
High Performance
Systems in Go

Derek Collison
April 24, 2014
GopherCon

About

Architected/Built TIBCO Rendezvous and EMS Messaging Systems

Designed and Built CloudFoundry at VMware

Co-founded AJAX APIs group at Google

Distributed Systems

Founder of Apcera, Inc. in San Francisco, CA

@derekcollison

derek@apcera.com

Derek Collison

mailto:derek@apcera.com

Why Go?
¥ Simple Compiled Language

¥ Good Standard Library

¥ Concurrency

¥ Synchronous Programming Model

¥ Garbage Collection

¥ STACKS!

Why Go?

¥ Not C/C++

¥ Not Java (or any JVM based language)

¥ Not Ruby/Python/Node.js

What about
High Performance?

NATS

NATS Messaging 101
¥ Subject-Based

¥ Publish-Subscribe

¥ Distributing Queueing

¥ TCP/IP Overlay

¥ Clustered Servers

¥ Multiple Clients (Go, Node.js, Java, Ruby)

NATS
¥ Originally written to support CloudFoundry

¥ In use by CloudFoundry, Baidu, Apcera and others

¥ Written Þrst in Ruby -> 150k msgs/sec

¥ Rewritten at Apcera in Go (Client and Server)

¥ First pass -> 500k msgs/sec

¥ Current Performance -> 5-6m msgs/sec

Tuning NATS (gnatsd)

or
 how to get from 500k to 6m

Target Areas

¥ Shufßing Data

¥ Protocol Parsing

¥ Subject/Routing

Target Areas

¥ Shufßing Data

• Protocol Parsing!

¥ Subject/Routing

Protocol Parsing
¥ NATS is a text based protocol

• PUB foo.bar 2\r\nok\r\n	

• SUB foo.> 2\r\n	

¥ Ruby version based on RegEx

¥ First Go version was port of RegEx

¥ Current is zero allocation byte parser

Some Tidbits

¥ Early on, defer was costly

¥ Text based proto needs conversion from ascii to int

¥ This was also slow due to allocations in
strconv.ParseInt

defer

defer Results

golang1.3 looks promising

parseSize

parseSize
vs

strconv.ParseInt

Target Areas

¥ Shufßing Data

¥ Protocol Parsing

• Subject/Routing

Subject Router

¥ Matches subjects to subscribers

¥ Utilizes a trie of nodes and hashmaps

¥ Has a frontend dynamic eviction cache

¥ Uses []byte as keys (GoÕs builtin does not)

Subject Router

¥ Tried to avoid []byte -> string conversions

¥ GoÕs builtin hashmap was slow pre 1.0

¥ Built using hashing algorithms on []byte

¥ Built on hashmaps with []byte keys

Hashing Algorithms

Hashing Algorithms

Jesteress

HashMap Comparisons

Some Lessons Learned
¥ Use go tool pprof (linux)

¥ Avoid short lived objects on the heap

¥ Use the stack or make long lived objects

¥ Benchmark standard library builtins (strconv)

¥ Benchmark builtins (defer, hashmap)

¥ DonÕt use channels in performance critical path

Big Lesson Learned?

Go is a good choice
for performance based

systems

Go is getting better
faster than the others

Thanks

Resources

¥ https://github.com/apcera/gnatsd

¥ https://github.com/apcera/nats

¥ https://github.com/derekcollison/nats

https://github.com/apcera/gnatsd
https://github.com/apcera/nats
https://github.com/derekcollison/nats

