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Regression models explore associations between:

e A response variable y

—

e Explanatory variables (or predictors) xi, ..., X,

Question
Do the xi,..., X, capture the variability of y?



Regression modelling steps

Formulation

1. Error distribution for the response y
2. Combination of predictors
3. Link function

Estimation of regression coefficients

Diagnostics (does the model fit the data well?)

Selection (can we improve the fit?)
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Components of regression models

(1) A model for the variability of the response y

e yis continuous — normal distribution
e yis dichotomous — binomial distribution

(2) A combination of predictors xi,..., X,

e Often linear, e.g. 2x7 + 3%
e B; =2 and B, = 3 are regression coefficients

(3) A link between the two

e Often depends on the model for the response
e Linear regression: E[y] = 2X] + 3X;



Predictors and response

Predictors

e Viewed as fixed variables
e Assumed not to be affected by measurement error
— ‘Independent’ or ‘exogenous’

Response

e Variability is modelled
(but could also be attributed to other factors)

— ‘Dependent’ or ‘endogenous’



Linear regression



Simple linear regression

o
-

For the ith observation:

Vi=Bo+ By Xi+ &

B, Intercept
B, Slope
€; Individual error term

=3
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Regression coefficients

Vi=Bo+ B Xi+ &

Intercept Average y when x=0
Slope Increase in y for a one-unit increase in x

The regression line passes through:
e The point (0, ;)
e The ‘centre’ of the data (X, y)



Vi=Bo+ By Xi+ ¢

e ‘Sucks up’ unaccounted variation in y
e Model assumptions are mostly on ¢



Multiple linear regression

For the ith observation:

Vi=Bo+>;B;xi+ &

B, Intercept
B, Slopes
€; Individual error term

Intercept Average ywhenall x. ;=0

Slopes Increase in y for a one-unit increase in x;
all else being equal



Multiple linear regression

In matrix form:

y=XB + &

X Design matrix
B Regression coefficients
€ Error term




Gauss-Markov assumptions (plus one)

e The relationship between y and X is linear
e The xi,..., X, are not collinear
e Exogeneity

e Given X, errors have mean 0
e Since X, is deterministic, it is uncorrelated with ¢;

Spherical errors

e Errors have a fixed variance (homoscedasticity)
e Errors are uncorrelated between observations (no autocorrelation)

(Given X, errors are normally distributed)
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Model fitting by maximum likelihood

Yi~N(u,0°) where p;=By+>B;x;

B; ‘True’ values (fixed but unknown)

A

B; Our estimates for the B; (computed from the data)

Given some values for the ﬁj
e We can write down the probability of observing each Y; alone
e Since the Y; are independent by assumption, we can write down
the joint probability of observing the Y; together
— f(y| f%j) is the probability of the data given the parameters
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Model fitting by maximum likelihood

Yi~N(p;,0°) where p;=B,+3,B;X;

Maximum likelihood principle

e Consider instead the likelihood function f(ﬁj] y)

e Same as f(y/| [Aij), but interpreted as the probability of certain
parameter values given the data

— Can optimise to estimate the Bj

11



Hypothesis testing for parameters

~

How do we know the estimates B; are not just random fluctuations?
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Hypothesis testing for parameters

How do we know the estimates f%j are not just random fluctuations?

Additional assumption: g, "< A/(0, 0?)
N

e Define confidence intervals for Bj
e Test Hp that Gj = 0 (no effect)
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Diagnostics for linear regression

Assumption violated Severity Causes

Linearity or additivity ++++ Model misspecification

Independence o+ Autocorrelation
(typical of time series)

Homoscedasticity ++ 0’ changes over the range of y

Normality + Outliers
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Many datasets, one regression line
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Logistic regression




Classification problems

What happens if the outcome y is dichotomous?
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Classification problems

What happens if the outcome y is dichotomous?

We can model the probability
Pr(yi=1|X) = pi,

i.e. the probability of belonging to some non-reference category, as
a function of the predictors xi, ..., X,

...but how?
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Logistic regression

Idea
Transform the linear predictor to lie on the unit interval

For the ith observation:

logit(p;) = IOg(l—p) BO+§:Bxu+e

Bo,- .., B, represent the log odds ratios between classes
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Probability and odds

logit(p) = log (L) Throw a fair die.
1-p How often will you get a 1?

Probability

p=—-~16.67% of the time

| =

Odds
p _1/6_1

1-p 5/6 5

(once for every 5 times you don’t)

=0.2
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odds in some group (y = 1)

OR = odds in a reference group (y = 0)
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Example

odds of smoking in lung cancer patients

OR = odds of smoking in cancer-free individuals

Interpretation

<1 smoking is less likely
OR{ =1 smoking is no more likely in lung cancer patients

> 1 smoking is more likely
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Logistic regression recap

Model

e Qutcome is the probability of being in some non-reference class
e Regression coefficients represent log odds ratios

Interpretation of coefficients

e exp(B) is the odds ratio between y=0and y=1
e OR =1 is the threshold corresponding to no effect
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