearly linearly (y ~ x1-13%)
on the natural grammar of Java.

To compare the speed of parsing with the natural grammar of
Java that handles operator precedence at runtime, and the specifi-
cation grammar of Java, we ran Iguana on the same set of 7449 Java
source files. The relative runtime performance of the parser for the
natural grammar of Java vs. the parser for the specification gram-
mar of Java is shown in Figure 6. As can be seen, the median dif-
ference is 1.05, meaning that our approach to operator precedence
is only on average 5% slower than for the specification grammar.

4.2 OCaml

Compared to Java, the OCaml language specification takes a very
different approach to specifying its grammar. The expression gram-
mar is ambiguous, and operator precedence and associativity rules
are specified in a table, similar to Figure 1. We used the ambiguous
expression grammar of OCaml and specified operator precedence
and associativity of its operators using >, left, and right. We have
parsed 945 files from the source distribution of the OCaml com-
piler version 4.02. From 945 files, 894 (94%) parse successfully
and without operator precedence ambiguity. Figure 7 shows the
running time of parsing these files. The goodness of the fit is in-
dicated by the R? value of 0.9205, and the equation of the linear
regression (log-log scale) is written in the plot. As can be seen, the
running time shows a near-linear behavior (y ~ x1'21), as the coef-
ficient value (1.21) is close to 1.

OCaml, compared to Java, is a much more difficult language to
parse. First, the syntax is ambiguously specified, and in many parts
of the specification, the discussion of the desired parse tree is not
precise enough. More importantly, there are syntactic extensions to

Figure 7. Running time of Iguana on the grammar of OCaml.

Iguana/Camlp4 f--------- Dj ————————— 1

Iguana OCamlyacc

!@! 02 03 04 05 06 07
v Tguana/OCamlyace t---{ [oo i
10

T T 1T 1
Camlp4
2 4 6 8 10

945 OCaml files Relative Performance

Figure 8. Distribution of the OCaml files parsed by each parser
(left), and the relative performance of Iguana compared to
ocamlyacc and camlp4 (right).

OCaml which clash with the original syntax, and it is not clear if
these extensions should only be enabled via a special flag to the
compiler. To support a wider range of OCaml programs, we have
incorporated some of the syntactic extensions into the grammar,
and in many places we had to consult the LALR grammar of OCaml
to determine how some parts should be disambiguated. For this
evaluation, we also used the ocamlyacc grammar of OCaml, used
by the OCaml compiler, and camlp4, an extensible syntax system
for OCaml. However, even with these two parsers, we could not
parse all the 945 .m1 files. It is most likely that we are not aware of
a configuration or flag while parsing those files.

Figure 8 (left) shows how many files from the source distri-
bution of OCaml could be parsed by each parser. 10 files could
not be parsed by any parser, but the majority of files, 887 (93%),
could be parsed by all the parsers. Both ocamlyacc and camlp4 use
a separate lexing phase before parsing. Therefore, a performance
comparison with a character-level grammar would not be fair. For
performance comparison with camlp4 and ocamlyacc, we used the
context-aware [30] version of our OCaml grammar (see [3] for a
discussion of context-aware scanning in Iguana).

The results of performance comparison are shown in Figure 8
(right). Each box plot shows the relative runtime of Iguana com-
pared to the runtime of camlp4 or ocamlyacc, for all 887 files that all
parsers can successfully parse. As can be seen, the median running
time of Iguana compared to camlp4 is 0.45, meaning that Iguana
is on average 2.2 times faster. The median running time of Iguana
compared to ocamlyacc is 4.16, meaning that it is on average 4.16
times slower. These are promising results for a general parsing
technique that uses a declarative approach to operator precedence.

4.3 Other Ambiguities in OCaml

For parsing the expression part of OCaml unambiguously, only
specifying operator precedence is not enough. There are some other
kinds of ambiguity in OCaml which we discuss here.

