Follow the gradient

An introduction to mathematical optimisation

Gianluca Campanella
$27^{\text {th }}$ April 2018

Contents

Optimisation

Linear programming

Convex programming

Follow the gradient

Optimisation

What is optimisation?

Have An objective function, e.g. $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$
Want The optimal \mathbf{x}^{\star} that minimises (or maximises) f

Why?

- f represents some goal, e.g. error to be minimised
- Want the 'best' element from some set of available alternatives

Optimisation in ML

- Many ML methods are defined in terms of a loss function
\rightarrow Really optimisation problems!

Optimisation in ML

- Many ML methods are defined in terms of a loss function \rightarrow Really optimisation problems!

Linear regression

$$
\begin{aligned}
\operatorname{MSE}(\hat{\boldsymbol{\beta}} \mid \mathbf{X}, \mathbf{y}) & =\frac{1}{n} \sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2} \\
\hat{y}_{i} & =\mathbf{x}_{i} \hat{\boldsymbol{\beta}}
\end{aligned}
$$

Optimisation in ML

- Many ML methods are defined in terms of a loss function \rightarrow Really optimisation problems!

Logistic regression

$$
\begin{aligned}
\log \operatorname{Loss}(\hat{\boldsymbol{\beta}} \mid \mathbf{X}, \mathbf{y}) & =-\sum_{i}\left[y_{i} \log \hat{p}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{p}_{i}\right)\right] \\
\hat{p}_{i} & =\operatorname{logit}^{-1}\left(\mathbf{x}_{i} \hat{\boldsymbol{\beta}}\right)
\end{aligned}
$$

Types of optimisation problems

$$
\begin{array}{ll}
f_{1}(\mathbf{x}) \in \mathbb{R}, & \mathbf{x} \in \mathbb{R}^{100} \\
f_{2}(\mathbf{x}) \in \mathbb{R}, \quad & \mathbf{x} \in \mathbb{R}^{100}, \quad \mathbf{1}^{\top} \mathbf{x}=1 \\
f_{3}(\mathbf{x}) \in \mathbb{R}, \quad & \mathbf{x} \in\{0,1\}^{100}
\end{array}
$$

Question

Which is 'harder' to optimise, and why?

Standard form

$$
\begin{array}{cl}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & g_{j}(\mathbf{x}) \leq 0, \quad j=1, \ldots, m \\
& h_{k}(\mathbf{x})=0, \quad k=1, \ldots, n \\
& l_{i} \leq x_{i} \leq u_{i}, \quad i=1, \ldots, p
\end{array}
$$

- x can be continuous or discrete
- f can be linear or nonlinear, explicit or implicit

Combinatorial optimisation

- Combinatorial problems like optimising f_{3} are intrinsically hard \rightarrow Need to try all $2^{100} \approx 1.27 \times 10^{30}$ combinations

Side note

- Solving for $\mathbf{x} \in[0,1]^{100}$ is easier (assuming h is continuous)
\rightarrow Approximate solution (relaxation)

Continuous optimisation

Continuous optimisation

From G. Venter (originally from G. N. Vanderplaats)

Continuous optimisation

Convex functions

Function is convex

$$
\downarrow
$$

Any local minimum is also a global minimum

Linear programming

Linear programs

Properties

- Linear objective
- Linear constraints

$$
\begin{aligned}
\max _{\mathbf{x}} & \mathbf{c}^{\top} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

Types of solution

- Optimal
- Infeasible
- Unbounded

Graphical solution

$$
\begin{array}{rl}
\max _{\mathbf{x}} & 3 x_{1}+4 x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 14 \\
& 3 x_{1}-x_{2} \geq 0 \\
& x_{1}-x_{2} \leq 2
\end{array}
$$

