
A QUICKSTART GUIDE TO DERIVED FUNCTORS

INGO BLECHSCHMIDT

ABSTRACT. These notes give an informal exposition of the basic theory on derived
functors. They are aimed at students who have seen Ext or Tor appearing once or
twice and want to know more about those derived functors. We conclude with a
short outlook on the modern formalism of derived categories. No prior knowledge
of homological algebra is assumed. However, one should be familiar with exact
sequences and chain complexes, as for instance provided by a first course on
algebraic topology.

IN A NUTSHELL

Let F : A → B be a left-exact functor between abelian categories (for instance, categories
of modules). Let 0→ X → Y → Z → 0 be a short exact sequence in A. Then the induced
sequence 0→ FX → FY → FZ is only exact at the first two terms, the morphism FY → FZ
may fail to be an epimorphism. It is therefore a natural question how to extend this sequence
on the right to obtain an exact sequence. We could, of course, simply tack the cokernel
of FY → FZ at the end; but there is a better way, given by the right-derived functors of F:
There is a long exact sequence

0→ F(X)→ F(Y)→ F(Z)→ R1F(X)→ R1F(Y)→ R1F(Z)→ R2F(X)→ · · ·
depending functorially on the given short exact sequence. This way only the map F(Z)→
R1F(X), but not the object R1F(X), depends on Y and Z. To construct RnF(X), we pick an
injective resolution 0→ X → I• of X and set RnF(X) := Hn(F(I•)).
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REFERENCES

Standard textbooks on homological algebra include:
• Weibel. An Introduction to Homological Algebra.
• Gelfand, Manin. Methods of Homological Algebra.

Beware of mathematical typos in the latter. For a comprehensive reference, turn
to the Stacks Project, and don’t forget to check MathOverflow in case of questions.

1. ABELIAN CATEGORIES

Example 1.1. The prototypical example of an abelian category is the category of
abelian groups.

Example 1.2. More generally, the category of modules over some ring is an abelian
category.

Definition 1.3. An abelian category A is a category together with abelian group
structures on the hom-sets HomA(X, Y) such that composition is bilinear and:

(1) There exists a zero object, and for any pair of objects X and Y, there exists a
biproduct X⊕Y (simultaneously a coproduct and a product, in a compatible
way).

(2) For any morphism f : X → Y, there exists a kernel ker( f ) ↪→ X and a
cokernel Y � cok( f ).

(3) An appropriate formulation of the homomorphism theorem holds.

Of course, since one cannot naively talk about elements of arbitrary categories,
the axioms have to be formulated in a purely categorical way with universal
properties. This is entirely possible, but for the purposes of these notes not necessary,
since in any concrete abelian category which will appear here, there will be an
obvious notion of kernel and cokernel.

Non-example 1.4. The category of sets, the category of topological spaces, and the
category of all (not necessarily commutative) groups are not abelian categories.

Non-example 1.5. The category of free abelian groups is not abelian.1

Non-example 1.6. The category of Hilbert spaces and the category of Banach
spaces are not abelian. One can check that in these categories, the categorical
image of a continuous linear map is calculated as the closure of the set-theoretical
image. Therefore the homomorphism theorem fails: For instance, let ι : U ↪→
X be the inclusion of a linear subspace which is not closed. Then the induced
map U/ ker(ι)→ im(ι), i. e. U → U, is not an isomorphism.

Example 1.7. Let A be an abelian category. Then the category of (cochain) com-
plexes in A, Kom(A), is an abelian category with componentwise addition of
morphisms and componentwise kernels and cokernels.

1One could think that this is because cokernels are missing. However, that’s not the case. In this
category, every morphism does have a category-theoretic cokernel, only this cokernel will not coincide

with the module-theoretic cokernel. (For instance, the cokernel of Z
2→ Z is zero.) The real reason why

the category free abelian groups is not abelian is that the third axiom is not satisfied.
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Example 1.8. Let X be a topological space. Then the category of sheaves of abelian
groups on X, AbSh(X), is an abelian category. The kernel of a morphism of such
sheaves is calculated as its naive presheaf kernel, its cokernel is the sheafification of
the naive presheaf cokernel.

Abelian categories are a natural setting for talking about exact sequences. The
usual lemmas on exact sequences, for instance the five lemma and the lemma on
the existence of a connecting homomorphism, hold in any abelian category. In
fact, there is the following metatheorem, which is very practical for working with
abelian categories.

Theorem 1.9. For the purposes of performing diagram chases in an abelian category A,
we may pretend that A is the category of modules over some ring. In particular, we may
freely employ naive element-based proofs to verify statements about A – even though there
need not be a notion of elements for objects of A.

This can be made precise in several ways; check the Freyd–Mitchell embedding
theorem and (the first page of) Bergman’s article A note on abelian categories – translat-
ing element-chasing proofs, and exact embedding in abelian groups. As a consequence,
nothing is lost if the reader chooses to restrict all following abelian categories to
module categories.

The main use of abelian categories in homological algebra is as categories of
coefficient objects (for taking cohomology in, for example) and as source and target
categories of functors to be derived. To this end, the following definition is crucial.

Definition 1.10. A functor F : A → B between abelian categories is additive if and
only if the induced maps HomA(X, Y)→ HomB(FX, FY) are homomorphisms of
groups.

An additive functor F is exact if and only if, for any short exact sequence 0 →
X → Y → Z → 0 in A, the induced sequence 0 → FX → FY → FZ → 0 is exact
in B.

