Introduction to time series modelling

Gianluca Campanella

Statistics for time series

Forecasting

Time series models

Statistics for time series

Time series

Any data that change over time

Time series

Any data that change over time

Seasonality

- Cyclic pattern(s) repeated over time
- E.g. peak of sales in December

Trend

- Change in 'baseline' levels over time
- E.g. linear increase in sales over last 5 years

Each observation is replaced with some statistic (e.g. mean) of k consecutive time points:

- *k* preceding points
- k/2 points prior to and following a given time point

Usage

- Reduce influence of outliers
- Smooth time series to identify patterns

Exponentially weighted averages

- Rolling statistics weigh the *k* time points equally
- Often, points closer in time are more important
- \rightarrow Weighting

Exponentially weighted averages

- Rolling statistics weigh the k time points equally
- Often, points closer in time are more important
- $\rightarrow \ Weighting$

Exponential weighting

- EWMA₁ = y_1
- $\mathsf{EWMA}_t = \alpha \ y_t + (1 \alpha) \ \mathsf{EWMA}_{t-1}, \ t > 1$
- $\rightarrow~\alpha$ controls the decay

Each observation is replaced with some statistic (e.g. sum) of all points prior to the given time point

Usage

- Visualise cumulative distribution over time
- Identify trends

Correlation of the time series with itself at different lags:

- At lag 1, dependency on 'yesterday'
- At lag 7, dependency on 'last week'
- At lag 30, dependency on 'last month'...

Usage

- Identify trends
- Identify period of seasonal cycles

Forecasting

Forecasting

Prediction

- Value of \vec{y} given values for the predictors **X**
- Does not depend on time (or temporal effect is negligible)

Forecasting

Prediction

- Value of \vec{y} given values for the predictors **X**
- Does not depend on time (or temporal effect is negligible)

Forecasting

- Value of \vec{y} given previous values of \vec{y}
- Captures autocorrelation to 'project forward'
- (Some models can also incorporate predictors)

Many models require time series to be stationary:

- Mean and variance constant over time
- $\rightarrow\,$ Seasonality and trend must be removed

Many models require time series to be stationary:

- Mean and variance constant over time
- $\rightarrow\,$ Seasonality and trend must be removed

Solutions

- Detrending (estimate and subtract 'baseline')
- Differencing (predict change or 'change in changes')

Time series models

AutoRegressive

- y_t depends on y_{t-1} , ...
- Regression on past values
- Captures (slow) changes in trend

Moving Average

- y_t depends on ε_{t-1} , ...
- Smoothing of past errors
- Captures sudden changes (e.g. spikes)

$$y_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \gamma_1 \varepsilon_{t-1} + \ldots + \gamma_q \varepsilon_{t-q}$$

First-order differences $y_t - y_{t-1}$

- Predict change
- Corresponds to velocity in physics

Second-order differences $(y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$

- Predict 'change in changes'
- Corresponds to acceleration in physics