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Optimisation



What is optimisation?

Have An objective function, e.g. 𝑓 ∶ ℝ𝑝 → ℝ
Want The optimal 𝐱⋆ that minimises (or maximises) 𝑓

Why?

• 𝑓 represents some goal, e.g. error to be minimised

• Want the ‘best’ element from some set of available alternatives
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Optimisation in ML

• Many ML methods are defined in terms of a loss function

→ Really optimisation problems!
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Optimisation in ML

• Many ML methods are defined in terms of a loss function

→ Really optimisation problems!

Linear regression

MSE( ̂𝜷 ∣ 𝐗, 𝐲) = 1
𝑛 ∑

𝑖
( ̂𝑦𝑖 − 𝑦𝑖)
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̂𝑦𝑖 = 𝐱𝑖 ̂𝜷
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Optimisation in ML

• Many ML methods are defined in terms of a loss function

→ Really optimisation problems!

Logistic regression

LogLoss( ̂𝜷 ∣ 𝐗, 𝐲) = −∑
𝑖

[𝑦𝑖 log ̂𝑝𝑖 + (1 − 𝑦𝑖) log(1 − ̂𝑝𝑖)]

̂𝑝𝑖 = logit−1(𝐱𝑖 ̂𝜷)
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Types of optimisation problems

𝑓1(𝐱) ∈ ℝ, 𝐱 ∈ ℝ100

𝑓2(𝐱) ∈ ℝ, 𝐱 ∈ ℝ100, 𝟏⊺𝐱 = 1

𝑓3(𝐱) ∈ ℝ, 𝐱 ∈ {0, 1}100

Question
Which is ‘harder’ to optimise, and why?
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Standard form

min𝐱 𝑓 (𝐱)

s.t. 𝑔𝑗(𝐱) ≤ 0, 𝑗 = 1,… ,𝑚
ℎ𝑘(𝐱) = 0, 𝑘 = 1,… , 𝑛
𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1,… , 𝑝

• 𝐱 can be continuous or discrete

• 𝑓 can be linear or nonlinear, explicit or implicit
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Combinatorial optimisation

• Combinatorial problems like optimising 𝑓3 are intrinsically hard

→ Need to try all 2100 ≈ 1.27 × 1030 combinations

Side note

• Solving for 𝐱 ∈ [0, 1]100 is easier (assuming ℎ is continuous)

→ Approximate solution (relaxation)
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Continuous optimisation
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Continuous optimisation

From G. Venter (originally from G. N. Vanderplaats) 7



Continuous optimisation
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Convex functions

Function is convex

↓

Any local minimum is
also a global minimum
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Linear programming



Linear programs

max𝐱 𝐜⊺𝐱

𝑠.𝑡. 𝐀𝐱 ≤ 𝐛
𝐱 ≥ 𝟎

Properties

• Linear objective

• Linear constraints

Types of solution

• Optimal

• Infeasible

• Unbounded
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Graphical solution

max𝐱 3𝑥1 + 4𝑥2
𝑠.𝑡. 𝑥1 + 2𝑥2 ≤ 14

3𝑥1 − 𝑥2 ≥ 0
𝑥1 − 𝑥2 ≤ 2
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LAD regression problem

We can rewrite the LAD (robust) regression problem

min
𝜷

∣∣ 𝐗𝜷 − 𝐲 ∣∣1 = ∑
𝑖

∣𝜀𝑖∣

as the linear program

min
𝜷, 𝐭

𝟏⊺𝑛 𝐭

𝑠.𝑡. − 𝐭 ≤ 𝐗𝜷 − 𝐲 ≤ 𝐭
𝐭 ∈ ℝ𝑛

or
min
𝜷, 𝐮, 𝐯

𝟏⊺𝑛𝐮 + 𝟏⊺𝑛𝐯

𝑠.𝑡. 𝐗𝜷 + 𝐮 − 𝐯 = 𝐲
𝐮, 𝐯 ≥ 𝟎

11



𝜏th quantile regression problem

min
𝜷, 𝐮, 𝐯

𝜏 𝟏⊺𝑛𝐮 + (1 − 𝜏)𝟏⊺𝑛𝐯, 𝜏 ∈ [0, 1]