It is left-exact if at least 0→ FX → FY → FZ is always still exact and right-exact
if at least FX → FY → FZ → 0 is exact.

Example 1.11. Let T be an A-module. The functor Mod(A)→ Ab, M 7→ M⊗A T
is right-exact. It is exact if and only if T is flat over A.

Example 1.12. Let T be an object of an arbitrary abelian category A. The func-
tor A → Ab, X 7→ HomA(T, X) is left-exact. (It is exact if and only if T is a
projective object, see below.) The contravariant Hom functor X 7→ HomA(X, T),
regarded as a covariant functor Aop → Ab, is left-exact as well. (It is exact if and
only if T is injective.)

A useful property of exact functors is that they commute with cohomology. More
precisely, if K• is a chain complex in an abelian category A, and F : A → B is an
exact functor, then there is a natural isomorphism Hn(F(K•)) ∼= F(Hn(K•)). This
is because exact functors preserve kernels, cokernels, and images.

Lemma 1.13. Let F : A → B be a left-exact functor. Let 0→ X → Y → Z be an exact
sequence in A (note the missing zero at the right end). Then the induced sequence 0 →
FX → FY → FZ is exact. The dual statement for right-exact functors holds as well.

https://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf
https://math.berkeley.edu/~gbergman/papers/unpub/elem-chase.pdf
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Lemma 1.14. An additive functor between abelian categories is left-exact if and only if it
preserves finite limits. It is right-exact if and only if it preserves finite colimits.2

2. INJECTIVES AND PROJECTIVES

For the theory of derived functors, injective and projective objects are very
important. We’ll discuss why below.

Definition 2.1. An object I of an abelian category is injective if and only if, for
any monomorphism X ↪→ Y and any morphism X → I, there exists a lift of that
morphism to Y.

0 // X �
� //

��

Y

��
I

Dually, an object P is projective if and only if, for any epimorphism X � Y and any
morphism P→ Y, there exists a co-lift of that morphism to X.

X // // Y // 0

P

OO__

No uniqueness of the lifts is required.

Example 2.2. In the category of vector spaces over some field, assuming the axiom
of choice, any object I is injective: Simply take a basis of X, extend it to a basis of Y,
and define Y → I on this basis. This indicates that categories of vector spaces are
not very interesting from a homological point of view.

Example 2.3. Baer’s criterion states that in the category of abelian groups, assuming
the axiom of choice, a group G is injective if and only if it is divisible, that is if for
any x ∈ G and n ≥ 1 there exists an element y ∈ G such that x = ny.3 For example,
the groups Q and Q/Z are injective.

Injective objects are generally regarded as huge, unwieldy objects. They are
important for the theory, but no practical calculations are made with them. Projec-
tive objects, on the other hand, are often much more accessible. This is of course
a purely social statement, since the injective objects in an abelian category A are
precisely the projective objects in Aop.

Example 2.4. In the category of modules over some ring, any finite free module P
is projective: Choose a basis of P and pick preimages under X � Y of the images
of the basis vectors in Y. Use these preimages to define the co-lift P → X. More
generally, assuming the axiom of choice, any (not necessarily finite) free module is

2With this lemma, left-exactness of HomA(T, ) and of HomA( , T) follow from general abstract
nonsense, since the set-valued Hom functors of any category preserve limits and since limits in Ab are
calculated just as in Set.

3The “only if” direction is easy: Let x ∈ G and n ≥ 1. Then consider the injective map Z
n−→ Z. The

sought element y can be obtained as the image of 1 under a lift of the map Z→ G, 1 7→ x. The standard
proof of the converse direction employs the axiom of choice.
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projective. The precise characterization is that a module is projective if and only if
it is a direct summand of a free module.4

Example 2.5. Assuming the axiom of choice, any vector space is free and thus
projective.

Example 2.6. An easy example of a projective module which is not free is the Z/(6)-
module Z/(2). It is projective because there is the direct sum decomposition
Z/(6) ∼= Z/(2)⊕Z/(3). It is not free because its number of elements is not a
multiple of 6. (Geometrically, it is a vector bundle whose rank varies on the two
components of Spec Z/(6).)

Example 2.7. Let m = (3, 1 +
√
−5) be the famous example of an ideal of R =

Z[
√
−5] which is locally, but not globally principal. Considered as an R-module, it

is projective but not free.

Example 2.8. By the Serre–Swan theorem, vector bundles provide a systematic source
of projective modules. Let M be a module over a ring R. Then the induced
quasicoherent module M∼ on Spec R is a vector bundle (i. e. a finite free sheaf of
modules) if and only if M is projective and finitely generated.5 It is a trivial bundle
if and only if M is finite free. There is an analogous relation in the smooth setting:
The category of smooth vector bundles on a compact manifold M is, by taking
global sections, equivalent to the category of finitely generated projective modules
over C∞(M).

The reason why injective and projective objects are important in homological
algebra is that they have great exactness properties. The following lemma makes one
of this properties precise. Injective and projective objects thus form the building
blocks by which other objects are resolved by – see the next section.

Lemma 2.9. Let F : A → B be an additive functor between abelian categories. Let X•

be a bounded below complex of injective objects or a bounded above complex of projective
objects. If X• is acyclic, then F(X•) is acyclic as well (!).

The statement is totally false without the injectivity or projectivity assumption.

Proof. One can show that such a complex X• is homotopy equivalent to the zero
complex. Any additive functor preserves homotopy equivalences.6 Therefore the
image complex is too homotopy equivalent to zero and in particular acyclic.

