# Follow the gradient

An introduction to mathematical optimisation

Gianluca Campanella 27<sup>th</sup> April 2018 Optimisation

Linear programming

Convex programming

Follow the gradient

# Optimisation

**Have** An objective function, e.g.  $f : \mathbb{R}^p \to \mathbb{R}$ **Want** The optimal  $\mathbf{x}^*$  that minimises (or maximises) f

#### Why?

- *f* represents some goal, e.g. error to be minimised
- Want the 'best' element from some set of available alternatives

#### **Optimisation in ML**

- Many ML methods are defined in terms of a loss function
- $\rightarrow$  Really optimisation problems!

#### **Optimisation in ML**

- Many ML methods are defined in terms of a loss function
- $\rightarrow$  Really optimisation problems!

Linear regression

$$MSE(\hat{\boldsymbol{\beta}} | \mathbf{X}, \mathbf{y}) = \frac{1}{n} \sum_{i} (\hat{y}_{i} - y_{i})^{2}$$
$$\hat{y}_{i} = \mathbf{x}_{i} \hat{\boldsymbol{\beta}}$$

#### **Optimisation in ML**

- Many ML methods are defined in terms of a loss function
- $\rightarrow$  Really optimisation problems!

**Logistic regression** 

$$\operatorname{LogLoss}(\hat{\boldsymbol{\beta}} | \mathbf{X}, \mathbf{y}) = -\sum_{i} [y_{i} \log \hat{p}_{i} + (1 - y_{i}) \log(1 - \hat{p}_{i})]$$
$$\hat{p}_{i} = \operatorname{logit}^{-1}(\mathbf{x}_{i} \hat{\boldsymbol{\beta}})$$

$$f_1(\mathbf{x}) \in \mathbb{R}, \quad \mathbf{x} \in \mathbb{R}^{100}$$
$$f_2(\mathbf{x}) \in \mathbb{R}, \quad \mathbf{x} \in \mathbb{R}^{100}, \quad \mathbf{1}^\top \mathbf{x} = 1$$
$$f_3(\mathbf{x}) \in \mathbb{R}, \quad \mathbf{x} \in \{0, 1\}^{100}$$

**Question** Which is 'harder' to optimise, and why?

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t.  $g_j(\mathbf{x}) \le 0, \quad j = 1, \dots, m$ 
 $h_k(\mathbf{x}) = 0, \quad k = 1, \dots, n$ 
 $l_i \le x_i \le u_i, \quad i = 1, \dots, p$ 

- x can be continuous or discrete
- *f* can be linear or nonlinear, explicit or implicit

- Combinatorial problems like optimising  $f_3$  are intrinsically hard
- $\rightarrow$  Need to try all  $2^{100}\approx 1.27\times 10^{30}$  combinations

#### Side note

- Solving for  $x \in [0, 1]^{100}$  is easier (assuming *h* is continuous)
- $\rightarrow$  Approximate solution (relaxation)

#### Continuous optimisation



#### **Continuous optimisation**



From G. Venter (originally from G. N. Vanderplaats)

#### Continuous optimisation



#### **Convex functions**

#### Function is **convex**

 $\downarrow$ 

# Any local minimum is also a global minimum



# Linear programming

#### Linear programs

# $\begin{array}{ll} \max_{\mathbf{x}} & \mathbf{c}^{\top}\mathbf{x} \\ s.t. & \mathbf{A}\mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$

#### **Properties**

- Linear objective
- Linear constraints

#### **Types of solution**

- Optimal
- Infeasible
- Unbounded

#### **Graphical solution**

 $\begin{array}{ll}
\max_{\mathbf{x}} & 3x_1 + 4x_2 \\
s.t. & x_1 + 2x_2 \leq 14 \\
& 3x_1 - x_2 \geq 0 \\
& x_1 - x_2 \leq 2
\end{array}$ 



