
Fundamentals of MCS: CS - Part 1

NGUYEN T. Hoang - SID: 15M54097 Fall 2015, W832 Mon. Period 7-8

Due date: 2015/11/30

Problem

For this Part I of Fall 2015 Fundamentals of Mathematical and Computing Sciences:

Computer Science class, I choose 2 problems: Q1.1 and Q3.1 to submit for grading.

Q1.1. Prove that a language L is regular if and only if Σ∗ is divided into a finite

number of equivalence classes by ≈L. Then explain with some example why the number

of equivalence classes cannot be finite for non-regular languages; estimate the number of

equivalence classes in terms of the string length. (You may use any one of the first three

definitions of regular language; but maybe the definition by DFA would be much easier.)

Q.3.1. It is not so difficult to prove Theorem 1, so why don’t you prove it (without

reading the referenced paper)! You can go back to the definition and consider the prob-

ability that one fixed hypothesis h is not an ε-approximation of a given target f∗ on m

example of S. (What is the randomness here for discussing the probability?) Then we

can use the union bound to estimate the probability that this situation occurs on some

hypothesis of Hn,m.

Theorem 1. (PAC learning is achieved by “Occam Razor”)

For any concept class C, consider any algorithm L that yields a hypothesis consistent with

a given sample. Let Hn,m be a class of hypotheses (i.e., Boolean functions) that algorithm

L may yield on some sameple of size m on some target concept in C of size n. (Note that

m is determined by algorithm L from ε, δ, n).

Let M(n,m) denote the number of hypotheses of Hn,m. For any learning parameters ε, δ,

and for any n, if we can design the algorithm so that

m ≥ 1

ε
ln

1

δ
+

lnM(n,m)

ε

holds, then L can be used as a PAC-learning algorithm for C.

FMCS:CS - Part 1 Page 1 15M54097

Answer:

Q1.1 - Regular language definition with ≈L.

My proof contains two parts:

1. A language L is regular ⇒ Σ∗ can be divided into a finite number of equivalence

classes with ≈L, and

2. A language L that has Σ∗ can be divided into a finite number of equivalence classes

⇒ L is regular.

A regular language is defined as follow:

A language is called regular language if some finite automaton recognizes

it. [1]

Also, with some deterministic finite automaton M = (Q,Σ, δ, q0, F), I define notations

for string collection Ri and state transition function based on string input δ∗ mentioned

in [2] as follow:

• Ri is a set of input strings, which makes the automaton M transits from q0 to a

same state qi in Q.

Ri = {u | u ∈ Σ∗ and δ∗(q0, u) = qi ∈ Q} (1)

• δ∗ : Q× Σ∗ → Q is an extended transition function that takes a string and a state

as inputs. The output of this function is the state of the automaton M after taking

the string of input. For any q ∈ Q:δ∗(q, ε) = δ(q, ε)

δ∗(q, e · w) = δ∗(δ(q, e), w), ∀e ∈ Σ and w ∈ Σ∗

1. For the first part of the proof, I consider L, a regular language, and I will prove

that there is a way to divide Σ∗ into a finite set by the equivalent relation ≈L. Since L is

regular, there exists a deterministic automaton M = (Q,Σ, δ, q0, F) accepts L. For each

state in Q of the automaton M , consider a set of strings Ri as defined above. Since the

number of state in M is |Q|, and it is a finite number, hence we have a finite number of

Ri.

By definition in [2], the u-derivative of L is stated as follow:

∂uL = {v : u · v ∈ L}

FMCS:CS - Part 1 Page 2 15M54097

Intuitively, an u-derivative of L is the set of all substring of strings that start with u in L.

Using the extended transition function, we have another representation of this deriviation:

∂uL = {w : δ∗(q0, u · w) ∈ F}

For all set Ri, and for any u, v ∈ Ri:

∂uL = {w : δ∗(δ∗(q0, u), w) ∈ F}

∂vL = {z : δ∗(δ∗(q0, v), z) ∈ F}
(2)

By the definition of Ri, we denote δ∗(q0, u) = δ∗(q0, v) = qi, formula (2) can be rewritten

as follow:
∂uL = {w : δ∗(qi, w) ∈ F}

∂vL = {z : δ∗(qi, z) ∈ F}
, for all u, v ∈ Ri.

