
Deck
a Go package for presentations

DECK: a package for presentations

Deck is a package written in Go

That uses a singular markup language

With elements for text, lists, code, and graphics

All layout and sizes are expressed as percentages

Clients are interactive or create formats like PDF or SVG

Servers use a RESTful API for list, upload, stop, start, remove

Elements

Hello, World

A block of text, word-wrapped to a specified width.
You may specify size, font, color, and opacity.

package main
import "fmt"
func main() {
 fmt.Println("Hello, World")
}

<text>...</text>

bullet plain number

<list>...</list>

Point A

Point B

Point C

Point D

First item

Second item

The third item

the last thing

1. This

2. That

3. The other

4. One more

<image .../>

x, yheight

width

x, y

width

height (relative
to element
or canvas
width)

<rect .../>

x, y

width

height (relative
to element
or canvas
width)

<ellipse .../>

start

end

<line .../>

angle2 (90 deg)

angle1 (0 deg)x, y

<arc .../>

start

control

end

<curve .../>

Markup and Layout

Anatomy of a Deck

<deck>

 <canvas width="1024" height="768" />

 <slide bg="white" fg="black">

 <image xp="70" yp="60" width="256" height="179" name="work.png" caption="Desk"/>

 <text xp="20" yp="80" sp="3" link="http://goo.gl/Wm05Ex">Deck elements</text>

 <list xp="20" yp="70" sp="2" type="bullet">

 text, list, image

 line, rect, ellipse

 arc, curve

 </list>

 <line xp1="20" yp1="10" xp2="30" yp2="10"/>

 <rect xp="35" yp="10" wp="4" hr="75" color="rgb(127,0,0)"/>

 <ellipse xp="45" yp="10" wp="4" hr="75" color="rgb(0,127,0)"/>

 <arc xp="55" yp="10" wp="4" hp="3" a1="0" a2="180" color="rgb(0,0,127)"/>

 <curve xp1="60" yp1="10" xp2="75" yp2="20" xp3="70" yp3="10" />

 </slide>

</deck>

Start the deck

Set the canvas size

Begin a slide

Place an image

Draw some text

Make a bullet list

End the list

Draw a line

Draw a rectangle

Draw an ellipse

Draw an arc

Draw a quadratic bezier

End the slide

End of the deck

Desk

Deck elements

text, list, image

line, rect, ellipse

arc, curve

http://goo.gl/Wm05Ex

Text and List Markup

Position, size

Block of text

Lines of code

Attributes

Position, size

Bullet list

Numbered list

Attributes

<text xp="..." yp="..." sp="...">

<text ... type="block">

<text ... type="code">

<text ... color="..." opacity="..." font="..." align="..." link="...">

<list xp="..." yp="..." sp="...">

<list ... type="bullet">

<list ... type="number">

<list ... color="..." opacity="..." font="..." align="..." link="...">

Common Attributes for text and list

xp

yp

sp

type

align

color

opacity

font

link

horizontal percentage

vertical percentage

font size percentage

"bullet", "number" (list), "block", "code" (text)

"left", "middle", "end"

SVG names ("maroon"), or RGB "rgb(127,0,0)"

percent opacity (0-100, transparent - opaque)

"sans", "serif", "mono"

URL

Graphics Markup

<line xp1="5" yp1="75" xp2="20" yp2="70" sp="0.2"/>

<rect xp="10" yp="60" wp="15" hr="66.6" color="red"/>

<rect xp="15" yp="55" wp="10" hr="100" color="blue" opacity="30"/>

<ellipse xp="10" yp="35" wp="15" hr="66.66" color="green"/>

<ellipse xp="15" yp="30" wp="10" hr="100" color="blue" opacity="30"/>

<curve xp1="5" yp1="10" xp2="15" yp2="20" xp3="15" yp3="10" sp="0.3" color="red"/>

<arc xp="22" yp="10" wp="10" wp="10" a1="0" a2="180" sp="0.2" color="blue"/>

Percent Grid

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

Percentage-based layout

Hello

10%, 50% 50%, 50% 90%, 50%

bullet plain number

<list>...</list>

Point A

Point B

Point C

Point D

First item

Second item

The third item

the last thing

1. This

2. That

3. The other

4. One more

Clients

package main
import (
 "log"
 "github.com/ajstarks/deck"
)
func main() {
 presentation, err := deck.Read("deck.xml", 1024, 768) // open the deck
 if err != nil {
 log.Fatal(err)
 }
 for _, slide := range presentation.Slide { // for every slide...
 for _, t := range slide.Text { // process the text elements
 x, y, size := deck.Dimen(presentation.Canvas, t.Xp, t.Yp, t.Sp)
 slideText(x, y, size, t)
 }
 for _, l := range slide.List { // process the list elements
 x, y, size := deck.Dimen(presentation.Canvas, l.Xp, l.Yp, l.Sp)
 slideList(x, y, size, l)
 }
 }
}