𝑠.𝑡. 𝐗𝜷 + 𝐮 − 𝐯 = 𝐲
𝐮, 𝐯 ≥ 𝟎

• 𝜏 = 0.5 recovers the LAD regression problem

• Very efficient (custom) algorithms exist
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Convex programming



Convex quadratic programs

min𝐱
1
2𝐱

⊺𝐐𝐱 + 𝐜⊺𝐱

𝑠.𝑡. 𝐀𝐱 ⪯ 𝐛
𝐱 ⪰ 𝟎

Properties

• Quadratic objective

• Quadratic constraints

Question
Does quadratic imply convex?
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OLS regression problem

We can rewrite the OLS regression problem

min
𝜷

∣∣ 𝐗𝜷 − 𝐲 ∣∣22 = ∑
𝑖

𝜀2𝑖

as the convex quadratic objective

𝑓 (𝜷) = 𝜷⊺𝐗⊺𝐗𝜷 − 2𝐲⊺𝐗𝜷 + 𝐲⊺𝐲
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OLS regression problem

Setting the gradient to 0 and solving for 𝜷…

∇𝑓 = 2𝐗⊺𝐗𝜷 − 2𝐗⊺𝐲 = 0
𝐗⊺𝐗𝜷 = 𝐗⊺𝐲

̂𝜷 = (𝐗⊺𝐗)−1 𝐗⊺𝐲
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Ridge regularisation

min
𝜷

∣∣ 𝐗𝜷 − 𝐲 ∣∣22 + 𝜆 ∣∣ 𝜷 ∣∣22 , 𝜆 ≥ 0

The objective becomes…

𝑓 (𝜷) = 𝜷⊺ (𝐗⊺𝐗 + 𝜆𝐈𝑝)𝜷 − 2𝐲⊺𝐗𝜷 + 𝐲⊺𝐲
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Constraints on 𝜷

Condition Useful for…

𝜷 ≥ 𝟎 Intensities or rates
𝐥 ≤ 𝜷 ≤ 𝐮 Knowledge of permissible values
𝜷 ≥ 𝟎 ∧ 𝟏⊺𝑝 𝜷 = 𝟏 Proportions and probability distributions
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Follow the gradient



Why follow the gradient?

From G. Venter (originally from G. N. Vanderplaats) 17



Karush-Kuhn-Tucker conditions

1. 𝐱⋆ is feasible

2. The gradient of the Lagrangian vanishes at 𝐱⋆

∇𝑓 (𝐱⋆) +
𝑚
∑
𝑗=1

𝜆𝑗∇𝑔𝑗(𝐱⋆) +
𝑛
∑
𝑘=1

𝜆𝑚+𝑘∇ℎ𝑘(𝐱⋆) = 𝟎, 𝜆𝑗 ≥ 0, 𝜆𝑚+𝑘 ∈ ℝ

3. For each inequality constraint,

𝜆𝑗 𝑔𝑗(𝐱⋆) = 0, 𝑗 = 1,… ,𝑚
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General idea

𝐱 ↦ 𝐱 + 𝛼⋆ 𝐬

1. Find a search direction 𝐬 in which to move

2. Take the optimal step size 𝛼⋆ in this direction
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Gradient calculation

• Pen and paper

• Finite differences

• Automatic differentiation
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Finite differences

Good

𝑓 ′(𝑥) ≈ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

• One function call

• Error: 𝒪(ℎ)

Better

𝑓 ′(𝑥) ≈ 𝑓 (𝑥 + ℎ/2) − 𝑓 (𝑥 − ℎ/2)
ℎ

• Two function calls

• Error: 𝒪(ℎ2)
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Automatic differentiation