Because of the determinism of the automaton M and its state transition function, we

have: {w : δ∗(qi, w) ∈ F}

{z : δ∗(qi, z) ∈ F}
⇔ {w : δ∗(qi, w) ∈ F} ≡ {z : δ∗(qi, z) ∈ F}

Therefore:
∂uL = ∂vL

hence, u ≈L v , ∀u, v ∈ Ri

(3)

From formula (3), we see that dividing Σ∗ into a finite set {Ri : i = (0 . . . |Q| − 1)} is

equivalent with dividing the language into a finite set by the equivalent relation ≈L.

2. In the second part of this proof, I consider there is a language L, and Σ∗ can be

divided into a finite set R by the equivalent relation ≈L. I will construct a deterministic

finite automaton for recognizing the given language L. For all Ri in the finite set R:

u, v ∈ Ri ⇔ ∂uL = ∂vL

Also:

u ∈ Σ∗ ⇔ ∃Rk ∈ R : u ∈ Rk

I construct the deterministic finite automaton M = (Q,Σ, δ, q0, F) by defining each ele-

ment of the 5-tuples. For each class Ri divided by the equivalent relation, I define a state

qi corresponds with it. The alphabet Σ is the symbol set of the given language L. q0 is

the state corresponds with R0, containing an empty string ε. F is the set of all strings

that have deriviation over L equals empty string ε. Formally, we have:

1. Q = {qi : Each qi corresponds with a class Ri}.

2. q0 is the start state corresponds with the class of empty string R0 = {ε}.

FMCS:CS - Part 1 Page 3 15M54097

3. ∀e ∈ Σ, we have: δ(qi, e) = qj : ∂u∈Rj
L = ∂u·e, u∈Ri

L. Because there always exists a

state qj correspondings to Rj that contains the string u · e.

4. F = {qf corresponds to Rf : ∀u ∈ Rf , ∂uL = ε}

In conclusion, I have proved that: 1. If the language L is regular, we can divide Σ∗

into a finite set by the equivalent relation ≈L, and 2. If the language L has Σ∗ can be

divided into a finite set by the equivalent relation ≈L, we can construct a deterministic

finite automaton M that recognizes L. Therefore:

L is a regular language ⇔
Σ∗ can be divided into a finite number

of equivalent classes by ≈L

(Q.E.D.)

Consider a non-regular language from [1]: E = {0i1j , i > j}. E is a language which

was proven to be non-regular in [1] using the Pumping lemma. Here, I will show that

the number of equivalent class divided by ≈L is infinite. The string in E has 2 parts of

leading 0’s and trailing 1’s. The number of leading 0’s is i and that of trailing 1’s is j.

Suppose we have a non empty string ui,j, which has i < j (Number of leading 0’s larger

than number of leading 1’s). The derivative of such string is:

∂ui,j
E = {Set of all-1 strings of length less than i-j}

=

{
i−j−1⋃
k=0

1k

}
(4)

Equation (4) shows that the size |∂ui,j
E| depends on the choice of the pair (i, j). The

number of set of all-1 strings is the number of values that (i-j) has. Therefore, the

number of equivalent classes divided by ≈L is infinite. Another example considers the

language L = {{0, 1}∗}. Language L was also proven to be non-regular in [1]. Any string

u ∈ {0, 1}∗ can be followed by any string in {0, 1}∗, and the concatenated string is also

in L. Therefore, the number of equivalent classes is infinite.

∂uL = {0, 1}∗ ,∀u ∈ {0, 1}∗ (5)

Generally, if a language is non-regular, it is impossible to define a DFA or NFA that

recognizes the language. The automaton can recognize a non-regular language will have

an infinite number of states, and the for any string pair of length k, there is no finite

length string to distinguish them. Hence, the language is not divisible to a finite number

of equivalent classes.

