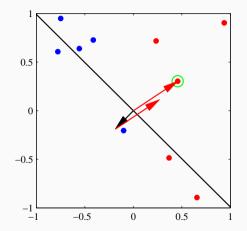
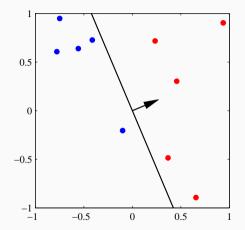
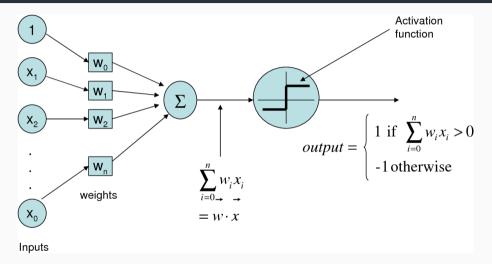

Introduction to neural networks


Gianluca Campanella

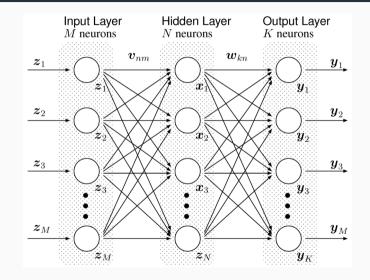

From Pattern Recognition and Machine Learning

From Pattern Recognition and Machine Learning

From Pattern Recognition and Machine Learning


From Pattern Recognition and Machine Learning

Support vector machines


- Are trained on the entire dataset at once
- Try to find the largest possible margin

- Can be trained online (as the data arrives)
- Do not necessarily maximise the margin

Perceptrons and neurons

Multi-layer perceptrons

Feed-forward of information

- Receive a new sample X with outcome y
- Compute value for each unit in each layer
- Compute prediction $\hat{\textbf{y}}$ and error $\hat{\boldsymbol{\epsilon}}$

Back-propagation of error

- Compute 'blame'...
 - For output units: $y \hat{y}$
 - For all other layers, as weighted contribution to blame of following layer's units
- Adjust weights and biases

Questions

- How many hidden layers?
- How many units in each layer?
- Which activation function?
- How do we initialise weights?
- How do we minimise error?

Convolutional neural networks

- Inspired by the organisation of the visual cortex
- Include convolutional and pooling layers

Recurrent neural networks

- Possess 'internal memory'
- Can process sequences of inputs

Pros and cons

Pros

- Can handle large datasets
- Effective in high-dimensional spaces (*p* > *n*)
- Predictions are fast

Cons

- Can require considerable parameter tuning
- Training is somewhat cumbersome
- New data can cause 'forgetfulness'