#### LAD regression problem

We can rewrite the LAD (robust) regression problem

$$\min_{\boldsymbol{\beta}} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_1 = \sum_i |\varepsilon_i|$$

#### as the linear program

$$\min_{\substack{\beta, \mathbf{t} \\ s.t. \\ t \in \mathbb{R}^n}} \mathbf{1}_n^\top \mathbf{t} \qquad \text{or} \qquad \min_{\substack{\beta, \mathbf{u}, \mathbf{v} \\ s.t. \\ t \in \mathbb{R}^n}} \mathbf{1}_n^\top \mathbf{u} + \mathbf{1}_n^\top \mathbf{v} \qquad s.t. \quad \mathbf{X}\beta + \mathbf{u} - \mathbf{v} = \mathbf{y} \qquad s.t. \quad \mathbf{X}\beta + \mathbf{u} - \mathbf{v} = \mathbf{y}$$

$$\min_{\boldsymbol{\beta}, \mathbf{u}, \mathbf{v}} \quad \boldsymbol{\tau} \mathbf{1}_n^{\mathsf{T}} \mathbf{u} + (1 - \boldsymbol{\tau}) \mathbf{1}_n^{\mathsf{T}} \mathbf{v}, \quad \boldsymbol{\tau} \in [0, 1]$$
  
s.t.  $\mathbf{X} \boldsymbol{\beta} + \mathbf{u} - \mathbf{v} = \mathbf{y}$   
 $\mathbf{u}, \mathbf{v} \ge \mathbf{0}$ 

- $\tau = 0.5$  recovers the LAD regression problem
- Very efficient (custom) algorithms exist

# **Convex programming**

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} \\ s.t. \quad \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \geq \mathbf{0}$$

#### **Properties**

- Quadratic objective
- Quadratic constraints

#### Question

Does quadratic imply convex?

We can rewrite the OLS regression problem

$$\min_{\boldsymbol{\beta}} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2 = \sum_i \varepsilon_i^2$$

as the convex quadratic objective

$$f(\boldsymbol{\beta}) = \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta} + \mathbf{y}^{\top} \mathbf{y}$$

Setting the gradient to 0 and solving for  $\beta$ ...

$$\nabla f = 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = 0$$
$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\min_{\boldsymbol{\beta}} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{2}^{2}, \quad \lambda \ge 0$$

The objective becomes...

$$f(\boldsymbol{\beta}) = \boldsymbol{\beta}^{\top} \left( \mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{p} \right) \boldsymbol{\beta} - 2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta} + \mathbf{y}^{\top} \mathbf{y}$$

| Condition                                                                                  | Useful for                                |
|--------------------------------------------------------------------------------------------|-------------------------------------------|
| $eta \geq 0$                                                                               | Intensities or rates                      |
| $1 \le \beta \le u$                                                                        | Knowledge of permissible values           |
| $oldsymbol{eta} \geq oldsymbol{0} \wedge oldsymbol{1}_p^	op oldsymbol{eta} = oldsymbol{1}$ | Proportions and probability distributions |

# Follow the gradient

#### Why follow the gradient?



From G. Venter (originally from G. N. Vanderplaats)

1.  $\mathbf{x}^{\star}$  is feasible

2. The gradient of the Lagrangian vanishes at  $\boldsymbol{x}^{\star}$ 

$$\nabla f(\mathbf{x}^{\star}) + \sum_{j=1}^{m} \lambda_j \nabla g_j(\mathbf{x}^{\star}) + \sum_{k=1}^{n} \lambda_{m+k} \nabla h_k(\mathbf{x}^{\star}) = \mathbf{0}, \quad \lambda_j \ge 0, \quad \lambda_{m+k} \in \mathbb{R}$$