FMCS:CS - Part 1 Page 4 15M54097

Q3.1. Proof of “Occam Razor” PAC-Learning

Consider the condition for an algorithm A to be called a PAC-learning algorithm for a

given concept class C: [3]

∀ε, δ, 0 < ε, δ < 1, ∀n ≥ 1,

∃m ≥ 0 which is determined by A from ε, δ, n

∀D∗(distribution over {+1,−1}n),∀f∗ ∈ C

Pr
S:Dm

∗

[
A given S yields some h satisfying

Prx:D∗ [f∗(x) 6= h(x)] ≤ ε

]
≥ 1− δ.

(6)

Suppose we have a hypothesis hbad satisfies Theorem 1 given to us consistenly by

algorithm L, but hbad is not an ε-estimation of a given target concept f∗.

Pr
x:D∗

[f∗(x) 6= hbad(x)] ≤ ε

I denote event X is the event where hbad gives consistent output with the target concept

f∗, the probability of X with a random sample in D∗ is:

Pr[X] = Pr
x:D∗

[f∗(x) = hbad(x)] ≥ 1− ε

Given m random samples from distribution D∗, the worst case can happen is X holds for

all m samples. Therefore, the probability of this case is at most:

Pr[Xm] = (1− ε)m

According to Theorem 1, the number of hypotheses of class Hn,m is M(n,m). I denote

Y as the event that the algorithm L gives us hbad over all hypothesis hi ∈ Hn,m. The

union bound gives us the probability for event Y :

Pr[Y] = Pr

 ⋃
h:Hn,m

Xm
h

 ≤ ∑
h:Hn,m

Pr[Xm
h]

≤M(n,m)× (1− ε)m
(7)

Inequality (7) means that the chance for our algorithm L consistently gives hypotheses

that are not ε-estimation of a given target concept f∗ is bounded by M(n,m)× (1− ε)m.

For this reason, we would like to bound this quantity by a confident parameter δ, and

then solve the inequality for the sameple size m.

M(n,m)× (1− ε)m ≤ δ

⇔ (1− ε)m ≤ δ

M(n,m)

⇔ ln(1− ε)m ≤ ln
δ

M(n,m)

⇔ m× ln(1− ε) ≤ ln δ − lnM(n,m) (∗)

FMCS:CS - Part 1 Page 5 15M54097

Here, I will prove that the inequality ln(1− ε) + ε ≤ 0 holds true for ε ∈ (0, 1). Consider

the function g(x) = ln(1 − x) + x , for x ∈ (0, 1), take the derivative of this function we

have:
d(g(x))

dx
=

d

dx
(ln(1− x) + x)

=
x

x− 1
≤ 0 ∀x ∈ (0, 1)

(8)

We also have:

g(0) = ln(1− 0) + 0 = 0 (9)

(8) and (9) show that g(x) is a decreasing function over (0, 1) and g(0) = 0. Therefore,

g(x) ≤ 0 for x ∈ (0, 1). Hence, we have: ln(1 − ε) ≤ −ε. Replace this fact into the

inequality (∗) we have:

m× (−ε) ≤ m× ln(1− ε) ≤ ln δ − lnM(n,m)

⇔ m× (−ε) ≤ ln δ − lnM(n,m)

⇔ m ≥ − ln δ

ε
+

lnM(n,m)

ε

⇔ m ≥ 1

ε
ln

1

δ
+

lnM(n,m)

ε
(∗∗)

(∗∗) shows that if we want to bound the worst case scenarios by some δ, we need a number

of sample m greater or equal some value. For this value of m, the algorithm L will give

us a ε-estimation hypothesis with probability 1 − δ over some sameple distribution Dm
∗ .

Hence, L can be used as a PAC-learning algorithm for some concept class C ⇒ Q.E.D.

Inconclusion, I have proved by construction that starting from assumptions made by

Theorem 1, we can derive the requirement of m for algorithm L to be a PAC-learning

algorithm.

References

[1] Sipser, M. Introduction to the Theory of Computation, 1st ed. International Thomson

Publishing, 1996.

[2] Watanabe, O. Lecture 2: Formal Language Theory - Regular Language. Department

of Mathematical and Computing Science - Tokyo Institute of Technology, October

2015.

[3] Watanabe, O. Lecture 4: Selected Topics (1) –PAC Learning Framework. De-

partment of Mathematical and Computing Science - Tokyo Institute of Technology,

October 2015.

FMCS:CS - Part 1 Page 6 15M54097