A Deck Client

Process deck code

interactive

PDF

SVG

func main() {
 benchmarks := []Bardata{
 {"Macbook Air", 154.701},
 {"MacBook Pro (2008)", 289.603},
 {"BeagleBone Black", 2896.037},
 {"Raspberry Pi", 5765.568},
 }
 ts := 2.5
 hts := ts / 2
 x := 10.0
 bx1 := x + (ts * 12)
 bx2 := bx1 + 50.0
 y := 60.0
 maxdata := 5800.0
 linespacing := ts * 2.0
 text(x, y+20, "Go 1.1.2 Build and Test Times", ts*2, "black")
 for _, data := range benchmarks {
 text(x, y, data.label, ts, "rgb(100,100,100)")
 bv := vmap(data.value, 0, maxdata, bx1, bx2)
 line(bx1, y+hts, bv, y+hts, ts, "lightgray")
 text(bv+0.5, y+(hts/2), fmt.Sprintf("%.1f", data.value), hts, "rgb(127,0,0)")
 y -= linespacing
 }
}

Generating a Barchart

Go 1.1.2 Build and Test Times

Macbook Air 154.7

MacBook Pro (2008) 289.6

BeagleBone Black 2896.0

Raspberry Pi 5765.6

$ (echo '<deck><slide>'; go run deckbc.go; echo '</slide></deck>')

go get github.com/ajstarks/deck/cmd/vgdeck

go get github.com/ajstarks/deck/cmd/pdfdeck

go get github.com/ajstarks/deck/cmd/svgdeck

pdfdeck [options] file.xml...

-sans, -serif, -mono [font] specify fonts

-pagesize [w,h, or Letter, Legal, Tabloid, A2-A5, ArchA, Index, 4R, Widescreen]

-stdout (output to standard out)

-outdir [directory] directory for PDF output

-fontdir [directory] directory containing font information

-author [author name] set the document author

-title [title text] set the document title

-grid [percent] draw a percent grid on each slide

svgdeck [options] file.xml...

-sans, -serif, -mono [font] specify fonts

-pagesize [Letter, Legal, A3, A4, A5]

-pagewidth [canvas width]

-pageheight [canvas height]

-stdout (output to standard out)

-outdir [directory] directory for PDF output

-title [title text] set the document title

-grid [percent] draw a percent grid on each slide

vgdeck [options] file.xml...

-loop [duration] loop, pausing [duration] between slides

-slide [number] start at slide number

-w [width] canvas width

-h [height] canvas height

-g [percent] draw a percent grid

vgdeck Commands

Next slide

Previous slide

First slide

Last slide

Reload

X-Ray

Search

Save

Quit

+, Ctrl-N, [Return]

-, Ctrl-P, [Backspace]

^, Ctrl-A

$, Ctrl-E

r, Ctrl-R

x, Ctrl-X

/, Ctrl-F [text]

s, Ctrl-S

q

Deck Web API sex -dir [start dir] -listen [address:port] -maxupload [bytes]

GET

GET

GET

POST

POST

POST

DELETE

POST

POST

POST

POST

/

/deck/

/deck/?filter=[type]

/deck/content.xml?cmd=1s

/deck/content.xml?cmd=stop

/deck/content.xml?slide=[num]

/deck/content.xml

/upload/ Deck:content.xml

/table/ Deck:content.txt

/table/?textsize=[size]

/media/ Media:content.mov

List the API

List the content on the server

List content filtered by deck, image, video

Play a deck with the specified duration

Stop playing a deck

Play deck starting at a slide number

Remove content

Upload content

Generate a table from a tab-separated list

Specify the text size of the table

Play the specified video

deck [command] [argument]

deck play file [duration]

deck stop

deck list [deck|image|video]

deck upload file...

deck remove file...

deck video file

deck table file [textsize]

Play a deck

Stop playing a deck

List contents

Upload content

Remove content

Play video

Make a table

$ deck upload *.jpg

$ mkpicdeck *.jpg | deck upload /dev/stdin

$ deck play stdin

upload images

generate the slide show deck

play it

Display

Server
HDMI

Good Design

Controller
> list
> upload
> play/stop
> delete

RESTful API

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is honest

is long-lasting

is thorough down to the last detail

is environmentally-friendly

is as little design as possible

Design Examples

hello, world

Bottom

Top

Left Right

20%

20%

30% 70%

Footer (bottom 20%)

Header (top 20%)

Summary
(30%)