The already interesting special case of three-term complexes, i. e. short exact
sequences, can be proved by a simpler argument: If 0 → A → B → C → 0 is a

4The relationship to other properties of R-modules is as follows:

free
%-

projective
$,

R local or R PID

dl flat
%-

R perfect

em torsionfree

R Dedekind or Prüfer domain

dl

5This corresponds to the fact that a module is projective and finitely generated if and only if there is
a partition 1 = ∑i fi ∈ R such that the localized modules M[ f−1

i ] are finite free R[ f−1
i ]-modules. See for

instance Theorem 7.22 in Pete Clark’s notes on commutative algebra or this linked one-page note.
6Additive functors preserve homotopies between morphisms of complexes, since they carry the

defining relation “ f − g = dh + hd” into an equation of similar kind.

http://ncatlab.org/nlab/show/Serre-Swan+theorem
http://math.uga.edu/~pete/integral.pdf
https://rawgit.com/iblech/talk-homological-algebra/master/kaplansky-en.pdf


6 INGO BLECHSCHMIDT

short exact sequence with A injective or C projective, one can construct a retraction
of A→ B respectively a section of B→ C. Therefore the sequence splits. The claim
follows since additive functors preserve biproducts.7 �

3. RESOLUTIONS

Definition 3.1. An injective resolution of an object X in an abelian category is an
exact sequence of the form 0 → X → I0 → I1 → · · · , where the objects In are all
injective. A short notation is 0→ X → I•. Dually, a projective resolution is an exact
sequence P• → X → 0 with the objects P−n, n ≥ 0, projective.

Example 3.2. Let M be an A-module. Picking some system of generators, we obtain
a surjective map A(I) � M. If the chosen system is linearly independent, this map
is an isomorphism and 0→ A(I) � M→ 0 is a projective resolution of M. (Recall
that free modules are projective, assuming the axiom of choice.) But in general, the
module of relations K0, the kernel of A(I) � M, will be nontrivial. Picking generators
for K0, we obtain a surjective map A(J) � K0 which we can compose with the
inclusion K0 ↪→ A(I). In this way the top row in the diagram

A(J) //

�� ��

A(I) // // M // 0

K0
0�

BB

is exact. If the chosen generators for K0 are linearly independent, we can tack the
zero module at the front and obtain in this manner a projective resolution of M.
But in general, there will be nontrivial relations between the chosen generators –
second syzygies – and even higher syzygies. Therefore we have to repeat this process
ad infinitum.

· · · // A(K)

�� ��

// A(J) //

�� ��

A(I) // // M // 0

· · ·
0�

AA

K1
0�

BB

K0
0�

BB

Example 3.3. A projective resolution of the Z-module Z/(2), obtained by the

method just sketched, is 0→ Z
2→ Z→ Z/(2)→ 0.

Example 3.4. Koszul resolutions are an important source of resolutions in algebraic
geometry. Let f1, . . . , fr be a regular sequence of elements of some ring A.8 Denote
by Λn Ar the n-th exterior power of Ar. Then Λ•Ar → A/( f1, . . . , fr)→ 0 is a free

7Formally, a biproduct of two objects X and Y consists of morphisms ιX : X → X⊕Y, ιY : Y → X⊕Y,
πX : X⊕Y → X, πY : X⊕Y → Y satisfying the five relations πX ◦ ιX = idX , πY ◦ ιY = idY , πY ◦ ιX = 0,
πX ◦ ιY = 0, ιX ◦ πX + ιY ◦ πY = idX⊕Y . (These relations imply in particular that (X ⊕ Y, ιX , ιY) is a
categorical coproduct of X and Y and that (X⊕Y, πX , πY) is a categorical product of X and Y.) Additive
functors carry these equations into equations of the same kind.

8This means that f1 is regular in A, f2 is regular in A/( f1), f3 is regular in A/( f1, f2) and so on. A
ring element s is regular if and only if multiplication by s is injective. If A is a ring of functions, for
instance A = k[x, y], regularity of the sequence is intuitively a requirement on the equations “ f1 =

0, . . . , fn = 0” to be independent.
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resolution. The differential sends ~v1 ∧ · · · ∧~vn to ∑r
i=0(−1)i(~v · ~f )~v1 ∧ · · · ∧ ~̂vi ∧

· · · ∧~vn (scalar product). Switching toposes, Koszul resolutions can be used to
construct locally free resolutions of structure sheaves of closed subschemes.

We can think of a projective resolution P• → X → 0 as providing us with
successively improving approximations: A zeroth approximation of X is P0. But
this disregards possible relations between the generators (we are employing a
module-theoretic metaphor here), so a better approximation is “P0 − P−1”. If there
are relations between the relations, we subtract too much in this expression; an
even better approximation is “P0 − P−1 + P−2”. Taking all the higher corrections
into account, we obtain the symbolic identity “X = P0 − P−1 ± · · · ”.9

Definition 3.5. An abelian category is said to have enough injectives if and only if
for any object X there exists a monomorphism X ↪→ I into an injective object, i. e. if
any object can be embedded into an injective object. Dually, an abelian category
has enough projectives if and only if any object is a quotient of a projective object.

Example 3.6. Assuming the axiom of choice, the category of modules over a ring
has enough injectives and enough projectives. The category of sheaves of abelian
groups on a topological space has enough injectives, but lacks enough projectives
in general.

