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Dimensionality reduction

Idea

e Identify correlated columns
e Replace them with a new column that ‘encapsulates’ the others

Example

e { car, cat, truck, van }
— { cat, vehicle }



Dimensionality reduction

Why?

e ‘True’ dimensionality is lower
e Too many correlated variables — collinearity
e Difficult to visualise

How?

e Project onto a lower-dimensional space...
e _..while retaining (most of) some property



Manifold learning




Multidimensional scaling (MDS)

Aim
e Project onto a lower-dimensional space...
e ...while retaining most of the distance structure

Method
e Input: dissimilarity matrix (not necessarily a metric)

e Find a ‘close’ representation (squared loss)

Limitations
e Somewhat slow (numerical optimisation)

e Embeddings are not necessarily unique or ‘optimal’



Multidimensional scaling (MDS)
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Multidimensional scaling (MDS)
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PCA and PLS




Principal component analysis (PCA)

Aim
e Project onto a lower-dimensional space...
e ...while retaining most of the correlation structure

Method
e Eigendecomposition of covariance/correlation matrix

e Typically using singular value decomposition (SVD)

Limitations
e Unsupervised method — outcome is disregarded

e PCs may not be explanatory of Y (noise-driven)



Principal component analysis (PCA)

Model
e Defined by the ‘direction’ vectors p; (loadings)

e Loadings are oriented in such a way that the project data t;
(scores) have maximum variance

p, b,

From Process Improvement Using Data 4



Principal component analysis (PCA)
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Principal component analysis (PCA)

Maximize variance Minimize residuals
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Partial least squares (PLS) regression

Multiple linear regression Principal component regression
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From Process Improvement Using Data

Advantages
e Single-step model
e Components capture variability in X and Y
— Fewer components, more compact model



Partial least squares (PLS) regression
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