The derivative of the composition

𝑓 ∘ 𝑔 ∘ ℎ(𝑥) = 𝑓 (𝑔(ℎ(𝑥)))

is given by the chain rule

𝑑(𝑓 ∘ 𝑔 ∘ ℎ)
𝑑𝑥 = 𝑑𝑓

𝑑𝑔
𝑑𝑔
𝑑ℎ

𝑑ℎ
𝑑𝑥 = [𝑑𝑓𝑑𝑔 (𝑑𝑔

𝑑ℎ
𝑑ℎ
𝑑𝑥)] = [(𝑑𝑓

𝑑𝑔
𝑑𝑔
𝑑ℎ)

𝑑ℎ
𝑑𝑥]
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Forward-mode differentiation

𝑓 (𝑥, 𝑦) = 3𝑥2 + 𝑥𝑦 𝜕𝑓
𝜕𝑥 = 6𝑥 + 𝑦 𝜕𝑓

𝜕𝑦 = 𝑥

𝑥 = ?
𝑦 = ?
𝑎 = 𝑥2

𝑏 = 3 × 𝑎
𝑐 = 𝑥 × 𝑦
𝑓 = 𝑏 + 𝑐

𝜕𝑥/𝜕□ = ?
𝜕𝑦/𝜕□ = ?
𝜕𝑎/𝜕□ = 2𝑥 × 𝜕𝑥/𝜕□
𝜕𝑏/𝜕□ = 3 × 𝜕𝑎/𝜕□
𝜕𝑐/𝜕□ = 𝑦 × 𝜕𝑥/𝜕□+ 𝑥 × 𝜕𝑦/𝜕□
𝜕𝑓 /𝜕□ = 𝜕𝑏/𝜕□+ 𝜕𝑐/𝜕□
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Forward-mode differentiation

𝑓 (𝑥, 𝑦) = 3𝑥2 + 𝑥𝑦 𝜕𝑓
𝜕𝑥 = 6𝑥 + 𝑦 𝜕𝑓

𝜕𝑦 = 𝑥

𝜕𝑥/𝜕𝑥 = 1
𝜕𝑦/𝜕𝑥 = 0
𝜕𝑎/𝜕𝑥 = 2𝑥 × 𝜕𝑥/𝜕𝑥 = 2𝑥
𝜕𝑏/𝜕𝑥 = 3 × 𝜕𝑎/𝜕𝑥 = 6𝑥
𝜕𝑐/𝜕𝑥 = 𝑦 × 𝜕𝑥/𝜕𝑥 + 𝑥 × 𝜕𝑦/𝜕𝑥 = 𝑦
𝜕𝑓 /𝜕𝑥 = 𝜕𝑏/𝜕𝑥 + 𝜕𝑐/𝜕𝑥 = 6𝑥 + 𝑦

𝜕𝑥/𝜕𝑦 = 0
𝜕𝑦/𝜕𝑦 = 1
𝜕𝑎/𝜕𝑦 = 2𝑥 × 𝜕𝑥/𝜕𝑦 = 0
𝜕𝑏/𝜕𝑦 = 3 × 𝜕𝑎/𝜕𝑦 = 0
𝜕𝑐/𝜕𝑦 = 𝑦 × 𝜕𝑥/𝜕𝑦 + 𝑥 × 𝜕𝑦/𝜕𝑦 = 𝑥
𝜕𝑓 /𝜕𝑦 = 𝜕𝑏/𝜕𝑦 + 𝜕𝑐/𝜕𝑦 = 𝑥
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Reverse-mode differentiation

𝑓 (𝑥, 𝑦) = 3𝑥2 + 𝑥𝑦 𝜕𝑓
𝜕𝑥 = 6𝑥 + 𝑦 𝜕𝑓

𝜕𝑦 = 𝑥

𝜕𝑥/𝜕□ = ?
𝜕𝑦/𝜕□ = ?
𝜕𝑎/𝜕□ = 2𝑥 × 𝜕𝑥/𝜕□
𝜕𝑏/𝜕□ = 3 × 𝜕𝑎/𝜕□
𝜕𝑐/𝜕□ = 𝑦 × 𝜕𝑥/𝜕□+ 𝑥 × 𝜕𝑦/𝜕□
𝜕𝑓 /𝜕□ = 𝜕𝑏/𝜕□+ 𝜕𝑐/𝜕□

