# Generalised linear models

Gianluca Campanella

## **Contents**

Regression models

Linear regression

Logistic regression

**Regression models** 

# **Regression models**

Regression models explore associations between:

- A response variable  $\vec{y}$
- Explanatory variables (or predictors)  $\vec{x_1}, \ldots, \vec{x_p}$

# **Regression models**

### Regression models explore associations between:

- A response variable  $\vec{y}$
- Explanatory variables (or predictors)  $\vec{x_1}, \dots, \vec{x_p}$

#### Question

Do the  $\vec{x_1}, \ldots, \vec{x_p}$  capture the variability of  $\vec{y}$ ?

# Regression modelling steps

- Formulation
  - 1. Error distribution for the response  $\vec{y}$
  - 2. Combination of predictors
  - 3. Link function
- Estimation of regression coefficients
- Diagnostics (does the model fit the data well?)
- Selection (can we improve the fit?)

# **Components of regression models**

- (1) A model for the variability of the response  $\vec{y}$ 
  - $\vec{y}$  is continuous  $\rightarrow$  normal distribution
  - $\vec{y}$  is dichotomous  $\rightarrow$  binomial distribution

# Components of regression models

- (1) A model for the variability of the response  $\vec{y}$ 
  - $\vec{y}$  is continuous  $\rightarrow$  normal distribution
  - $\vec{y}$  is dichotomous  $\rightarrow$  binomial distribution
- (2) A combination of predictors  $\vec{x_1}, \dots, \vec{x_p}$ 
  - Often linear, e.g.  $2\vec{x_1} + 3\vec{x_2}$
  - $\beta_1 = 2$  and  $\beta_2 = 3$  are regression coefficients

# Components of regression models

- (1) A model for the variability of the response  $\vec{y}$ 
  - $\vec{y}$  is continuous  $\rightarrow$  normal distribution
  - $\vec{y}$  is dichotomous  $\rightarrow$  binomial distribution
- (2) A combination of predictors  $\vec{x_1}, \dots, \vec{x_p}$ 
  - Often linear, e.g.  $2\vec{x_1} + 3\vec{x_2}$
  - $\beta_1 = 2$  and  $\beta_2 = 3$  are regression coefficients
- (3) A link between the two
  - Often depends on the model for the response
  - Linear regression:  $\mathbb{E}[\vec{y}] = 2\vec{x_1} + 3\vec{x_2}$

# Predictors and response

#### **Predictors**

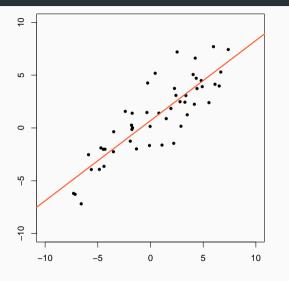
- Viewed as fixed variables
- Assumed not to be affected by measurement error
- $\rightarrow$  'Independent' or 'exogenous'

#### Response

- Variability is modelled (but could also be attributed to other factors)
- → 'Dependent' or 'endogenous'

# Linear regression

# Simple linear regression



For the *i*<sup>th</sup> observation:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

 $eta_0$  Intercept  $eta_1$  Slope  $eta_i$  Individual error term

# Regression coefficients

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

**Intercept** Average y when x = 0**Slope** Increase in y for a one-unit increase in x

The regression line passes through:

- The point  $(0, \beta_0)$
- The 'centre' of the data  $(\bar{\vec{x}}, \bar{\vec{y}})$

#### **Error term**

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- 'Sucks up' unaccounted variation in  $\vec{y}$
- $\bullet$  Model assumptions are mostly on  $\epsilon$

# Multiple linear regression

For the *i*<sup>th</sup> observation:

$$y_i = \beta_0 + \sum_j \beta_j x_{ij} + \epsilon_i$$

 $\beta_0$  Intercept

 $\beta_j$  Slopes

 $\varepsilon_i$  Individual error term

**Intercept** Average y when all  $x_{.j} = 0$  **Slopes** Increase in y for a one-unit increase in  $x_{.j}$ all else being equal

# Multiple linear regression

In matrix form:

$$\vec{y} = \mathbf{X}\vec{\beta} + \vec{\epsilon}$$

- X Design matrix
- $\vec{\beta}$  Regression coefficients
- ε Error term

# Gauss-Markov assumptions (plus one)

- The relationship between  $\vec{y}$  and  $\mathbf{X}$  is linear
- The  $\vec{x_1}, \ldots, \vec{x_p}$  are not collinear
- Exogeneity
  - Given X, errors have mean 0
  - Since  $X_i$  is deterministic, it is uncorrelated with  $\varepsilon_i$
- Spherical errors
  - Errors have a fixed variance (homoscedasticity)
  - Errors are uncorrelated between observations (no autocorrelation)
- (Given X, errors are normally distributed)