Overlapping rules Consider the simplified excerpt of OCaml,
augmented with operator precedence constructs, in Figure 2. For
this grammar, the input string a-a is ambiguous with two derivation
trees that correspond to the following groupings: a(-a) (the func-
tion application of a on -a) and a-a (binary minus). Although this
ambiguity looks similar to operator precedence ambiguity, it can-
not be disambiguated by using left, right, and >. To resolve this
ambiguity, we use an except construct, which disallows the deriva-
tion of a certain rule at a certain grammar position. In this case, we
can write expr ::= expr expr 'umins, where uminus refers to the
unary minus rule. This definition effectively disallows unary minus
to be derived at the right-most expr of a function application.

Longest match ambiguities Another ambiguity that happens in
the expression part of OCaml is related to nested patterns. For
example consider the following OCaml pseudo-code:

let f = function

| @ -> match ... with
| a->...
| b -> ...

Even with specifying all operator precedence rules, and applying
them in a deep and indirect setting, this sentence remains ambigu-
ous. The reason is that the b-case can belong either to function f
or to the match of the 0-case. The OCaml language specification
states that a pattern matching construct extends as long as possible
(longest match). We resolved this issue by adding a custom follow
restriction that bypasses layout: ... pattern-matching !>>> '|'.
These constructs are explained in our previous work [3] in detail.

Dangling else ambiguity Finally, we discuss the infamous dan-
gling else ambiguity, which occurs between rules of the form:

Stmt ::= 'if' Expr 'then' Stmt

| 'if' Expr 'then' Stmt 'else' Stmt

As can be seen, both rules have right-recursive ends, and the
first rule is a prefix of the second rule. The dangling-else ambi-
guity, although looks very similar to operator precedence ambi-
guity, does not fit our semantics of operator precedence because
both rules involved in the ambiguity have only right-recursive
ends. Recall that in our operator precedence semantics, > trig-
gers when one of the two rules is left- and the other one is right-
recursive. In fact, the dangling-else ambiguity is an instance of
longest match ambiguity, for which we use a follow restriction:
Stmt ::= 'if' Expr 'then' Stmt !>>> 'else'.

5. Related Work

Throughout this paper, we discussed the Yacc- and SDF-style op-
erator precedence semantics, which we do not repeat here. In this
section we discuss a number of related work that are directly related
to our solution and inspired us the most.

5.1 Parsing OCaml

In Section 2 we motivated our new approach to operator precedence
using examples of OCaml. The first question that comes to mind is
how OCaml is actually parsed in practice.

OCamlyacc The parser for the OCaml compiler is written using
ocamlyacc [22], a port of Yacc to OCaml. As we showed in Sec-
tion 2, the Yacc-style resolution of operator precedence ambiguity
can deal with all difficult cases in OCaml, provided that the gram-
mar is LALR. This means that the grammar used for the OCaml
compiler is not the natural, highly ambiguous specification gram-
mar, rather it is an LALR version. Consider the following grammar
rules, which are taken from the expression part of the OCaml spec-
ification grammar. The alternatives of expr are ordered based on
precedence, with the highest precedence on top.

expr ::= expr '#' method-name
| expr argument+
| 'let' 'rec'? let-binding ('and' let-binding)=*
'in' expr
argument ::= expr | '~' label-name ':' expr

The LALR counterpart of the rules above is as follows:

expr : simple_expr S%prec below_SHARP
| simple_expr simple_labeled_expr_list
| let_bindings IN seq_expr;
let_bindings: let_binding | let_bindings and_let_binding;
let_binding: LET rec_flag let_binding_body;
rec_flag: REC | // empty;
simple_labeled_expr_list: labeled_simple_expr
| simple_labeled_expr_list labeled_simple_expr;
labeled_simple_expr: simple_expr %prec below_SHARP
| label_expr;
label_expr: LABEL simple_expr %prec below_SHARP;

As can be seen, the grammar is larger and contains many other
nonterminals. Part of this verbosity is due to lack of support
for EBNF in Yacc, e.g. simple_labeled_expr_list and rec_flag.
Some of operator precedence information is encoded declaratively,
e.g., sprec below_SHARP specifies that the precedence of the rule
expr: simple_expr is lower than #, but some others are encoded by
using new nonterminals, e.g., simple_expr.

