Generalised linear models

Gianluca Campanella

Contents

Regression models

Linear regression

Logistic regression

Regression models

Regression models

Regression models explore associations between:

- A response variable \vec{y}
- Explanatory variables (or predictors) $\vec{x_1}, \ldots, \vec{x_p}$

Regression models

Regression models explore associations between:

- A response variable \vec{y}
- Explanatory variables (or predictors) $\vec{x_1}, \dots, \vec{x_p}$

Question

Do the $\vec{x_1}, \ldots, \vec{x_p}$ capture the variability of \vec{y} ?

Regression modelling steps

- Formulation
 - 1. Error distribution for the response \vec{y}
 - 2. Combination of predictors
 - 3. Link function
- Estimation of regression coefficients
- Diagnostics (does the model fit the data well?)
- Selection (can we improve the fit?)

Components of regression models

- (1) A model for the variability of the response \vec{y}
 - \vec{y} is continuous \rightarrow normal distribution
 - \vec{y} is dichotomous \rightarrow binomial distribution

Components of regression models

- (1) A model for the variability of the response \vec{y}
 - \vec{y} is continuous \rightarrow normal distribution
 - \vec{y} is dichotomous \rightarrow binomial distribution
- (2) A combination of predictors $\vec{x_1}, \dots, \vec{x_p}$
 - Often linear, e.g. $2\vec{x_1} + 3\vec{x_2}$
 - $\beta_1 = 2$ and $\beta_2 = 3$ are regression coefficients

Components of regression models

- (1) A model for the variability of the response \vec{y}
 - \vec{y} is continuous \rightarrow normal distribution
 - \vec{y} is dichotomous \rightarrow binomial distribution
- (2) A combination of predictors $\vec{x_1}, \dots, \vec{x_p}$
 - Often linear, e.g. $2\vec{x_1} + 3\vec{x_2}$
 - $\beta_1 = 2$ and $\beta_2 = 3$ are regression coefficients
- (3) A link between the two
 - Often depends on the model for the response
 - Linear regression: $\mathbb{E}[\vec{y}] = 2\vec{x_1} + 3\vec{x_2}$

Predictors and response

Predictors

- Viewed as fixed variables
- Assumed not to be affected by measurement error
- \rightarrow 'Independent' or 'exogenous'

Response

- Variability is modelled (but could also be attributed to other factors)
- → 'Dependent' or 'endogenous'

Linear regression

Simple linear regression

For the *i*th observation:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

 eta_0 Intercept eta_1 Slope eta_i Individual error term

Regression coefficients

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Intercept Average y when x = 0**Slope** Increase in y for a one-unit increase in x

The regression line passes through:

- The point $(0, \beta_0)$
- The 'centre' of the data $(\bar{\vec{x}}, \bar{\vec{y}})$

Error term

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- 'Sucks up' unaccounted variation in \vec{y}
- \bullet Model assumptions are mostly on ϵ

Multiple linear regression

For the *i*th observation:

$$y_i = \beta_0 + \sum_j \beta_j x_{ij} + \epsilon_i$$

 β_0 Intercept

 β_j Slopes

 ε_i Individual error term

Intercept Average y when all $x_{.j} = 0$ **Slopes** Increase in y for a one-unit increase in $x_{.j}$ all else being equal

Multiple linear regression

In matrix form:

$$\vec{y} = \mathbf{X}\vec{\beta} + \vec{\epsilon}$$

- X Design matrix
- $\vec{\beta}$ Regression coefficients
- ε Error term

Gauss-Markov assumptions (plus one)

- The relationship between \vec{y} and \mathbf{X} is linear
- The $\vec{x_1}, \ldots, \vec{x_p}$ are not collinear
- Exogeneity
 - Given X, errors have mean 0
 - Since X_i is deterministic, it is uncorrelated with ε_i
- Spherical errors
 - Errors have a fixed variance (homoscedasticity)
 - Errors are uncorrelated between observations (no autocorrelation)
- (Given X, errors are normally distributed)

Model fitting by maximum likelihood

$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$
 where $\mu_i = \beta_0 + \sum_j \beta_j x_{ij}$

 β_j 'True' values (fixed but unknown) $\hat{\beta}_j$ Our estimates for the β_j (computed from the data)

Given some values for the $\hat{\beta}_j$...

- We can write down the probability of observing each Y_i alone
- Since the Y_i are independent by assumption, we can write down the joint probability of observing the Y_i together
- $\rightarrow f(\vec{y}|\,\hat{\beta}_j)$ is the probability of the data given the parameters

Model fitting by maximum likelihood

$$Y_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$$
 where $\mu_i = \beta_0 + \sum_j \beta_j \, x_{ij}$

Maximum likelihood principle

- Consider instead the likelihood function $f(\hat{\beta}_j | \vec{y})$
- Same as $f(\vec{y}|\hat{\beta}_j)$, but interpreted as the probability of certain parameter values given the data
- ightarrow Can optimise to estimate the \hat{eta}_j

Hypothesis testing for parameters

How do we know the estimates $\hat{\beta}_j$ are not just random fluctuations?

Hypothesis testing for parameters

How do we know the estimates $\hat{\beta}_j$ are not just random fluctuations?

Additional assumption:
$$\epsilon_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$

- ullet Define confidence intervals for \hat{eta}_j
- Test H_0 that $\hat{\beta}_i = 0$ (no effect)

Diagnostics for linear regression

Assumption violated	Severity	Causes
Linearity or additivity	++++	Model misspecification
Independence	+++	Autocorrelation (typical of time series)
Homoscedasticity	++	σ^2 changes over the range of \vec{y}
Normality	+	Outliers

Many datasets, one regression line

Logistic regression

Classification problems

What happens if the outcome \vec{y} is dichotomous?

Classification problems

What happens if the outcome \vec{y} is dichotomous?

We can model the probability

$$\Pr(y_i = 1 \mid \vec{x}_i) = p_i,$$

i.e. the probability of belonging to some non-reference category, as a function of the predictors $\vec{x_1}, \dots, \vec{x_p}$

...but how?

Logistic regression

Idea

Transform the linear predictor to lie on the unit interval

For the *i*th observation:

$$logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \sum_j \beta_j x_{ij} + \epsilon$$

 β_0, \dots, β_p represent the log odds ratios between classes

Probability and odds

$$\mathsf{logit}(p) = \mathsf{log}\bigg(\frac{p}{1-p}\bigg)$$

Throw a fair die. How often will you get a 1?

Probability

$$p=rac{1}{6}pprox 16.67\%$$
 of the time

Odds

$$\frac{p}{1-p} = \frac{1/6}{5/6} = \frac{1}{5} = 0.2$$

(once for every 5 times you don't)

Odds ratio

$$OR = \frac{\text{odds in some group } (y = 1)}{\text{odds in a reference group } (y = 0)}$$

Odds ratio

Example

$$OR = \frac{odds \ of \ smoking \ in \ lung \ cancer \ patients}{odds \ of \ smoking \ in \ cancer-free \ individuals}$$

Interpretation

```
 \label{eq:order} \text{OR} \begin{cases} < 1 & \text{smoking is less likely} \\ = 1 & \text{smoking is no more likely in lung cancer patients} \\ > 1 & \text{smoking is more likely} \end{cases}
```

Logistic regression recap

Model

- Outcome is the probability of being in some non-reference class
- Regression coefficients represent log odds ratios

Interpretation of coefficients

- $\exp(\beta)$ is the odds ratio between y = 0 and y = 1
- OR = 1 is the threshold corresponding to no effect