3. For each inequality constraint,

$$\lambda_j g_j(\mathbf{x}^*) = 0, \quad j = 1, \dots, m$$

#### $\mathbf{x} \mapsto \mathbf{x} + \boldsymbol{\alpha}^* \mathbf{s}$

#### 1. Find a search direction s in which to move

2. Take the optimal step size  $\alpha^*$  in this direction

#### $\mathbf{x} \mapsto \mathbf{x} + \boldsymbol{\alpha}^{\star} \mathbf{s}$

#### 1. Find a search direction s in which to move

2. Take the optimal step size  $\alpha^*$  in this direction

#### **Gradient calculation**

- Pen and paper
- Finite differences
- Automatic differentiation

#### **Finite differences**

# Good

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- One function call
- **Error**: *O*(*h*)

$$f'(x) \approx \frac{f(x+h/2) - f(x-h/2)}{h}$$

**Better** 

- Two function calls
- Error:  $O(h^2)$

The derivative of the composition

$$f \circ g \circ h(x) = f(g(h(x)))$$

#### is given by the chain rule

$$\frac{d(f \circ g \circ h)}{dx} = \frac{df}{dg}\frac{dg}{dh}\frac{dh}{dx} = \left[\frac{df}{dg}\left(\frac{dg}{dh}\frac{dh}{dx}\right)\right] = \left[\left(\frac{df}{dg}\frac{dg}{dh}\right)\frac{dh}{dx}\right]$$

The derivative of the composition

$$f \circ g \circ h(x) = f(g(h(x)))$$

#### is given by the chain rule

$$\frac{d(f \circ g \circ h)}{dx} = \frac{df}{dg}\frac{dg}{dh}\frac{dh}{dx} = \left[\frac{df}{dg}\left(\frac{dg}{dh}\frac{dh}{dx}\right)\right] = \left[\left(\frac{df}{dg}\frac{dg}{dh}\right)\frac{dh}{dx}\right]$$

#### Forward-mode differentiation

$$f(x,y) = 3x^2 + xy$$
  $\frac{\partial f}{\partial x} = 6x + y$   $\frac{\partial f}{\partial y} = x$ 

| x = ?            | $\partial x / \partial \Box = ?$                                                                   |
|------------------|----------------------------------------------------------------------------------------------------|
| y = ?            | $\partial y / \partial \Box = ?$                                                                   |
| $a = x^2$        | $\partial a / \partial \Box = 2x \times \partial x / \partial \Box$                                |
| $b = 3 \times a$ | $\partial b / \partial \Box = 3 \times \partial a / \partial \Box$                                 |
| $c = x \times y$ | $\partial c/\partial \Box = y \times \partial x/\partial \Box + x \times \partial y/\partial \Box$ |
| f = b + c        | $\partial f / \partial \Box = \partial b / \partial \Box + \partial c / \partial \Box$             |

#### Forward-mode differentiation

$$f(x,y) = 3x^2 + xy$$
  $\frac{\partial f}{\partial x} = 6x + y$   $\frac{\partial f}{\partial y} = x$ 

~ ~

 $\frac{\partial x}{\partial x} = 1$   $\frac{\partial y}{\partial x} = 0$   $\frac{\partial a}{\partial x} = 2x \times \frac{\partial x}{\partial x} = 2x$   $\frac{\partial b}{\partial x} = 3 \times \frac{\partial a}{\partial x} = 6x$   $\frac{\partial c}{\partial x} = y \times \frac{\partial x}{\partial x} + x \times \frac{\partial y}{\partial x} = y$  $\frac{\partial f}{\partial x} = \frac{\partial b}{\partial x} + \frac{\partial c}{\partial x} = \frac{6x + y}{2}$ 

$$\partial x/\partial y = 0$$
  

$$\partial y/\partial y = 1$$
  

$$\partial a/\partial y = 2x \times \partial x/\partial y = 0$$
  

$$\partial b/\partial y = 3 \times \partial a/\partial y = 0$$
  

$$\partial c/\partial y = y \times \partial x/\partial y + x \times \partial y/\partial y = x$$
  

$$\partial f/\partial y = \partial b/\partial y + \partial c/\partial y = x$$

~ ~

#### **Reverse-mode differentiation**

$$f(x,y) = 3x^2 + xy$$
  $\frac{\partial f}{\partial x} = 6x + y$   $\frac{\partial f}{\partial y} = x$ 