Moreover, the lexer used for the LALR grammar of OCaml is
handwritten. This allows to hide some peculiarities in the syntax
of OCaml from the LALR parser generator, e.g., how labeled ar-
guments are parsed. OCaml also supports nested comments, which
are dealt with in the lexer. It appears that the frontend for the OCaml
compiler has been developed with considerable effort. The benefit
of such a parser is that it is very fast. In contrast, our approach to
parsing OCaml is fully declarative. The user encodes the specifica-
tion grammar of OCaml using a single formalism for both lexical
and context free parts, and resolves ambiguities using declarative
disambiguation constructs.

Camlp4 Camlp44 (and CamlpSS), which stands for Caml Prepro-
cessor and Pretty-Printer, is a system for writing extensible syntax
for programming languages. Camlp4 is mostly used to allow syn-
tactic extensions to OCaml programs.

Camlp4 uses a top-down recursive-descent parsing technique
that interprets an in-memory representation of a grammar, and a
handwritten lexer that conforms to the lexical syntax of OCaml.
Camlp4 also allows the user to write a natural expression grammar,
and to declaratively specify operator precedence and associativity.
For example, an expression grammar for floating point arithmetic
expressions, containing '+', '-' and 'xx', where 'xx' is right-
associative and has higher precedence than left-associative '+' and
'-', can be encoded in Camlp4 as follows:

expr: ["minus" LEFTA
[x = SELF; "+"; y = SELF -> x +. y
| x = SELF; "-"; y = SELF -> x -. y]

| "power" RIGHTA

[x = SELF; "sx"; y = SELF -> x *x y]
| "simple"

[x = INT -> float_of_int x 1];

SELF in this example refers to the expr nonterminal itself. The
operator precedence scheme in Camlp4 works as follows. The
parser tries alternatives in order, and each alternative that can parse
at least one token is matched. The grammar is internally left-
factorized to facilitate one token lookahead.

4https://github.com/ocaml/camlp4
Shttp://camlp5.gforge.inria.fr/

To deal with left-recursive calls, Camlp4 divides rules into two
groups: start and continue. If a rule is left-recursive, i.e., start-
ing with the nonterminal head or SELF, the rule is parsed using the
continue parser, otherwise, using the start parser. In the example
above, the "simple" rule belongs to the start group, while the other
rules belong to the continue group. Parsing starts by calling the
start function, and then a continue parser, based on the precedence
and associativity level, is called with the value of the start func-
tion as argument. This approach to operator precedence can parse
OCaml, but it is tied to the way left-recursion is implemented in a
deterministic LL(1)-like parsing strategy.

5.2 General Parsers

In this section we discuss a number of operator precedence tech-
niques that are implemented in context of general parsing.

Dypgen Dypgen® is a parser generator written in OCaml that al-
lows definition of extensible grammars. Dypgen is based on GLR
parsing and can handle all context-free grammars. A distinguishing
feature of Dypgen is that it natively allows passing values though
parsing states. Dypgen allows definition of operator precedence via
precedence relations. For example, consider an expression gram-
mar consisting of 'x' and '+' operators, where 'x' has higher
precedence, and both operators are left associative. This grammar,
along with precedence relations, can be encoded in Dypgen as:

expr: INT pl
| expr(<=p2) + expr(<p2) p2
| expr(<=p3) * expr(<p3) p3

The precedence relation for this grammar is defined as pl<p2<p3,
where pi is the precedence of the ith rule. The semantics of pass-
ing values in Dypgen is as follows. When a rule is reduced, its
precedence is returned. Consequently, a shift action can only hap-
pen when the precedence returned from the previous reduce action
matches the condition in the body of rules, e.g., (<=p2).

Dypgen does not provide high-level notation for specifying op-
erator precedence, and the user has to manually encode operator
precedence using relations and conditions in the body of rules. In
addition, the semantics of passing values in Dypgen is bound to
the underlying LR automaton. In contrast to Dypgen, we provide
high-level notation for specifying operator precedence, and desugar
them into data-dependent grammars. Jim and Mandelbaum [14] re-
port that they could implement data-dependent grammars on top
of GLR parsing, by mapping to Dypgen’s native features. There-
fore, Dypgen can be used as a backend to realize our approach to
operator precedence in GLR parsing.

