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Regression models

Regression models explore associations between:

• A response variable y⃗

• Explanatory variables (or predictors) x⃗1, . . . , x⃗p

Question
Do the x⃗1, . . . , x⃗p capture the variability of y⃗?
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Regression modelling steps

• Formulation
1. Error distribution for the response y⃗
2. Combination of predictors
3. Link function

• Estimation of regression coefficients

• Diagnostics (does the model fit the data well?)

• Selection (can we improve the fit?)
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Components of regression models

(1) A model for the variability of the response y⃗
• y⃗ is continuous → normal distribution
• y⃗ is dichotomous → binomial distribution

(2) A combination of predictors x⃗1, . . . , x⃗p

• Often linear, e.g. 2x⃗1 + 3x⃗2

• β1 = 2 and β2 = 3 are regression coefficients

(3) A link between the two
• Often depends on the model for the response
• Linear regression: E

[
y⃗
]
= 2x⃗1 + 3x⃗2
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Predictors and response

Predictors

• Viewed as fixed variables

• Assumed not to be affected by measurement error

→ ‘Independent’ or ‘exogenous’

Response

• Variability is modelled
(but could also be attributed to other factors)

→ ‘Dependent’ or ‘endogenous’
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Linear regression



Simple linear regression

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

For the i th observation:

yi = β0 + β1 xi + εi

β0 Intercept
β1 Slope
εi Individual error term
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Regression coefficients

yi = β0 + β1 xi + εi

Intercept Average y when x = 0

Slope Increase in y for a one-unit increase in x

The regression line passes through:
• The point (0,β0)

• The ‘centre’ of the data (¯⃗x, ¯⃗y)
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Error term

yi = β0 + β1 xi + εi

• ‘Sucks up’ unaccounted variation in y⃗

• Model assumptions are mostly on ε
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Multiple linear regression

For the i th observation:

yi = β0 +
∑

j βj xij + εi

β0 Intercept
βj Slopes
εi Individual error term

Intercept Average y when all x · j = 0
Slopes Increase in y for a one-unit increase in x · j

all else being equal

9



Multiple linear regression

In matrix form:

y⃗ = Xβ⃗+ ε⃗

X Design matrix
β⃗ Regression coefficients
ε⃗ Error term
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Gauss–Markov assumptions (plus one)

• The relationship between y⃗ and X is linear

• The x⃗1, . . . , x⃗p are not collinear
• Exogeneity

• Given X, errors have mean 0
• Since Xi is deterministic, it is uncorrelated with εi

• Spherical errors
• Errors have a fixed variance (homoscedasticity)
• Errors are uncorrelated between observations (no autocorrelation)

• (Given X, errors are normally distributed)
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Model fitting by maximum likelihood

Yi ∼ N
(
μi,σ2

)
where μi = β0 +

∑
j βj xij

βj ‘True’ values (fixed but unknown)
β̂j Our estimates for the βj (computed from the data)

Given some values for the β̂j…
• We can write down the probability of observing each Yi alone
• Since the Yi are independent by assumption, we can write down

the joint probability of observing the Yi together
→ f (y⃗ | β̂j) is the probability of the data given the parameters
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Model fitting by maximum likelihood

Yi ∼ N
(
μi,σ2

)
where μi = β0 +

∑
j βj xij

Maximum likelihood principle

• Consider instead the likelihood function f (β̂j | y⃗)

• Same as f (y⃗ | β̂j), but interpreted as the probability of certain
parameter values given the data

→ Can optimise to estimate the β̂j
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Hypothesis testing for parameters

How do we know the estimates β̂j are not just random fluctuations?

Additional assumption: εi
i.i.d.∼ N

(
0,σ2

)
↓

• Define confidence intervals for β̂j

• Test H0 that β̂j = 0 (no effect)
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Diagnostics for linear regression

Assumption violated Severity Causes

Linearity or additivity ++++ Model misspecification

Independence +++ Autocorrelation
(typical of time series)

Homoscedasticity ++ σ2 changes over the range of y⃗

Normality + Outliers
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Many datasets, one regression line
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Logistic regression



Classification problems

What happens if the outcome y⃗ is dichotomous?

We can model the probability

Pr
(
yi = 1

∣∣ x⃗i
)
= pi,

i.e. the probability of belonging to some non-reference category, as
a function of the predictors x⃗1, . . . , x⃗p

…but how?
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Logistic regression

Idea
Transform the linear predictor to lie on the unit interval

For the i th observation:

logit(pi) = log
(

pi

1− pi

)
= β0 +

∑
j

βjxij + ε

β0, . . . ,βp represent the log odds ratios between classes
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Probability and odds

logit(p) = log
(

p
1− p

)
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Throw a fair die.
How often will you get a 1?

Probability

p =
1
6

≈ 16.67% of the time

Odds
p

1− p
=

1/6
5/6

=
1
5

= 0.2

(once for every 5 times you don’t)
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Odds ratio

OR =
odds in some group (y = 1)

odds in a reference group (y = 0)
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Odds ratio

Example

OR =
odds of smoking in lung cancer patients

odds of smoking in cancer-free individuals

Interpretation

OR


< 1 smoking is less likely

= 1 smoking is no more likely in lung cancer patients

> 1 smoking is more likely
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Logistic regression recap

Model

• Outcome is the probability of being in some non-reference class

• Regression coefficients represent log odds ratios

Interpretation of coefficients

• exp(β) is the odds ratio between y = 0 and y = 1

• OR = 1 is the threshold corresponding to no effect
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