
InfluxDB - a distributed
time series, metrics, and

events database
Paul Dix

paul@influxdb.com
@pauldix
@influxdb

mailto:paul@influxdb.com

YC (W13), 3 people full time:
Todd Persen
John Shahid
Paul Dix (me)

What it’s for…

Metrics

Time Series

Analytics

Events

Can’t you just use a
regular DB?

order by time?

Doesn’t Scale

Example from metrics:
!

100 measurements per host *
10 hosts *
8640 per day (once every 10s) *
365 days
!

= 3,153,600,000 records per year

Have fun with that
table…

But wait, we’ll just keep
the summaries!

1h averages =
!

8,760,000 per year

Lose Detail and
AdHoc Queryability

So let’s use Cassandra,
HBase, or Scaleasaurus!

Too much application
code and complexity

Application logic and
scripts to compute

summaries

Application level logic
for balancing

No data locality for
AdHoc queries

And then there’s
more…

Web services

Libraries for web
services

Data collection

Visualization

–Paul Dix

“Building an application with an analytics
component today is like building a web

application in 1998. You spend months building
infrastructure before getting to the actual thing

you want to build.”

Analytics should be about
analyzing and interpreting data,
not the infrastructure to store and

process it.

HTTP API
Web services built in

HTTP API (writes)

curl -X POST \
 'http://localhost:8086/db/mydb/series?u=paul&p=pass' \
 -d '[{"name":"foo", "columns":["val"], "points": [[3]]}]'

Data (with timestamp)
[
 {
 "name": "cpu",
 "columns": ["time", "value", "host"],
 "points": [
 [1395168540, 56.7, "foo.influxdb.com"],
 [1395168540, 43.9, "bar.influxdb.com"]
]
 }
]

HTTP API (queries)

curl 'http://localhost:8086/db/mydb/series?u=paul&p=pass&q=.'

http://localhost:8086/db/mydb/series?u=paul&p=pass&q

SQL-ish

select * from events
where time > now() - 1h

SQL-ish

select * from “series with weird chars ()*@#0982#$”
where time > now() - 1h

Where Regex

select line from application_logs
where line =~ /.*ERROR.*/ and
time > "2014-03-01" and time < "2014-03-03"

Only scans the time
range

Series and time are the primary index

Work with many
series…

Select from Regex

select * from /stats\.cpu\..*/
limit 1

Downsampling on the
fly…

Aggregates

select percentile(90, value)
from response_times
group by time(10m)
where time > now() - 1d

Continuous
Downsampling…

Continuous queries
(summaries)

select count(page_id) from events
group by time(1h), page_id
into events.[page_id]

Series per page id

select count from events.67
where time > now() - 7d

Continuous queries
(regex downsampling)

select percentile(value, 90) as value
from /stats\.*/
group by time(5m)
into percentile.90.:series_name

Percentile series per host

select value
from percentile.90.stats.cpu.host1
where time > now() - 4h

Denormalization for
performance

Range scans all user events
for last hour

select * from events
where user_id = 3
and time > now() - 1h

Continuous queries
(fan out)

select * from events
into events.[user_id]

Series per user id

select * from events.3
where time > now() - 1h

Distributed
Scale out, data locality, high availability

Raft for metadata
We owe Ben Johnson a beer or three…

Protobuf + TCP for
queries, writes

Scalable
Have billions of points in 1 series* or a million different

series

Libraries
Go, Ruby, Javascript, Python, Node.js, Clojure, Java,

Perl, Haskell, R, Scala, CLI (ruby and node)

Visualization

Built-in UI

Grafana

Javascript library + D3,
HighCharts, Rickshaw,

NVD3, etc.
Definitely more to do here!

Data Collection
CollectD Proxy, StatsD backend, Carbon ingestion,

OpenTSDB (soon)

Coming Soon

ugh, Documentation

Series Metadata

Binary Protocol

Pubsub
select * from some_series
where host = “serverA”
into subscription()

select percentile(90, value) from some_series
group by time(1m)
into subscription()

Custom Functions
select myFunc(value) from some_series

Rack aware sharding
and querying

Multi-datacenter
replication

Push and bi-directional

Indexes?

Ponies?
Tell @jvshahid that you want your pony ;)

But it’s ready to go now.
Production deployments

already running.

Need help?
support@influxdb.com

Thanks!
paul@influxdb.com

@pauldix

mailto:support@influxdb.com
mailto:paul@influxdb.com