Elkhound Elkhound [23] is a fast GLR parser generator that
switches to the machinery of an LR parser on deterministic parts
of the grammar. For dealing with operator precedence, Elkhound
essentially uses the same approach as Yacc: shift/reduce conflicts
are resolved by precedence and associativity of operators. However,
because Elkhound is based on GLR parsing, it does not need to
resolve all shift/reduce conflicts while parsing. Conflicts that do
not correspond to precedence ambiguity are left intact and are
effectively explored in parallel by GLR. Moreover, Elkhound uses
a separate lexing phase, which discards layout. This allows correct
resolution of precedence ambiguity in conflicting states.

Is it possible to use Elkhound’s way of dealing with operator
precedence in a scannerless setting where layout is part of the gram-
mar? The answer is yes, but we need to put layout nonterminals
after each terminal, as in [25] or [18]. The SDF-style layout inser-
tion, i.e., between each two symbols in body of rules, does not work
with shift/reduce way of resolving precedence ambiguity. In a con-

Shttp://dypgen.free.fr/

flicting state, the parser needs to decide to shift based on the next
operator, but this operator is hidden behind a layout nonterminal.

ANTLR ANTLR [24] is a popular recursive-descent parser gen-
erator. Starting from version 4, ANTLR supports left-recursive
rules and enables global backtracking using the ALL(*) strat-
egy [24]. ANTLR 4 supports all context-free grammars except
the ones with indirect or hidden left recursion. ANTLR 4 does
not natively deal with left recursion, rather it uses a left-recursion
transformation under-the-hood, and then transforms the trees back
to the ones of the original, natural grammar. ANTLR 4 is not a gen-
eral parser in the sense that it cannot deliver all the derivation trees
in case of ambiguity, rather it uses an implicit ambiguity resolution
scheme, in which the ambiguities are resolved based on the order
of alternatives. Note that as ANTLR 4 uses a global backtracking
scheme, it does not have the quirks of PEG-style [12] backtracking.

The support for left recursion and operator precedence in
ANTLR are interwoven. When ANTLR rewrites left-recursive
rules, it always adds precedence and associativity information to
the rewritten rules: all rules are left-associative by default, and
earlier alternatives have higher precedence. For example, an ex-
pression grammar containing '+' and '%' where both operators are
left-associative and '%' has higher precedence than '+' is trans-
formed to the following grammar [24]:

E[pr] ::=

This transformation scheme is known as precedence climbing
which mimics Clarke’s technique [6], and requires a non-left-
recursive grammar. Left-associative derivation trees, however, re-
quire left recursion. In ANTLR 4, a flat list, resulting from the
expansion of Kleene star, is interpreted as left-associative. More-
over this technique does not allow associativity groups for opera-
tors that have the same precedence, but are left- or right-associative
with respect to each other. One way to get left-associative groups
in ANTLR 4 is to group operators: E ::= E ('+'|'-') E.

Our approach to translation of operator precedence resembles
precedence climbing, in the sense that precedence level is passed,
and illegal derivations are excluded using predicates. However, our
approach works in present of left recursion, thus being able to na-
tively construct parse trees that conform to the original grammar.
In addition, we also support associativity groups. Finally, our ap-
proach is fully declarative, and no default precedence or associativ-
ity is applied: if the user writes a partially disambiguated grammar,
by not specifying the precedence or associativity of some operators,
the parser returns all the ambiguities.

