Introduction to dimensionality reduction

Gianluca Campanella

Manifold learning

PCA and PLS

Idea

- Identify correlated columns
- Replace them with a new column that 'encapsulates' the others

Example

- { car, cat, truck, van }
- \rightarrow { cat, vehicle }

Why?

- 'True' dimensionality is lower
- $\bullet\,$ Too many correlated variables \rightarrow collinearity
- Difficult to visualise

How?

- Project onto a lower-dimensional space...
- ...while retaining (most of) some property

Manifold learning

Multidimensional scaling (MDS)

Aim

- Project onto a lower-dimensional space...
- ...while retaining most of the distance structure

Method

- Input: dissimilarity matrix (not necessarily a metric)
- Find a 'close' representation (squared loss)

Limitations

- Somewhat slow (numerical optimisation)
- Embeddings are not necessarily unique or 'optimal'

Multidimensional scaling (MDS)

From Cutting et al. (2013)

Multidimensional scaling (MDS)

From Cutting et al. (2013)

PCA and PLS

Aim

- Project onto a lower-dimensional space...
- ...while retaining most of the correlation structure

Method

- Eigendecomposition of covariance/correlation matrix
- Typically using singular value decomposition (SVD)

Limitations

- Unsupervised method \rightarrow outcome is disregarded
- PCs may not be explanatory of Y (noise-driven)

Model

- Defined by the 'direction' vectors *p_i* (loadings)
- Loadings are oriented in such a way that the project data t_i (scores) have maximum variance

From Process Improvement Using Data

From Alex Williams' blog

From Alex Williams' blog

Partial least squares (PLS) regression

From Process Improvement Using Data

Advantages

- Single-step model
- Components capture variability in X and Y
- $\rightarrow\,$ Fewer components, more compact model

Partial least squares (PLS) regression

From Böhm et al. (2013)