 $\partial x/\partial \Box = ?$   $\partial y/\partial \Box = ?$   $\partial a/\partial \Box = 2x \times \partial x/\partial \Box$   $\partial b/\partial \Box = 3 \times \partial a/\partial \Box$   $\partial c/\partial \Box = y \times \partial x/\partial \Box + x \times \partial y/\partial \Box$  $\partial f/\partial \Box = \partial b/\partial \Box + \partial c/\partial \Box$   $\partial \Diamond / \partial f = ?$   $\partial \Diamond / \partial c = \partial \Diamond / \partial f$   $\partial \Diamond / \partial b = \partial \Diamond / \partial f$   $\partial \Diamond / \partial a = 3 \times \partial \Diamond / \partial b$   $\partial \Diamond / \partial y = x \times \partial \Diamond / \partial f$  $\partial \Diamond / \partial x = 2x \times \partial \Diamond / \partial a + y \times \partial \Diamond / \partial c$ 

#### **Reverse-mode differentiation**

$$f(x,y) = 3x^{2} + xy \qquad \frac{\partial f}{\partial x} = 6x + y \qquad \frac{\partial f}{\partial y} = x$$
$$\frac{\partial f}{\partial dt} = 1$$
$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial f} = 1$$
$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial f} = 1$$
$$\frac{\partial f}{\partial a} = 3 \times \frac{\partial f}{\partial b} = 3$$
$$\frac{\partial f}{\partial y} = x \times \frac{\partial f}{\partial f} = x$$
$$\frac{\partial f}{\partial x} = 2x \times \frac{\partial f}{\partial a} + y \times \frac{\partial f}{\partial c} = 6x + y$$

#### f can be approximated about an initial guess $x_0$ as

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top H(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)$$

We want to find  $\delta = \mathbf{x}^* - \mathbf{x}_0$  such that  $\nabla f(\mathbf{x}^*) = \mathbf{0}$ 

$$\nabla_{\!\delta} \tilde{f} = \nabla f(\mathbf{x}_0) + H(\mathbf{x}_0) \,\delta = \mathbf{0}$$
  
$$\delta = -H^{-1}(\mathbf{x}_0) \,\nabla f(\mathbf{x}_0)$$

This gives the update

$$\mathbf{x} \mapsto \mathbf{x} + \boldsymbol{\delta} = \mathbf{x} - H^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$$

- $H^{-1}(\mathbf{x})$  may be large and expensive to compute
- $\rightarrow$  Use an approximation

### **Gradient descent**

Forget about it

$$H^{-1}(\mathbf{x}) \approx \mathbf{I}_p$$

# **BFGS and L-BFGS**

Update iteratively

$$B_i \delta = -\nabla f(\mathbf{x}_i)$$

Many ML methods are sum-minimisation problems

$$\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \sum_{i} f_i(\boldsymbol{\theta})$$

This means the update  $\theta \mapsto \theta - \alpha^* \nabla f(\theta)$  is actually

$$\boldsymbol{\theta} \mapsto \boldsymbol{\theta} - \boldsymbol{\alpha}^{\star} \sum_{i} \nabla f_{i}(\boldsymbol{\theta})$$

#### 1. Shuffle observations

2.  $\theta \mapsto \theta - \alpha^* \nabla f_i(\theta)$  for each observation  $i \to$  one pass

3. Repeat until convergence

**Large**  $\alpha \rightarrow$  Divergence

**Small**  $\alpha \rightarrow$  Slow convergence

- Decrease  $\alpha$  in later iterations
- Use a linear combination with the previous update (momentum)
- Average  $\theta$  over iterations
- Use per-parameter step sizes