id ({3 >= pr}? 's' E[4] | {2 >= pr}? '+' E[3])x

Dynamic operator precedence In programming languages such
as Prolog it is possible to redefine the precedence of operators at
runtime. Such systems are fundamentally different from other re-
lated work we discussed, in the sense that the user does not directly
work with the syntax of expressions. Prolog and similar dynamic
operator precedence approaches use operator precedence gram-
mars [11] to dynamically store precedence relationships in a table,
and then interpret it. As the user does not have access to grammar
of expressions in such dynamic operator precedence systems, the
expressivity limitations of operator precedence grammars is not a
problem. Favero [10] presents a detailed, step-by-step analysis of
how dynamic operator precedence systems can be implemented.
Danielsson and Norell [7] present an approach for parsing mix-
fix operators for a user-defined operator precedence setting. Mix-
fix operators are a generalization of prefix and postfix operators.
For example, if-then-else can be considered as a mixfix operator:
if [] then [] else [] which has three places for operands. This
way of specifying operators is beneficial for systems in which the
precedence and associativity of operators defined globally based on
their token, not the rule in which they appear. The operator prece-

dence and associativity information in this approach is encoded in
a precedence graph. To deal with user-defined operator precedence,
expressions are treated as flat lists of tokens, and then parsed again
when the precedence graph is composed at runtime. The semantic
of this approach is the same as in SDF2, by applying one level rela-
tionship between parents and children. This means that, for exam-
ple, a unary prefix operator with lower precedence will be rejected
on right of a binary operator.

Other approaches So far, we discussed operator precedence tech-
niques that are used in parsing tools. However, there are many
other approaches which have not found their way in practice, or
the tools that implemented them are not available any more. Most
notable approaches in this category are by Aasa [1], Thorup [28],
and Visser [32]. All these approaches use a grammar rewriting tech-
nique to implement operator precedence.

Aasa [1] introduces an approach for declarative specification of
operator precedence by assigning weights to operators in a parse
tree. These weights define parse trees that are precedence correct.
Aasa’s approach is safe, and correctly identifies deep cases of op-
erator precedence. A shortcoming of this approach is that operator
precedence is defined token-based and globally. Therefore, opera-
tors in this approach have to be unique.

Thorup [28] presents a general grammar transformation tech-
nique that gets a grammar and a set of illegal sub-parse trees as
input, and produces a grammar that does not yield derivation trees
that are illegal. This approach can be used to implement operator
precedence, if ambiguities in operator precedence are specified as
tree patterns. As some precedence ambiguity patterns are arbitrary
deep, it is not clear how they can be specified in this approach.

Visser [32] introduces a transformation from context-free gram-
mars to character-class grammars, by applying the SDF2 seman-
tics. Visser’s approach is similar to the rewriting approach in [4],
with the difference that instead of using indexed nonterminals and
operating on the grammar, it replaces nonterminals with a set of
integers and removes violating patterns. Because this approach has
the underlying SDF2 semantics, it may remove sentences from the
language if there is no ambiguity, and cannot deal with deep cases.

6. Conclusions

In this paper we presented a technique for implementing a declar-
ative specification of operator precedence, by desugaring to data-
dependent grammars. Our approach is efficient and can deal with
intricate cases of operator precedence found in functional program-
ming languages such as OCaml. We evaluated our approach using
the Iguana parsing framework, and the results show that our ap-
proach can be practical. Other general parsing algorithms such as
GLR or Earley can also be used as a backend for data-dependent
grammars, and adapt our operator precedence approach.

Acknowledgments

We are thankful to Eelco Visser and the anonymous reviewers for
their constructive feedback on earlier versions of this paper.

References
[1] A. Aasa. Precedences in Specifications and Implementations of Pro-
gramming Languages. Theor. Comput. Sci., 142(1):3-26, May 1995.
[2] A. Afroozeh and A. Izmaylova. Faster, Practical GLL Parsing. In CC
’15, pages 89—-108. Springer, 2015.
[3] A. Afroozeh and A. Izmaylova. One Parser to Rule Them All. In
Onward! 15, pages 151-170. ACM, 2015.

[4] A. Afroozeh, M. van den Brand, A. Johnstone, E. Scott, and J. J. Vinju.
Safe Specification of Operator Precedence Rules. In SLE’13, pages
137-156. Springer, 2013.

[5]1 A. V. Aho, S. C. Johnson, and J. D. Ullman. Deterministic Parsing of
Ambiguous Grammars. In POPL ’73, pages 1-21, 1973.