Lemma 3.7. Let A be an abelian category with enough injectives or enough projectives.
Then any object possesses an injective respectively a projective resolution.

Proof. The method sketched in Example 3.2 depended only on the fact that any
module admits a surjection from a free module. This fact can be substituted by the
hypothesis on the existence of enough projectives. The statement about injective
resolutions is the formal dual. �

Remark 3.8. Let A be an abelian category with enough injectives and projectives.
We say that its homological dimension is ≤ n if and only if any object possesses a
projective (equivalently, injective) resolution of length n, i. e. comprising objects P0

to P−n.10 The homological dimension is one way to measure the homological

9The arithmetic operations with objects should be conceived in a purely figurative way. But in
fact, there is a way to make these calculations completely rigorous. Namely, we can attach to any
abelian category A a very nice invariant, its K-theory group K(A) (also called Grothendieck group). It is
the abelian group freely generated by the objects of Amodulo the relation X = X′ + X′′ for any short
exact sequence 0 → X′ → X → X′′ → 0 in A. One can then check that, if P• → X → 0 is a bounded
resolution (projective or otherwise), the identity X = ∑n(−1)nPn holds in K(A).

Here are four tangential remarks on the K-theory. (1) The map (A,⊕)→ (K(A),+) is the universal
additive invariant of A. (2) For a bounded complex X•, one can define its Euler characteristic as χ(X•) :=
∑n(−1)nXn ∈ K(A). Denoting by H•(X•) its associated cohomology complex (with zero differentials),
one can check that χ(X•) = χ(H•(X•)). (3) The K-theory of the category of vector spaces over some
field is zero, by the Eilenberg–Mazur swindle. The K-theory of the category of finite-dimensional vector
spaces is Z, by associating to a vector space its dimension. (4) The K-theory group of the category of
coherent sheaves of modules on a scheme carries important information about the intersection theory of
the scheme.

10The equivalence is not entirely trivial. One can use the dimension shifting trick and the characteriza-
tion of injective objects as those objects I such that Ext1(T, I) = 0 for all objects T; dually, an object P is
projective if and only if Ext1(P, T) = 0 for all objects T.
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complexity of a category. For instance, the category of vector spaces over a field
has homological dimension zero, since any object is projective (and injective).

More generally, there is an intriguing relation between the homological dimen-
sion of the category of modules over a ring and its Krull dimension: If the ring
is a regular ring, they coincide. For instance, the homological dimension of the
category of k[x1, . . . , xn]-modules, where k is a field, is n. Relatedly, the category of
coherent sheaves on a smooth projective variety of dimension n has homological
dimension n.

The following lemma investigates the functorial properties of injective and
projective resolutions.

Lemma 3.9. Let 0→ X → I• be a resolution by arbitrary objects in an abelian category.
Let 0→ Y → J• be a resolution by injective objects. Let f : X → Y be a morphism. Then
there exists a lift of f to the resolutions, i. e. a morphism I• → J• of complexes compatible
with the maps X → I0 and Y → J0. Furthermore, this lift is unique up to homotopy.

0 // X //

��

I0 //

��

I1 //

��

· · ·

0 // Y // J0 // J1 // · · ·

Proof. We obtain a morphism I0 → J0 by lifting the morphism X → Y → J0 along
the monomorphism X → I0. This is possible by the injectivity of J0. The induction
step is a bit more complicated. �

Corollary 3.10. Any two injective resolutions of an object are homotopy equivalent.
Furthermore, the witnessing homotopy equivalence is unique up to homotopy, if we demand
compatibility with the augmentations.

Proof. Let 0→ X → I• and 0→ X → J• be injective resolutions. By the previous
lemma, the identity idX : X → X lifts to morphisms I• → J• and J• → I•. The
composition of these lifts is a lift of idX to I• → I• respectively J• → J•. By the
uniqueness statement, these compositions are homotopic to the identity, since idI•

respectively idJ• are trivially lifts of idX . �

Injective resolutions allow us to replace badly behaved objects by (complexes of) injective
objects, which, thanks to their great exactness properties, mix much better with
additive functors. This is the reason why injective (and dually, projective) resolu-
tions are important. No information about morphisms is lost in this process, since
morphisms between objects lift to morphisms between resolutions.

For future reference, we want to precisely state the relation between an ob-
ject X, considered as a complex X[0] concentrated in degree zero, and an associated
injective resolution I•. Namely, the augmentation X → I0 gives rise to a mor-
phism X[0] → I• of complexes which is a quasi-isomorphism by the following
definition.
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Definition 3.11. A morphism of complexes K• → L• is a quasi-isomorphism if
the induced morphisms Hn(K•)→ Hn(L•) in cohomology are isomorphisms for
all n.11

Any homotopy equivalence is a quasi-isomorphism, but the converse is totally
false.

4. DERIVED FUNCTORS

Definition 4.1. Let F : A → B be a left-exact functor between abelian categories.
Assume that A has enough injectives. Then RF(X), the total right-derived functor
of F evaluated at an object X of A, is the complex

RF(X): · · · → 0→ F(I0)→ F(I1)→ · · · ,

where 0→ X → I• is an injective resolution of X. The n-th right-derived functor of F
evaluated at X is the n-th cohomology of this complex: RnF(X) := Hn(RF(X)) =
Hn(F(I•)).

So, to calculate RnF(X), we take an injective resolution of X, apply F to this
complex (making sure to strip the leading “F(X)”), and then take cohomology.
Even though the complex I• is not acyclic only at position zero, the complex F(I•)
may have cohomology in arbitrarily high degrees (!).