Detail
(70%)

bullet plain number

<list>...</list>

Point A

Point B

Point C

Point D

First item

Second item

The third item

the last thing

1. This

2. That

3. The other

4. One more

BOS

SFO

Virgin America 351
Gate B38
8:35am
On Time

JFK

IND

US Airways 1207
Gate C31C
5:35pm
Delayed

AAPL

AMZN

GOOG

503.73

274.03

727.58

-16.57 (3.18%)

+6.09 (2.27%)

-12.41 (1.68%)

Tree and Sky Rocks

Two Columns

One

Two

Three

Four

Five

Six

Seven

Eight

go

build

clean

env

fix

fmt

get

install

list

run

test

tool

version

vet

compile packages and dependencies

remove object files

print Go environment information

run go tool fix on packages

run gofmt on package sources

download and install packages and dependencies

compile and install packages and dependencies

list packages

compile and run Go program

test packages

run specified go tool

print Go version

run go tool vet on packages

This is not a index card

Can't buy me love Bliss

Misery We have each other

BetterWorse

Rich

Poor

Code Output

package main
import (
 "github.com/ajstarks/svgo"
 "os"
)

func main() {
 canvas := svg.New(os.Stdout)
 width, height := 500, 500
 a, ai, ti := 1.0, 0.03, 10.0

 canvas.Start(width, height)
 canvas.Rect(0, 0, width, height)
 canvas.Gstyle("font-family:serif;font-size:144pt")

 for t := 0.0; t <= 360.0; t += ti {
 canvas.TranslateRotate(width/2, height/2, t)
 canvas.Text(0, 0, "i", canvas.RGBA(255, 255, 255, a))
 canvas.Gend()
 a -= ai
 }
 canvas.Gend()
 canvas.End()
}

A few months ago, I had a look at the brainchild of a few serious
heavyweights working at Google. Their project, the Go programming
language, is a static typed, c lookalike, semicolon-less, self
formatting, package managed, object oriented, easily parallelizable,
cluster fuck of genius with an unique class inheritance system.
It doesn't have one.

The Go Programming Language

Andrew Mackenzie-Ross, OBJECTIVE-C LESSONS FROM GO

is a static typed,

c lookalike,

semicolon-less,

self formatting,

package managed,

object oriented,

easily parallelizable,

cluster fuck of genius

with an unique class inheritance system.

http://mackross.net/objc/2013/07/23/objective-c-lessons-from-go/

The Go Programming Language

Andrew Mackenzie-Ross, OBJECTIVE-C LESSONS FROM GO

is a static typed,

c lookalike,

semicolon-less,

self formatting,

package managed,

object oriented,

easily parallelizable,

cluster fuck of genius

with an unique class inheritance system.

http://mackross.net/objc/2013/07/23/objective-c-lessons-from-go/

The Go Programming Language

It doesn't have one.

Andrew Mackenzie-Ross, OBJECTIVE-C LESSONS FROM GO

is a static typed, c lookalike, semicolon-less, self formatting,

package managed, object oriented, easily parallelizable,

cluster fuck of genius with an unique class inheritance system.

So, the next time you're about to
make a subclass, think hard and
ask yourself

what would Go do

Andrew Mackenzie-Ross, http://pocket.co/sSc56

Python and Ruby programmers come to
Go because they don't have to surrender
much expressiveness, but gain performance
and get to play with concurrency.

Less is exponentially more
Rob Pike

http://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html
http://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html

You must not blame me if I do talk to the clouds.

FOR, LO,
the winter is past,

the rain is over and gone;
The flowers appear on the earth;

the time for the singing of birds is come,
and the voice of the turtle is heard in our land.

Song of Solomon 2:11-12

Genesis 3

Now the serpent was more subtil than any beast of the
field which the LORD God had made. And he said unto
the woman, Yea, hath God said, Ye shall not eat of every
tree of the garden? And the woman said unto the serpent,
We may eat of the fruit of the trees of the garden: But
of the fruit of the tree which is in the midst of the garden,
God hath said, Ye shall not eat of it, neither shall ye touch
it, lest ye die. And the serpent said unto the woman, Ye
shall not surely die: For God doth know that in the day
ye eat thereof, then your eyes shall be opened, and ye
shall be as gods, knowing good and evil.

Dieter Rams

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is honest

is long-lasting

is thorough down to the last detail

is environmentally-friendly

is as little design as possible

https://www.vitsoe.com/us/about/good-design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possible

Good Design

is innovative

makes a product useful

is aesthetic

makes a product understandable

is unobtrusive

is long lasting

is thorough down to the last detail

is environmentally friendly

is as little design as possibleGood Design

github.com/ajstarks/deck

ajstarks@gmail.com
@ajstarks

http://github.com/ajstarks/deck
mailto:ajstarks@gmail.com
http://twitter.com/ajstarks