𝜕♢/𝜕𝑓 = ?
𝜕♢/𝜕𝑐 = 𝜕♢/𝜕𝑓
𝜕♢/𝜕𝑏 = 𝜕♢/𝜕𝑓
𝜕♢/𝜕𝑎 = 3 × 𝜕♢/𝜕𝑏
𝜕♢/𝜕𝑦 = 𝑥 × 𝜕♢/𝜕𝑓
𝜕♢/𝜕𝑥 = 2𝑥 × 𝜕♢/𝜕𝑎 + 𝑦 × 𝜕♢/𝜕𝑐
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Reverse-mode differentiation

𝑓 (𝑥, 𝑦) = 3𝑥2 + 𝑥𝑦 𝜕𝑓
𝜕𝑥 = 6𝑥 + 𝑦 𝜕𝑓

𝜕𝑦 = 𝑥

𝜕𝑓 /𝜕𝑓 = 1
𝜕𝑓 /𝜕𝑐 = 𝜕𝑓 /𝜕𝑓 = 1
𝜕𝑓 /𝜕𝑏 = 𝜕𝑓 /𝜕𝑓 = 1
𝜕𝑓 /𝜕𝑎 = 3 × 𝜕𝑓 /𝜕𝑏 = 3
𝜕𝑓 /𝜕𝑦 = 𝑥 × 𝜕𝑓 /𝜕𝑓 = 𝑥
𝜕𝑓 /𝜕𝑥 = 2𝑥 × 𝜕𝑓 /𝜕𝑎 + 𝑦 × 𝜕𝑓 /𝜕𝑐 = 6𝑥 + 𝑦
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Newton’s method

𝑓 can be approximated about an initial guess 𝐱0 as

𝑓 (𝐱) ≈ 𝑓 (𝐱0) + ∇𝑓 (𝐱0)⊺ (𝐱 − 𝐱0) +
1
2(𝐱 − 𝐱0)⊺𝐻(𝐱0)(𝐱 − 𝐱0)
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Newton’s method

We want to find 𝜹 = 𝐱⋆ − 𝐱0 such that ∇𝑓 (𝐱⋆) = 𝟎

∇𝜹 ̃𝑓 = ∇𝑓 (𝐱0) + 𝐻(𝐱0)𝜹 = 𝟎
𝜹 = −𝐻−1(𝐱0)∇𝑓 (𝐱0)

This gives the update

𝐱 ↦ 𝐱 + 𝜹 = 𝐱 − 𝐻−1(𝐱)∇𝑓 (𝐱)
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Quasi-Newton methods

• 𝐻−1(𝐱) may be large and expensive to compute

→ Use an approximation

Gradient descent
Forget about it

𝐻−1(𝐱) ≈ 𝐈𝑝

BFGS and L-BFGS
Update iteratively

𝐵𝑖 𝜹 = −∇𝑓 (𝐱𝑖)
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Stochastic gradient descent

Many ML methods are sum-minimisation problems

min
𝜽

𝑓 (𝜽) = ∑
𝑖

𝑓𝑖(𝜽)

This means the update 𝜽 ↦ 𝜽 − 𝛼⋆∇𝑓 (𝜽) is actually

𝜽 ↦ 𝜽 − 𝛼⋆ ∑
𝑖

∇𝑓𝑖(𝜽)
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Stochastic gradient descent

1. Shuffle observations

2. 𝜽 ↦ 𝜽 − 𝛼⋆∇𝑓𝑖(𝜽) for each observation 𝑖 → one pass

3. Repeat until convergence
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How do we choose 𝛼⋆?

Large 𝛼 → Divergence

Small 𝛼 → Slow convergence

• Decrease 𝛼 in later iterations

• Use a linear combination with the previous update (momentum)

• Average 𝜽 over iterations

• Use per-parameter step sizes
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