
Error handling concepts
in Swift 2 & 3

04.10.2016
CocoaHeads LE

Motivation

• majority of applications depend on external
systems (web servers, file system,
databases, hardware accessories)

• high demand for solid error handling

• looking at the concepts helps us to gain a
deeper understanding of the issues related
to error handling (hopefully!)

Error handling in Swift

• swift/ErrorHandling.rst at master · apple/swift

• The Swift Programming Language (Swift 3):
Error Handling

https://github.com/apple/swift/blob/master/docs/ErrorHandling.rst
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html

Demo
finally!

Basic rules

• conform to Error protocol

• always handle the errors of a throwing
method by using

• a do-catch statement

• try? or try!

• continue propagation

Optional vs. Error

• use Optionals to represent absence of
a value (more on that later)

• use Errors to provide the cause of a
failed operation or computation

rethrows

• e.g. used in map, filter, reduce,
forEach

• means: "it throws if any of a set of
named arguments do"

Performance

with regard to Apple:

• error handling in Swift does not
involve unwinding the call stack

• performance characteristics of a throw
statement are comparable to those of
a return statement

concepts

swift/ErrorHandlingRationale.rst

https://github.com/apple/swift/blob/master/docs/ErrorHandlingRationale.rst

typed propagation

• "Whether the language allows
functions to be designated as
producing errors or not"

• Swift: throws

default propagation rule

• "Whether, in a language with typed
propagation, the default rule is that a
function can produce an error or that it
can't"

• Swift: a function can't produce an error

statically-enforced typed
propagation

• "Whether, in a language with typed
propagation, the language enforces
this statically, so that a function which
cannot produce an error cannot call a
function which can without handling it"

• Swift: ✔

marked propagation

• "Whether the language requires all
potential error sites to be identifiable
as potential error sites"

• Swift: try

manual propagation

• "Whether propagation is done
explicitly with the normal data-flow and
control-flow tools of the language"

• Swift: enum with error property

automatic propagation

• "a language where control implicitly
jumps from the original error site to the
proper handler"

• Swift: throw & catch

Kinds of error

• Simple domain errors

• Recoverable errors

• Universal errors

• Logic failures

Simple domain errors

• calling String.toInt() on a string
that isn't an integer

• client will often handle the error
immediately

• use optional return value

Recoverable errors

• file-not-found, network timeouts

• operation has a variety of possible
error conditions

• use do-try-catch

Universal errors

• "An error is universal if it could arise from
such a wealth of different circumstances
that it becomes nearly impracticable for the
programmer to directly deal with all the
sources of the error."

• out of memory, stack overflow

• use Objective-C exceptions (at the moment)

Logic failures

• out of bounds array accesses

• forced unwrap of nil optionals

• don't recover, just fix it?

• correct handling is an open question

Why did they …?

specificity of typed automatic
propagation

• "should a function be able to state the specific classes of
errors it produces"

• lessons learned from Java (arguments from the proposal)

• libraries generally want to reserve flexibility about the
exact kind of error they produce

• exceptions list end up just restating the library's own
dependencies

• or wrapping the underlying errors in ways that loses
critical information

Async error handling

• Swift lacks language constructs for
async execution and error handling

Option 1:

enum Result<T> {
 case success: T
 case error: Error
}

func readFile() -> Result<Data>

Async error handling
Option 2: Reactive Library (RxSwift or Reactive Cocoa)

reactivex.io/documentation/operators.html#error

http://reactivex.io/documentation/operators.html#error

Modeling tips

Ambiguity of Optionals

struct Dog {
 let dogID: DogID
 let master: String?
}

// load from a web server (this can fail)
func loadRemoteDogMaster(dogID: DogID) -> String? {
 // some mysterious closed-source implementation
}

// execute
let name = loadRemoteDogMaster(dogID: 43)

What do we know if name == nil?
a) dog has no master
b) OR operation failed

Ambiguity of Optionals

Reason: Using Optionals for app and domain
modeling interchangeably

Possible solution: Use Optionals for domain
modeling and errors or enums for operation results.

Explicit success/error

func writeFileToDisk() -> Bool

// or even worse
func writeFileToDisk() -> Int

• a Bool/Int is not quite descriptive in
this case

• return value can be easily ignored

• use enums (can be ignored too) or throw

Don't do that (at work)
// this produces potentially vague defined state
func loadSomeReallyEssentialValue() -> String? {
 var result: String? = nil
 if let remoteValue = loadFromServer() {
 result = remoteValue.convert()
 } else {
 result = ???
 }
 return result
}

// better: fail and cancel/retry the operation
func loadSomeReallyEssentialValue() throws -> String {
 guard let remoteValue = loadFromServer() else {
 throw RequestError.couldNotSatisfy
 }
 let remoteValue = try loadFromServer()
 return remoteValue.convert()
}

In general

• avoid undefined state

• use at least a general error for all
cases you don't want to think of (with
identifier/error code)

try try

thanks :-)