Since we made an arbitrary choice of an injective resolution, we have to discuss
well-definedness of course. If 0→ X → J• is a second injective resolution, there is
a homotopy equivalence I• ' J• by Corollary 3.10. This equivalence is preserved
by the functor F, so the complexes F(I•) and F(J•) are homotopy equivalent as
well. In particular, they are quasi-isomorphic and have isomorphic cohomology.

Summing up, the complex RF(X) is well-defined up to quasi-isomorphism
and RnF(X) is well-defined up to isomorphism. For reasons to be stated below, we
don’t want to stress that with our definition, RF(X) is actually even well-defined
up to homotopy equivalence.12

Suppose we fix an injective resolution for every object of A. Then the rule X 7→
RnF(X) can be made into an additive functor RnF : A → B, since a morphism X →
Y between objects induces, by Lemma 3.9, a morphism between their associated
injective resolutions (unique up to homotopy) and therefore a well-defined mor-
phism RnF(X)→ RnF(Y).

Different choices of resolutions lead to naturally isomorphic derived functors.
There is an analogous definition for the left-derived functors of right-exact functors,
using projective instead of injective resolutions.

11If K• → L• is a quasi-isomorphism, there is usually no quasi-isomorphism in the opposite direction.
For instance, there is no quasi-isomorphism (Z/(2))[0]→ P• when P• → Z/(2)→ 0 is the projective
resolution of Example 3.3. Accordingly, we say that two complexes K• and L• are quasi-isomorphic
not when there exists a quasi-isomorphism between them, but when there exists a zigzag of quasi-
isomorphisms K• → Z•0 ← Z•1 → Z•2 ← · · · → Z•n ← Y•. This complication is a source of technical
difficulties. To say that K• and L• are quasi-isomorphic is slightly stronger than to say that they have
isomorphic cohomology. In the latter case, there is no guarantee that the isomorphisms are induced by a
(zigzag of) morphisms of complexes.

12The isomorphism on cohomology (respectively the isomorphism on complexes in the derived
category) is unique with a certain property. This is what allows to speak of “the” derived functor.
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Example 4.2. We have R0F(X) ∼= F(X), naturally in X. To see this, pick an injective
resolution 0→ X → I• and apply F to the exact sequence 0→ X → I0 → I1.

It is in this sense that the RnF are “derived” functors of F; R0F coincides with F
and the higher derived functors bear some relation with F. But Rn+1F is not the first
derived functor of RnF (indeed, in general the higher derived functors are neither
left- nor right-exact, so we cannot derive them) and there is no Leibniz rule to be
found.

Example 4.3. Assume F to even be exact. Then the higher derived functors of F
vanish, i. e. RnF(X) = 0 for all objects X and n > 0. To verify this, use that exact
functors commute with cohomology. Conversely, we’ll see below that a left-exact
functor for which all higher derived functors vanish is exact.

This suggests the following motto: Derived functors measure the failure of a functor
to be exact.

Example 4.4. Consider the dualization functor F : Abop → Ab, M 7→ Hom(M, Z).
Since F is an instance of a Hom functor, it is left-exact. To ensure that the con-
travariance doesn’t cause unnecessary difficulties, we spell out precisely what
this means: If 0 → M → N → P → 0 is a short exact sequence in Abop (this
really means that we have a short exact sequence 0 ← M ← N ← P ← 0 in Ab),
then 0→ F(M) → F(N) → F(P) is exact in Ab. To compute RF(Z/(2)), we use
the projective (even free) resolution

0 −→ Z
2−→ Z −→ Z/(2) −→ 0,

which corresponds to an injective resolution in Abop. The total derived functor is
therefore the complex

0 −→ F(Z)
2−→ F(Z) −→ 0,

which can be simplified using F(Z) ∼= Z to

0 −→ Z
2−→ Z −→ 0.

Thus we obtain R0F(Z) ∼= F(Z) = 0 and R1F(Z) ∼= Z/(2). The torsion did not
vanish, but instead moved to R1.

Many important functors are derived functors. For instance,
• the right derived functors of Hom(X, ) : Aop → Ab are the Ext functors

Extn(X, ),
• the left derived functors of M⊗A : Mod(A) → Ab are the Tor functors

Torn(M, ),
• the right derived functors of the global sections functor Γ : AbSh(X)→ Ab

calculate sheaf cohomology, and
• the right derived functors of the functor Mod(G)→ Ab which associates to

a G-module its subset of G-invariant elements calculate group cohomology.
The raison d’être for derived functors is given by the following lemma.

Lemma 4.5. Let F : A → B be a left-exact functor between abelian categories. Assume
that A has enough injectives. Then, for any short exact sequence 0→ X → Y → Z → 0
in A, there is an induced long exact sequence

0→ F(X)→ F(Y)→ F(Z)→ R1F(X)→ R1F(Y)→ R1F(Z)→ R2F(X)→ · · · ,

depending functorially on the short exact sequence.
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Proof. Use the horseshoe lemma to obtain a short exact sequence relating injective
resolutions of X, Y, and Z. Then perform the usual diagram chase to construct the
connecting morphisms. �

The lemma shows very visibly that F is exact if and only if R1F = 0.
In practice, calculating the higher derived functors can be quite hard. There are

two main techniques: One can use exact sequences (and spectral sequences) to
draw some conclusions about the derived functors, or hope that there are more
amenable resolutions than resolutions by unwieldy injectives available. To this end,
the following lemma is crucial:

Lemma 4.6. Let F : A → B be a left-exact functor between abelian categories. Assume
that A has enough injectives. Let X be an object of A. Let 0→ X → U• be a resolution
of X by F-acyclic objects, i. e. objects such that R≥1F(Um) = 0. Then RF(X) is quasi-
isomorphic to F(U•) and in particular RnF(X) ∼= Hn(F(U•)).13

In other words, we may use resolutions by F-acyclic objects instead of injective
objects to calculate the derived functors. For instance, we can use flat resolutions
to calculate Tor and flabby resolutions to calculate sheaf cohomology. The general
philosophy of derived functors is therefore as follows: The complex RF(X) is
obtained by replacing X with a (complex of) objects which are in some sense
well-suited to F and applying F to those.

Derived functors can be used to fix several defects in the original functors.
The paramount defect of a non-exact functor is, of course, its failure to preserve
exactness. This is fixed by the long exact sequence. But derived functors also fix the
failure of certain identities. For instance, if M is an arbitrary A-module, in general
it does not hold that

M∨∨ := Hom(Hom(M, A), A) ∼= M.14

But, denoting by ( )∨∨ the total derived functor of the dualization functor, the
complex M∨∨∨∨ is quasi-isomorphic to M (regarded as a complex concentrated in
degree zero).15 Similarly, in algebraic geometry, there is the projection formula

π∗E ⊗ F ∼= π∗(E ⊗ π∗F ),

valid in the case that F is a locally free sheaf. For the derived functors, the formula
holds in complete generality, assuming only some finiteness conditions:

Rπ∗(E•)
L
⊗ F • 'qis Rπ∗(E•

L
⊗ Lπ∗G•).

13The complex RF(X) will in general not be homotopy equivalent to F(U•). This is the reason why
we identify RF(X) up to quasi-isomorphism and not up to homotopy equivalence.

14Consider the Z-module M = Z/(2). Then M∨ = 0.
15We are skating over some details here. In particular, we have not explained how to apply RF

to a complex K• (instead of a single object); this is done by finding a quasi-isomorphism K• → I• to a
complex consisting of injectives and setting RF(K•) := F(I•). Also one has to impose some finiteness
conditions, for instance A should be Noetherian and M finitely generated.
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5. EXAMPLE: EXT

Let A be an abelian category with enough injectives and projectives. Then one
can show that the right-derived functors of the Hom functor coincide in the sense
that

Rn(HomA(X, ))(Y) ∼= Rn(HomA( , Y))(X).

We can thus define Extn
A(X, Y) as either object.

The elements of Extn(X, Y) have a concrete interpretation. Namely, they corre-
spond to n-extensions of Y by X, that is exact sequences of the form

0 −→ Y −→ En −→ · · · −→ E1 −→ X −→ 0,

up to a certain equivalence relation.

Proposition 5.1. There is a natural bijective correspondence between elements of Ext1(X, Y)
and equivalence classes of short exact sequences 0→ Y → E→ X → 0.

Proof. Let 0 → Y → E → X → 0 be a short exact sequence. Applying the
functor HomA(X, ), we obtain the long exact sequence

0→ Hom(X, Y)→ Hom(X, E)→ Hom(X, X)
∂→ Ext1(X, Y)→ · · · .

The element of Ext1(X, Y) corresponding to the short exact sequence is then ∂(idX).
The converse direction is a bit more complicated.16 �

Under this correspondence, the trivial short exact sequence 0→ Y → Y⊕ X →
X → 0 corresponds to the zero element in Ext1(X, Y). Thus a short exact sequence
splits if and only if its Ext class vanishes.

Here is a fun application of Ext1. Let i : U ↪→ X be a subobject. Let f : U → Y
be a morphism. Is there an extension of f to X, i. e. a morphism f̄ : X → Y such
that f̄ ◦ i = f ? Such a question is of course trivial in the category of vector spaces
over a field, since there we can just extend a basis of U to a basis of X and construct f̄
on this basis. But in general abelian categories, the question is non-trivial.

We can give a precise answer to the question using the Ext functor. Applying
the functor Hom( , Y) to the short exact sequence 0→ U → X → X/U → 0, we
obtain the long exact sequence

0→ Hom(X/U, Y)→ Hom(X, Y)→ Hom(U, Y) ∂→ Ext1(X/U, Y)→ · · · .

The map Hom(X, Y) → Hom(U, Y) is given by precomposing with i : U → X.
Therefore the morphism f lifts to X if and only if it has a preimage under this map;
by exactness, this is the case if and only if ∂( f ) vanishes in Ext1(X/U, Y).

16Let α ∈ Ext1(X, Y). Embed Y into an injective object I. The long exact sequence induced by the
short exact sequence 0 → Y → I → I/Y → 0 shows that the map ∂ : Hom(X, I/Y) → Ext1(X, Y) is
surjective. Therefore there exists a morphism f : X → I/Y such that ∂( f ) = α. The short exact sequence
corresponding to α is then 0→ Y → E→ X → 0, where E→ X is the pullback of I → I/Y along f .
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6. EXAMPLE: TOR

Let A be a ring (commutative, with unit). Tensoring with a fixed module defines
a right-exact functor Mod(A)→ Mod(A). Since one can show that

Ln(M⊗A )(N) ∼= Ln( ⊗A N)(M),

we can use both to define TorA
n (M, N).