# Model fitting by maximum likelihood

$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$
 where  $\mu_i = \beta_0 + \sum_j \beta_j x_{ij}$ 

 $\beta_j$  'True' values (fixed but unknown)  $\hat{\beta}_j$  Our estimates for the  $\beta_j$  (computed from the data)

# Given some values for the $\hat{\beta}_j$ ...

- We can write down the probability of observing each  $Y_i$  alone
- Since the  $Y_i$  are independent by assumption, we can write down the joint probability of observing the  $Y_i$  together
- $\rightarrow f(\vec{y}|\,\hat{\beta}_j)$  is the probability of the data given the parameters

# Model fitting by maximum likelihood

$$Y_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$$
 where  $\mu_i = \beta_0 + \sum_j \beta_j \, x_{ij}$ 

#### Maximum likelihood principle

- Consider instead the likelihood function  $f(\hat{\beta}_j | \vec{y})$
- Same as  $f(\vec{y}|\hat{\beta}_j)$ , but interpreted as the probability of certain parameter values given the data
- ightarrow Can optimise to estimate the  $\hat{eta}_j$

# Hypothesis testing for parameters

How do we know the estimates  $\hat{\beta}_j$  are not just random fluctuations?

# Hypothesis testing for parameters

How do we know the estimates  $\hat{\beta}_j$  are not just random fluctuations?

Additional assumption: 
$$\epsilon_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$

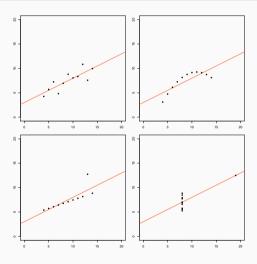


- ullet Define confidence intervals for  $\hat{eta}_j$
- Test  $H_0$  that  $\hat{\beta}_i = 0$  (no effect)

# Diagnostics for linear regression

| Assumption violated     | Severity | Causes                                         |
|-------------------------|----------|------------------------------------------------|
| Linearity or additivity | ++++     | Model misspecification                         |
| Independence            | +++      | Autocorrelation<br>(typical of time series)    |
| Homoscedasticity        | ++       | $\sigma^2$ changes over the range of $\vec{y}$ |
| Normality               | +        | Outliers                                       |

# Many datasets, one regression line



**Logistic regression** 

# Classification problems

What happens if the outcome  $\vec{y}$  is dichotomous?

# Classification problems

What happens if the outcome  $\vec{y}$  is dichotomous?

We can model the probability

$$\Pr(y_i = 1 \mid \vec{x}_i) = p_i,$$

i.e. the probability of belonging to some non-reference category, as a function of the predictors  $\vec{x_1}, \dots, \vec{x_p}$ 

...but how?

# Logistic regression

#### Idea

Transform the linear predictor to lie on the unit interval

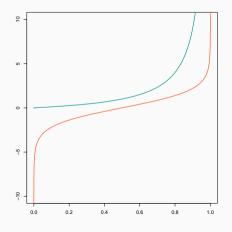
For the *i*<sup>th</sup> observation:

$$logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \sum_j \beta_j x_{ij} + \epsilon$$

 $\beta_0, \dots, \beta_p$  represent the log odds ratios between classes

# Probability and odds

$$\mathsf{logit}(p) = \mathsf{log}\bigg(\frac{p}{1-p}\bigg)$$



Throw a fair die. How often will you get a 1?

## **Probability**

$$p=rac{1}{6}pprox 16.67\%$$
 of the time

#### Odds

$$\frac{p}{1-p} = \frac{1/6}{5/6} = \frac{1}{5} = 0.2$$

(once for every 5 times you don't)

#### **Odds** ratio

$$OR = \frac{\text{odds in some group } (y = 1)}{\text{odds in a reference group } (y = 0)}$$

#### **Odds** ratio

#### Example

$$OR = \frac{odds \ of \ smoking \ in \ lung \ cancer \ patients}{odds \ of \ smoking \ in \ cancer-free \ individuals}$$

#### Interpretation

```
 \label{eq:order} \text{OR} \begin{cases} < 1 & \text{smoking is less likely} \\ = 1 & \text{smoking is no more likely in lung cancer patients} \\ > 1 & \text{smoking is more likely} \end{cases}
```

# Logistic regression recap

#### Model

- Outcome is the probability of being in some non-reference class
- Regression coefficients represent log odds ratios

#### **Interpretation of coefficients**

- $\exp(\beta)$  is the odds ratio between y = 0 and y = 1
- OR = 1 is the threshold corresponding to no effect