LAD regression problem

We can rewrite the LAD (robust) regression problem

$$
\min _{\boldsymbol{\beta}}\|\mathbf{X} \boldsymbol{\beta}-\mathbf{y}\|_{1}=\sum_{i}\left|\varepsilon_{i}\right|
$$

as the linear program

$$
\begin{array}{rlrl}
\min _{\beta, \mathbf{t}} & \mathbf{1}_{n}^{\top} \mathbf{t} & \text { or } & \min _{\beta, \mathbf{u}, \mathbf{v}} \\
\mathbf{1}_{n}^{\top} \mathbf{u}+\mathbf{1}_{n}^{\top} \mathbf{v} \\
\text { s.t. } & -\mathbf{t} \leq \mathbf{X} \boldsymbol{\beta}-\mathbf{y} \leq \mathbf{t} & & \text { s.t. } \\
& \mathbf{x} \boldsymbol{X} \boldsymbol{\beta}+\mathbf{R ^ { n }} & & \mathbf{u}, \mathbf{v} \geq \mathbf{v}=\mathbf{y}
\end{array}
$$

$$
\begin{aligned}
\min _{\boldsymbol{\beta}, \mathbf{u}, \mathbf{v}} & \tau \mathbf{1}_{n}^{\top} \mathbf{u}+(1-\tau) \mathbf{1}_{n}^{\top} \mathbf{v}, \quad \tau \in[0,1] \\
\text { s.t. } & \mathbf{X} \boldsymbol{\beta}+\mathbf{u}-\mathbf{v}=\mathbf{y} \\
& \mathbf{u}, \mathbf{v} \geq \mathbf{0}
\end{aligned}
$$

- $\tau=0.5$ recovers the LAD regression problem
- Very efficient (custom) algorithms exist

Convex programming

Convex quadratic programs

Properties

$$
\begin{aligned}
\min _{\mathbf{x}} & \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

- Quadratic objective
- Quadratic constraints

Question

Does quadratic imply convex?

OLS regression problem

We can rewrite the OLS regression problem

$$
\min _{\beta}\|\mathbf{X} \boldsymbol{\beta}-\mathbf{y}\|_{2}^{2}=\sum_{i} \varepsilon_{i}^{2}
$$

as the convex quadratic objective

$$
f(\boldsymbol{\beta})=\boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}-2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta}+\mathbf{y}^{\top} \mathbf{y}
$$

OLS regression problem

Setting the gradient to 0 and solving for $\beta \ldots$

$$
\begin{aligned}
\nabla f=2 \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}-2 \mathbf{X}^{\top} \mathbf{y} & =0 \\
\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} & =\mathbf{X}^{\top} \mathbf{y} \\
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
\end{aligned}
$$

Ridge regularisation

$$
\min _{\beta}\|\mathbf{X} \beta-\mathbf{y}\|_{2}^{2}+\lambda\|\beta\|_{2}^{2}, \quad \lambda \geq 0
$$

The objective becomes...

$$
f(\boldsymbol{\beta})=\boldsymbol{\beta}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right) \boldsymbol{\beta}-2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta}+\mathbf{y}^{\top} \mathbf{y}
$$

Constraints on β

Condition Useful for...

$\beta \geq \mathbf{0}$	Intensities or rates
$\mathbf{1} \leq \beta \leq \mathbf{u}$	Knowledge of permissible values
$\beta \geq \mathbf{0} \wedge \mathbf{1}_{p}^{\top} \beta=\mathbf{1}$	Proportions and probability distributions

Follow the gradient

Why follow the gradient?

From G. Venter (originally from G. N. Vanderplaats)

Karush-Kuhn-Tucker conditions

1. x^{\star} is feasible
2. The gradient of the Lagrangian vanishes at \mathbf{x}^{\star}

$$
\nabla f\left(\mathbf{x}^{\star}\right)+\sum_{j=1}^{m} \lambda_{j} \nabla g_{j}\left(\mathbf{x}^{\star}\right)+\sum_{k=1}^{n} \lambda_{m+k} \nabla h_{k}\left(\mathbf{x}^{\star}\right)=0, \quad \lambda_{j} \geq 0, \quad \lambda_{m+k} \in \mathbb{R}
$$

