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Statistics for time series



Time series

Any data that change over time

Seasonality

• Cyclic pattern(s) repeated over time

• E.g. peak of sales in December

Trend

• Change in ‘baseline’ levels over time

• E.g. linear increase in sales over last 5 years
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Rolling (or moving) statistics

Each observation is replaced with some statistic (e.g. mean) of k
consecutive time points:
• k preceding points

• k/2 points prior to and following a given time point

Usage

• Reduce influence of outliers

• Smooth time series to identify patterns
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Exponentially weighted averages

• Rolling statistics weigh the k time points equally

• Often, points closer in time are more important

→ Weighting

Exponential weighting

• EWMA1 = y1

• EWMAt = α yt + (1−α) EWMAt−1, t > 1

→ α controls the decay
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Expanding statistics

Each observation is replaced with some statistic (e.g. sum) of all
points prior to the given time point

Usage

• Visualise cumulative distribution over time

• Identify trends
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Autocorrelation

Correlation of the time series with itself at different lags:
• At lag 1, dependency on ‘yesterday’

• At lag 7, dependency on ‘last week’

• At lag 30, dependency on ‘last month’…

Usage

• Identify trends

• Identify period of seasonal cycles
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Forecasting



Forecasting

Prediction

• Value of y⃗ given values for the predictors X
• Does not depend on time (or temporal effect is negligible)

Forecasting

• Value of y⃗ given previous values of y⃗

• Captures autocorrelation to ‘project forward’

• (Some models can also incorporate predictors)
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Stationarity

Many models require time series to be stationary:
• Mean and variance constant over time

→ Seasonality and trend must be removed

Solutions

• Detrending (estimate and subtract ‘baseline’)

• Differencing (predict change or ‘change in changes’)
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Time series models



ARMA models

AutoRegressive

• yt depends on yt−1, …

• Regression on past values

• Captures (slow) changes
in trend

Moving Average

• yt depends on εt−1, …

• Smoothing of past errors

• Captures sudden changes
(e.g. spikes)

yt = α+ β1 yt−1 + . . .+ βp yt−p + γ1 εt−1 + . . .+ γq εt−q
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ARIMA models

First-order differences yt − yt−1

• Predict change

• Corresponds to velocity in physics

Second-order differences (yt − yt−1)− (yt−1 − yt−2)

• Predict ‘change in changes’

• Corresponds to acceleration in physics
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