Here is a fun example from algebraic geometry. Let I and J be ideals of A :=
k[x, y]. These define closed subschemes V(I) and V(J) of A2

k , the vanishing locus
of the polynomials in I respectively J. The ring of functions is A/I and A/J
respectively. The scheme-theoretical intersection is given by V(I + J) with ring of
functions A/(I + J) ∼= A/I ⊗A A/J.

We can then define the intersection multiplicity of V(I) and V(J) at a point x ∈ A2
k

(corresponding to a prime ideal p) as the dimension of the stalk (A/(I + J))p as
a k-vector space.

Example 6.1. Let I = (y− x2) and J = (y) be ideals in k[x, y] defining the parabola
and the x-axis, respectively. The ring of functions of V(I + J) is

k[x, y]/(I + J) = k[x, y]/(y− x2, y) ∼= k[x]/(x2).

Since any elements not contained in the ideal (x, y) = (x) of this ring are invertible,
localizing this ring at (x, y) doesn’t change it. Thus the intersection multiplicity
of V(I) and V(J) at the the origin (corresponding to the prime ideal (x, y)) is 2, just
as we would expect.

We can globalize the definition. Let I and J be sheaves of ideals on a scheme X
over a field k of dimension 2, defining closed subschemes V(I) and V(J ). Their
scheme-theoretical intersection is V(I + J ) with structure sheaf OX/(I + J ) ∼=
OX/I ⊗OX OX/J .17 If V(I) and V(J ) are “in general position” and intersect in a
finite number of points, we can define their intersection product as the number

V(I) ·V(J ) := ∑
x∈V(I)∩V(J )

dimk (OX/I ⊗OX OX/J )x.

Since the tensor product sheaf OX/I ⊗OX OX/J is supported precisely at the
intersection points, this can also be stated more abstractly using sheaf cohomology
as

V(I) ·V(J ) = dimk H0(X,OX/I ⊗OX OX/J ) = χ(OX/I ⊗OX OX/J ).

Since discrete points don’t have higher cohomology, the Euler characteristic appear-
ing in this formula, defined as χ(E) := ∑∞

i=0(−1)i dimk Hi(X, E), is simply given
by the first summand.

However, this definition can’t be used to calculate non-proper intersections like
V(I) ·V(I). In this case, the intersection number should be defined in a way that
if we can move V(I) to a “linearly equivalent divisor” V(I ′), then V(I) ·V(I) :=
V(I) ·V(I ′). For instance, any two lines in P2

k should have intersection product 1,
even if we intersect a line with itself.

17More precisely, OX/(I + J ) is the pushforward of the structure sheaf of V(I + J ) along the
closed immersion V(I + J ) ↪→ X. As is customary in this context, we will identify sheaves on closed
subspaces with their pushforward to the ambient scheme.
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The correct definition is given by Serre’s intersection formula

V(I) ·V(J ) := χ(OX/I
L
⊗OX OX/J ) :=

∞

∑
n=0

(−1)nχ(TorOX
n (OX/I ,OX/J )).

It is a refinement of the naive definition, which is the n = 0 term in the sum. In
the case that V(I) and V(J ) happen to be in general position, one can show that
the higher Tor sheaves vanish. Therefore Serre’s intersection formula recovers the
naive definition in this case.

For a very readable account of this topic, see Manin’s Lectures on the K-Functor in
Algebraic Geometry.

7. OUTLOOK

The derived category D(A) of an abelian category A is the localization of the
category Kom(A) of complexes at the class of quasi-isomorphisms. Explicitly, its
objects are simply the objects of Kom(A). For any morphism in Kom(A), there is
a corresponding morphism in D(A); but additionally, we adjoin a formal inverse
for any quasi-isomorphism in Kom(A). Morphisms in D(A) are therefore formal
“zigzags” K• → Z•0 ← Z•1 → Z•2 ← · · · → Z•n ← L• consisting of honest morphisms
from Kom(A) and formal inverses of quasi-isomorphisms.

Remark 7.1. Many important categories can be obtained as localizations. For in-
stance, the category of complete metric spaces is the localization of the category of
all metric spaces at the class of bilipschitz maps with dense image. The category of
sheaves on a topological space X is the localization of the category of presheaves
on X at the class of stalkwise isomorphisms. The category of germs of spaces is the
localization of the category of pointed spaces at the class of maps which restrict to
isomorphisms in neighbourhoods of the base points.

We already discussed the motto of replacing objects by resolutions. This motto
can be rigorously formalized in derived categories: If 0→ X → I• is a resolution
(injective or otherwise), the morphism X[0] → I• is a quasi-isomorphism and
therefore an isomorphism in D(A).

Let F : A → B be a left-exact functor. Recall that the complex RF(X) is well-
defined up to quasi-isomorphism. Considered as an object of D(B), it is therefore
well-defined up to isomorphism; thus RF can be understood as a functor D(A)→
D(B).18 Derived categories are thus the natural source and target of total derived functors.

The main advantage of the derived category setting is that, unlike with the
classical approach, we forget only so much information as strictly needed. In
particular, we retain the information about the complex RF(X) as opposed to only
the cohomology groups RnF(X). A concrete benefit of this is that there is an easy
formula for the composition of derived functors.

Proposition 7.2. Let F : A → B and G : B → C be left-exact functors. Assume that a
certain homological compatibility assumption is satisfied. Then RG ◦RF ∼= R(G ◦ F).

