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Prediction and loss functions



Guessing values

• Y = ‘time it takes you to get to work in the morning’

• You have some realisations y1, y2, . . . collected over time

• You want to predict the value of Y tomorrow

How do you do this?

If you prefer, what’s the optimal point forecast for Y?
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Loss functions

Before you can answer, you need a loss function that…

• Measures how big an error you’re making with your guess g

• Can be minimised to obtain the ‘best’ g

Mean squared error MSE(g) = E
[
(Y− g)2

]
Mean absolute error MAE(g) = E[|Y− g|]
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Towards prediction…

Usually we have at least another variable X that we believe to be
related to Y…

Idea
Using some function f of X, we should be able to predict Y ‘better’
(i.e. reduce the mean error) than by ignoring it

g → f(X) and thus MSE(f ) = E
[
(Y− f(X))2

]
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What should f be?

Consider the decomposition

Y |X = f ⋆(X) + ε

• f ⋆ is the optimal prediction (conditional on knowing X)

• ε is a random variable (since f ⋆ is not)

• E[ε] = 0 without loss of generality

5



What should f be?

For the MSE, it can be shown that

f ⋆(x) = E[Y |X = x]

f ⋆ is what we’d like to know when we want to predict Y given X

…but can we?
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Bias-variance trade-off



Bias-variance trade-off

Suppose that…

• The ‘true’ regression function is f ⋆

• We have to make do with some suboptimal f

Let’s start by expanding…

(Y− f )2 = (Y− f ⋆ + f ⋆ − f )2

= [(Y− f ⋆) + (f ⋆ − f )]2

= (Y− f ⋆)2 + 2(Y− f ⋆)(f ⋆ − f ) + (f ⋆ − f )2
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Bias-variance trade-off

Now take the expectation…

E
[
(Y− f ⋆)2 + 2(Y− f ⋆)(f ⋆ − f ) + (f ⋆ − f )2

]

Since Y− f ⋆ = ε and E[ε] = 0…

• E
[
(Y− f ⋆)2

]
= V[ε]

• E[Y− f ⋆] = E[ε] = 0

• E
[
(f ⋆ − f )2

]
= (f ⋆ − f )2 (non-random)
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Bias-variance trade-off

MSE(f ) = V[ε] + (f ⋆ − f )2

Variance V[ε]

• Doesn’t depend on f, just on ‘how hard’ it is to predict Y |X = x

• It’s the unpredictable, irreducible fluctuation around even the
best prediction (randomness rules our lives!)
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Bias-variance trade-off

MSE(f ) = V[ε] + (f ⋆ − f )2

Bias (f ⋆ − f )2

• It’s the ‘extra error’ we get from not knowing f ⋆

• It’s also the amount by which we are systematically off
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Bias-variance trade-off

Since f is itself estimated from a sample (it’s actually f̂ ), we have…

• The irreducible variance due to the stochastic process

• The bias in approximating f ⋆ using f

• The additional estimation variance of f̂

Consistent methods

• Bias and estimation variance → 0 as the sample size increases

• Different consistent methods may converge at different rates
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Bias-variance trade-off

From Andrew Ng’s Machine Learning course
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Generalisability



Bias-variance trade-off and generalisability

From The Elements of Statistical Learning 7



Cross-validation

General idea

• Fit several models on subsets of the data

• Measure performance of each

• Compute the mean performance
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k-fold cross-validation

• Split the data into k groups (a.k.a. ‘folds’)
• Repeat for each fold:

• Fit the model using all but the selected fold
• Measure performance on the selected fold

• Compute the mean performance across folds
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Regularisation

• Penalise ‘large’ coefficients by shrinking them

• Helps avoid overfitting

• Requires tuning of an additional parameter α representing the
‘weight’ of the penalty (relative to the prediction error)

L1 LASSO
∑

j |βj|

L2 Tikhonov or ridge
∑

j β2
j
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