[6] K. Clarke. The Top-down Parsing of Expressions. Technical report,
Dept. of Computer Science and Statistics, Queen Mary College, 1986.

[7] N. Danielsson and U. Norell. Parsing Mixfix Operators. In Implemen-
tation and Application of Functional Languages, pages 80-99. 2011.

[8] F. L. DeRemer. Practical Translators for LR(k) Languages. PhD
thesis, Massachusetts Institute of Technology, 1969.

[9] J. Earley. An Efficient Context-free Parsing Algorithm. Commun.
ACM, 13(2):94-102, Feb. 1970. ISSN 0001-0782.

[10] E. L. Favero. The Simple and Powerful yfx Operator Precedence
Parser. Softw. Pract. Exper., 37(14):1451-1474, Nov. 2007.

[11] R. W. Floyd. Syntactic Analysis and Operator Precedence. J. ACM,
10(3):316-333, 1963.

[12] B. Ford. Parsing Expression Grammars: A Recognition-based Syntac-
tic Foundation. In POPL’04, pages 111-122, 2004.

[13] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java
Language Specification Java SE 7 Edition, 2013.

[14] T. Jim and Y. Mandelbaum. A New Method for Dependent Parsing.
In ESOP’11, pages 378-397. Springer, 2011.

[15] T.Jim, Y. Mandelbaum, and D. Walker. Semantics and Algorithms for
Data-dependent Grammars. In POPL’10, pages 417430, 2010.

[16] S. C. Johnson. Yacc: Yet Another Compiler-Compiler.
report, AT&T Bell Laboratories, 1979.

[17] A. Johnstone, E. Scott, and G. Economopoulos. Generalised Parsing:
Some Costs. In CC’04, pages 89—103, 2004.

[18] A. Johnstone, E. Scott, and M. van den Brand. Modular Grammar
Specification. Sci. Comput. Prog., 87:23—43, 2014.

[19] L. C. Kats, E. Visser, and G. Wachsmuth. Pure and Declarative Syntax
Definition: Paradise Lost and Regained. In OOPSLA ’10, pages 918—
932. ACM, 2010.

[20] P. Klint and E. Visser. Using Filters for the Disambiguation of
Context-free Grammars. In ASMICS Workshop on Parsing Theory,
pages 1-20. Tech. Rep. 126-1994, Universita di Milano, 1994.

[21] D. E. Knuth. On the Translation of Languages from Left to Right.
Information and control, 8(6):607-639, 1965.

[22] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon.
The OCaml system release 4.02. Technical report, Inria, 2014.

[23] S. McPeak and G. C. Necula. Elkhound: A Fast, Practical GLR Parser
Generator. In CC’04, pages 73-88, 2004.

[24] T. Parr, S. Harwell, and K. Fisher. Adaptive LL(*) Parsing: The Power
of Dynamic Analysis. OOPSLA ’14, pages 579-598. ACM, 2014.

[25] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) Parsing of
Programming Languages. In PLDI ’89, pages 170-178, 1989.

[26] E. Scott and A. Johnstone. GLL Parse-tree Generation. Science of
Computer Programming, 78(10):1828-1844, Oct. 2013.

[27] E. Scott, A. Johnstone, and R. Economopoulos. BRNGLR: A Cubic
Tomita-style GLR Parsing Algorithm. Acta informatica, 44(6):427—
461, 2007.

[28] M. Thorup. Disambiguating Grammars by Exclusion of Sub-Parse
Trees. Acta Inf., 33(6):511-522, 1996.

[29] M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic
Publishers, USA, 1985. ISBN 0898382025.

[30] E. R. Van Wyk and A. C. Schwerdfeger. Context-aware Scanning
for Parsing Extensible Languages. In GPCE’07, pages 63-72. ACM,
2007.

[31] E. Visser. Scannerless Generalized-LR Parsing. Technical report,
University of Amsterdam, 1997.

Technical

[32] E. Visser. From Context-Free Grammars With Priorities to Character
Class Grammars. Technical report, University of Amsterdam, 1997.

[33] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997.