3. For each inequality constraint,

$$
\lambda_{j} g_{j}\left(\mathbf{x}^{\star}\right)=0, \quad j=1, \ldots, m
$$

General idea

$$
\mathbf{x} \mapsto \mathbf{x}+\alpha^{\star} \mathbf{s}
$$

1. Find a search direction s in which to move
2. Take the optimal step size α^{\star} in this direction

General idea

$$
\mathbf{x} \mapsto \mathbf{x}+\alpha^{\star} \mathbf{s}
$$

1. Find a search direction s in which to move
2. Take the optimal step size α^{\star} in this direction

Gradient calculation

- Pen and paper
- Finite differences
- Automatic differentiation

Finite differences

Good

Better

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

- One function call
- Error: $O(h)$

$$
f^{\prime}(x) \approx \frac{f(x+h / 2)-f(x-h / 2)}{h}
$$

- Two function calls
- Error: $O\left(h^{2}\right)$

Automatic differentiation

The derivative of the composition

$$
f \circ g \circ h(x)=f(g(h(x)))
$$

is given by the chain rule

$$
\frac{d(f \circ g \circ h)}{d x}=\frac{d f}{d g} \frac{d g}{d h} \frac{d h}{d x}=\left[\frac{d f}{d g}\left(\frac{d g}{d h} \frac{d h}{d x}\right)\right]=\left[\left(\frac{d f}{d g} \frac{d g}{d h}\right) \frac{d h}{d x}\right]
$$

Automatic differentiation

The derivative of the composition

$$
f \circ g \circ h(x)=f(g(h(x)))
$$

is given by the chain rule

$$
\frac{d(f \circ g \circ h)}{d x}=\frac{d f}{d g} \frac{d g}{d h} \frac{d h}{d x}=\left[\frac{d f}{d g}\left(\frac{d g}{d h} \frac{d h}{d x}\right)\right]=\left[\left(\frac{d f}{d g} \frac{d g}{d h}\right) \frac{d h}{d x}\right]
$$

Forward-mode differentiation

$$
\begin{aligned}
f(x, y) & =3 x^{2}+x y & \frac{\partial f}{\partial x}=6 x+y & \frac{\partial f}{\partial y}=x \\
& x=? & \partial x / \partial \square & =? \\
y & =? & \partial y / \partial \square & =? \\
a & =x^{2} & \partial a / \partial \square & =2 x \times \partial x / \partial \square \\
b & =3 \times a & \partial b / \partial \square & =3 \times \partial a / \partial \square \\
c & =x \times y & \partial c / \partial \square & =y \times \partial x / \partial \square+x \times \partial y / \partial \square \\
f & =b+c & \partial f / \partial \square & =\partial b / \partial \square+\partial c / \partial \square
\end{aligned}
$$

Forward-mode differentiation

$$
f(x, y)=3 x^{2}+x y \quad \frac{\partial f}{\partial x}=6 x+y \quad \frac{\partial f}{\partial y}=x
$$

$$
\begin{aligned}
& \partial x / \partial x=1 \\
& \partial y / \partial x=0 \\
& \partial a / \partial x=2 x \times \partial x / \partial x=2 x \\
& \partial b / \partial x=3 \times \partial a / \partial x=6 x \\
& \partial c / \partial x=y \times \partial x / \partial x+x \times \partial y / \partial x=y \\
& \partial f / \partial x=\partial b / \partial x+\partial c / \partial x=6 x+y
\end{aligned}
$$

$$
\begin{aligned}
& \partial x / \partial y=0 \\
& \partial y / \partial y=1 \\
& \partial a / \partial y=2 x \times \partial x / \partial y=0 \\
& \partial b / \partial y=3 \times \partial a / \partial y=0 \\
& \partial c / \partial y=y \times \partial x / \partial y+x \times \partial y / \partial y=x \\
& \partial f / \partial y=\partial b / \partial y+\partial c / \partial y=x
\end{aligned}
$$

