Introduction to classification

Gianluca Campanella

Classification

k-nearest neighbours classifier

Metrics

Cost-benefit analysis

Classification

Regression

Aim Predict a continuous value Loss How 'off' (numerically) our predictions are

Classification

Aim Predict a class Loss How 'inaccurate' the predicted classes are

k-nearest neighbours classifier

Given a new observation...

- Find the *k* 'most similar' training sample(s)
- Use the most common class among them as prediction

Questions

- How do we define similarity?
- How many neighbours do we use?

k-nearest neighbours classifier

From Burton DeWilde's blog

Choice of *k*

- Larger $k \rightarrow$ smoother boundaries, less 'noisy'
- If k = N, we always predict the majority class

From CS231n: Convolutional Neural Networks for Visual Recognition

Minkowski distance

$$\left(\sum_{i}|x_{i}-y_{i}|^{p}\right)^{1/p}$$

$$p=1$$
 Manhattan distance $\sum_i |x_i - y_i|$
 $p=2$ Euclidean distance $\sqrt{\sum_i (x_i - y_i)^2}$

Uniform weights

- All *k* neighbours contribute equally to the prediction
- Actual distance to each is ignored

Distance weights

- Contributions are weighted by 1/distance
- Closer neighbours influence the prediction more

As the number of variables (coordinates) increases...

- The volume of the space increases
- Pairwise distances become more similar \rightarrow sparsity
- Some samples have huge neighbourhoods \rightarrow 'hubs'

Metrics

Classification accuracy

Classification accuracy

- Percentage of correct predictions
- Higher is better

Classification error

- Percentage of incorrect predictions (inverse of accuracy)
- Lower is better

Confusion matrix

- Gives a better understanding of behaviour
- Can be used to define multiple performance metrics

Sensitivity (a.k.a. true positive rate)

 $\frac{\sum \text{True positive}}{\sum \text{Actual} = 1}$

Specificity (a.k.a. true negative rate)

 $\frac{\sum \text{True negative}}{\sum \text{Actual} = 0}$

Sensitivity (a.k.a. true positive rate)

 $\frac{\sum \text{True positive}}{\sum \text{Actual} = 1}$

Perfect sensitivity

- All sick identified as sick
- Negative test result definitely rules out disease

Specificity (a.k.a. true negative rate) $\frac{\sum \text{True negative}}{\sum \text{Actual} = 0}$

Sensitivity (a.k.a. true positive rate)

 $\frac{\sum \text{ True positive}}{\sum \text{ Actual} = 1}$

Perfect sensitivity

- All sick identified as sick
- Negative test result definitely rules out disease

Specificity (a.k.a. true negative rate)

 $\frac{\sum True \ negative}{\sum Actual = 0}$

Perfect specificity

- No healthy identified as sick
- Positive test result useful for ruling in disease

Sensitivity (a.k.a. true positive rate)

 $\frac{\sum \text{ True positive}}{\sum \text{ Actual} = 1}$

Perfect sensitivity

- All sick identified as sick
- Negative test result definitely rules out disease

Specificity (a.k.a. true negative rate)

 $\frac{\sum True \ negative}{\sum Actual = 0}$

Perfect specificity

- No healthy identified as sick
- Positive test result useful for ruling in disease

Can we maximise both at the same time?

100% sensitivity

• 'Everyone is a terrorist!'

100% sensitivity

- 'Everyone is a terrorist!'
- $\bullet\,$ All terrorists are stopped \rightarrow 100% sensitivity

100% sensitivity

- 'Everyone is a terrorist!'
- $\bullet\,$ All terrorists are stopped $\rightarrow\,100\%$ sensitivity
- $\bullet\,$ No one can enter the country! \rightarrow 0% specificity

100% sensitivity

- 'Everyone is a terrorist!'
- $\bullet\,$ All terrorists are stopped $\rightarrow\,100\%$ sensitivity
- No one can enter the country! \rightarrow 0% specificity

100% specificity

• 'No one is a terrorist!'

100% sensitivity

- 'Everyone is a terrorist!'
- $\bullet\,$ All terrorists are stopped $\rightarrow\,100\%$ sensitivity
- No one can enter the country! \rightarrow 0% specificity

100% specificity

- 'No one is a terrorist!'
- $\bullet\,$ All non-terrorists are allowed in $\rightarrow\,100\%$ specificity

100% sensitivity

- 'Everyone is a terrorist!'
- $\bullet\,$ All terrorists are stopped $\rightarrow\,100\%$ sensitivity
- No one can enter the country! \rightarrow 0% specificity

100% specificity

- 'No one is a terrorist!'
- $\bullet\,$ All non-terrorists are allowed in $\rightarrow\,100\%$ specificity
- $\bullet\,$ All terrorists are also allowed into the country! \rightarrow 0% sensitivity

ROC and AUC

Receiver Operating Characteristic (ROC) curve

Sensitivity vs (1 – specificity) \rightarrow TP rate vs FP rate

ROC and AUC

Receiver Operating Characteristic (ROC) curve

Area Under the Curve (AUC)

- Probability that Prediction(actual 1) > Prediction(actual 0)
- Random guess \rightarrow AUC = 50% (diagonal)
- Higher is better

Sensitivity vs (1 – specificity) \rightarrow TP rate vs FP rate

Cost-benefit analysis

- Assume that the four possible outcomes of a classification problem have (numerical) benefits and costs
 - > 0 desirable (e.g. profit)
 - $= 0 \ neutral$
 - < 0 undesirable (e.g. loss)
- These 'benefits and costs' needn't be symmetrical

You have 20 people enrolled in an outdoor activity paying £30 each

- Before the activity, you check the weather forecast and either:
 - Go ahead, which costs you £5 per participant
 - Cancel and refund the participants in full
- If you decide to go ahead, the day of the activity it will either:
 - Be sunny, in which case you get to keep the profit
 - Rain, in which case you'll have to refund the participants in full

What is the 'benefits and costs' matrix?

- What are the sensitivity and specificity?
- What is the expected profit?