18This is not quite correct. In general, RF is only well-defined as a functor D+(A) → D+(B),
where D+(A) is the localization of the category of bounded below chain complexes at the quasi-
isomorphisms. We ignore such boundedness issues.
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This formula generalizes to the composition of more than two functors. Ex-
plicitly, to calculate R(G ◦ F)(X), we can first pick a suitable resolution 0 →
X → I•, apply F to obtain RF(X) = F(I•), pick a resolution of that, i. e. a quasi-
isomorphism F(I•)→ J•, and finally apply G to obtain R(G ◦ F)(X) ∼= G(J•).19

Summarizing, the information contained in the complex RF(X), combined with
the functor RG, is sufficient to determine R(G ◦ F)(X). In contrast, for the classical
right-derived functors, there is only the Grothendieck spectral sequence

Epq
2 = RpG(RqF(X)) =⇒ Rn(G ◦ F)(X).

The objects contained in the E2-page are of course not enough to uniquely determine
the limit; one needs the differentials and the higher pages. Thus knowledge of the
functors RpG and RqF does not suffice to calculate Rn(G ◦ F).

A somewhat lesser-known example along the same lines goes as follows. Let 0→
X → U0 → · · · → Un → 0 be a finite resolution of an object X in an abelian cate-
gory A. Let F : A → B be a left-exact functor. Assume that the complexes RF(Ui)
and the morphisms RF(Ui)→ RF(Ui+1) are known. Then there is a fully explicit
description of RF(X).20 In contrast, in the classical case, there is only a spectral
sequence Hp((RqF(Up))p)⇒ RnF(X).

F Complexes good, cohomology bad. F

Besides its use as a great technical tool for dealing with derived functors, derived
categories are also interesting on their own. For a ring A or a scheme X, the derived
category of modules on A or the derived category of sheaves of modules on X
is a valuable invariant which appears to sit just right on the spectrum between
“extremely valuable, but not computable” and “easily computable, but not very
interesting”.

There are some relations between rings and schemes which can only be ex-
pressed on a derived level. For example, the polynomial ring k[x1, . . . , xn] and
the exterior algebra over kn are not at all isomorphic. However, their associated
derived categories are equivalent. This instance of Koszul duality has even practical
implications, in that certain algorithms dealing with the polynomial ring (which
is infinite dimensional over k) can be massively sped up by transporting them
along the equivalence to work with the exterior algebra instead (which is finite
dimensional over k).21

In algebraic geometry, there are are important examples of schemes which
“should” be the same in some sense but are not isomorphic. In this case, their
relation is sometimes captured by a derived equivalence, i. e. an equivalence between
the associated derived categories of sheaves of modules. This is, for instance, the
case for the orbifold Xn//Sn of unordered n-tuples of points on a surface X and
the Hilbert scheme X[n] of n points on X. Their derived categories of sheaves of
modules are equivalent.

19We could also try to find a resolution 0→ X → I• such that the objects F(In) are G-acyclic. Then
it’s not necessary to resolve F(I•).

20Namely, the complex RF(X) can be obtained as a certain iterated cone. The procedure can even be
adapted to the case that the given resolution is not finite.

21See articles by Mohamed Barakat for details.



16 INGO BLECHSCHMIDT

Remark 7.3. Despite their applications, derived categories do have several problems.
One is that they “don’t glue very well”: Denote by D(X) the derived category of
sheaves on a scheme X. Let X be covered by open subsets U and V. Then it would
be nice if D(X) was a (2-)fiber product of D(U) and D(V) over D(U∩V). However,
this is not the case. A way to fix these problems is to turn to (dg-)enhancements of
derived categories.

There are a number of fine expository articles on derived categories. The reader
is warmly encouraged to study them.

• R. P. Thomas. Derived categories for the working mathematician. (Start here.)
• M. Haiman. Notes on derived categories and derived functors.
• B. Keller. Derived categories and their uses.
• B. Keller. Introduction to abelian and derived categories.
• L. Nicolaescu. The derived categories of sheaves and the Poincaré–Verdier duality.

(With an emphasis on duality theory.)
Finally, we want to mention model categories. They are necessary to extend the

theory to non-abelian situations. For instance, let f : X → Y and g : Y → Z be
morphisms of schemes. Then there is an exact sequence

f ∗Ω1
Y/Z −→ Ω1

X/Z −→ Ω1
X/Y −→ 0

relating several sheaves of Kähler differentials. Of course, noticing the missing zero
at the front, you can hear this sequence crying “derive me!”.22

This phenomenon is already visible on the level of affine schemes: Let A→ B→
C be ring homomorphisms. Then there is an exact sequence

Ω1
B/A ⊗B C −→ Ω1

C/A −→ Ω1
C/B −→ 0.

Unfortunately, the functor associating to an algebra its module of Kähler differen-
tials can’t be derived with the techniques described in these notes, since its source
category is not abelian. Check out A. Raksit, Defining the cotangent complex.

Email address: iblech@web.de

22The author learned of these cries from Timo Schürg.

http://arxiv.org/abs/math/0001045
https://math.berkeley.edu/~mhaiman/math256-fall13-spring14/cohomology-1_derived-cat.pdf
http://www.maths.ed.ac.uk/~aar/papers/keller.pdf
http://webusers.imj-prg.fr/~bernhard.keller/publ/cam.pdf
http://www3.nd.edu/~lnicolae/Verdier-ams.pdf
http://www.arponr.com/files/quillen-cotangent.pdf
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