Reverse-mode differentiation

$$
f(x, y)=3 x^{2}+x y \quad \frac{\partial f}{\partial x}=6 x+y \quad \frac{\partial f}{\partial y}=x
$$

$$
\begin{aligned}
& \partial x / \partial \square=? \\
& \partial y / \partial \square=? \\
& \partial a / \partial \square=2 x \times \partial x / \partial \square \\
& \partial b / \partial \square=3 \times \partial a / \partial \square \\
& \partial c / \partial \square=y \times \partial x / \partial \square+x \times \partial y / \partial \square \\
& \partial f / \partial \square=\partial b / \partial \square+\partial c / \partial \square
\end{aligned}
$$

$$
\begin{aligned}
& \partial \diamond / \partial f=? \\
& \partial \diamond / \partial c=\partial \diamond / \partial f \\
& \partial \diamond / \partial b=\partial \diamond / \partial f \\
& \partial \diamond / \partial a=3 \times \partial \diamond / \partial b \\
& \partial \diamond / \partial y=x \times \partial \diamond / \partial f \\
& \partial \diamond / \partial x=2 x \times \partial \diamond / \partial a+y \times \partial \diamond / \partial c
\end{aligned}
$$

Reverse-mode differentiation

$$
\begin{aligned}
& f(x, y)=3 x^{2}+x y \quad \frac{\partial f}{\partial x}=6 x+y \quad \frac{\partial f}{\partial y}=x \\
& \partial f / \partial f=1 \\
& \partial f / \partial c=\partial f / \partial f=1 \\
& \partial f / \partial b=\partial f / \partial f=1 \\
& \partial f / \partial a=3 \times \partial f / \partial b=3 \\
& \partial f / \partial y=x \times \partial f / \partial f=x \\
& \partial f / \partial x=2 x \times \partial f / \partial a+y \times \partial f / \partial c=6 x+y
\end{aligned}
$$

Newton's method

f can be approximated about an initial guess \mathbf{x}_{0} as

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right)^{\top}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top} H\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

Newton's method

We want to find $\delta=\mathbf{x}^{\star}-\mathbf{x}_{0}$ such that $\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}$

$$
\begin{aligned}
\nabla_{\delta} \tilde{f}=\nabla f\left(\mathbf{x}_{0}\right)+H\left(\mathbf{x}_{0}\right) \delta & =\mathbf{0} \\
\delta & =-H^{-1}\left(\mathbf{x}_{0}\right) \nabla f\left(\mathbf{x}_{0}\right)
\end{aligned}
$$

This gives the update

$$
\mathbf{x} \mapsto \mathbf{x}+\delta=\mathbf{x}-H^{-1}(\mathbf{x}) \nabla f(\mathbf{x})
$$

Quasi-Newton methods

- $H^{-1}(\mathbf{x})$ may be large and expensive to compute
\rightarrow Use an approximation

Gradient descent
Forget about it

$$
H^{-1}(\mathbf{x}) \approx \mathbf{I}_{p}
$$

BFGS and L-BFGS

Update iteratively

$$
B_{i} \delta=-\nabla f\left(\mathbf{x}_{i}\right)
$$

Stochastic gradient descent

Many ML methods are sum-minimisation problems

$$
\min _{\boldsymbol{\theta}} f(\boldsymbol{\theta})=\sum_{i} f_{i}(\boldsymbol{\theta})
$$

This means the update $\theta \mapsto \theta-\alpha^{\star} \nabla f(\boldsymbol{\theta})$ is actually

$$
\boldsymbol{\theta} \mapsto \theta-\alpha^{\star} \sum_{i} \nabla f_{i}(\boldsymbol{\theta})
$$

Stochastic gradient descent

1. Shuffle observations
2. $\boldsymbol{\theta} \mapsto \boldsymbol{\theta}-\alpha^{\star} \nabla f_{i}(\boldsymbol{\theta})$ for each observation $i \rightarrow$ one pass
3. Repeat until convergence

How do we choose α^{\star} ?

Large $\alpha \rightarrow$ Divergence
Small $\alpha \rightarrow$ Slow convergence

- Decrease α in later iterations
- Use a linear combination with the previous update (momentum)
- Average θ over iterations
- Use per-parameter step sizes

