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Abstract

The aim of this computer vision research project was to experiment with different methods of
detecting shadows in moving images, where the camera itself was in motion – typical of many
mobile robotics applications.

Shadow detection for static cameras (which are assumed to not change their viewpoint) has
been studied thoroughly. However, there has yet to be a methodology that can robustly
handle the rapidly changing scenery, low resolution and high noise levels that are typical of
consumer-grade webcams.

Videos of scenes with simple shapes and well-defined shadows were captured using webcams
attached to two small mobile robots. Using these videos, experiments were carried out with
a number of existing shadow detection methods, proven to work well with static scenes, to
determine their performance at correctly detecting shadows for a camera in motion.

It was found that these methods performed poorly on the videos captured in this project, due
to the nature of the input data as well as assumptions they make about the physical properties
of shadows, which proved not to be true for the indoors scenery used in this project’s video
captures.

Edge features were explored, with the hypothesis that shadow edges will have different charac-
teristics to object edges and can therefore be classified as such, given a well-performing learning
algorithm and good training data.

Different methods of reducing noise within the input images were found to have a positive
effect on edge detection; creating longer and more connected contours that closer resemble
actual physical boundaries in the image, however the learning algorithms tested performed
badly.

The output of the detection methods was compared against “ground truth” images: These were
used to evaluate their performance via True Positive and False Positive rates.
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Chapter 1 Background & Objectives

Chapter 1

Background & Objectives

1.1 The Importance of Shadows in Human Nature

Shadows often go unnoticed in our day-to-

Figure 1.1: Adelson’s Checker Shadow
Illusion. Notice how squares A and B are
the same shade, but we perceive B as lighter
implicitly due to the shadow being cast
around it. Further examples and explana-
tion of this phenomena can be found in the
paper “Lightness Perception and Lightness
Illusions” [1] [2].

day lives, left to our subconscious brain to
deal with. They provide us with a wealth
of spatial information which we use without
even knowing. Shadows can be used to deter-
mine the shape, size, order and distance of
objects in a scene – even when such objects
are hidden from view. Shadows in motion
are particularly useful, as they can be used to
quickly estimate the trajectory and position
of moving objects without requiring stereo-
scopic vision.

To best demonstrate the importance of shad-
ows within the human visual system, a num-
ber of people have created optical illusions
which make use of shadows and shading to
trick the observer. A good example of this is
Adelson’s “Checker Shadow Illusion” (figure
1.1). Adelson’s illusion includes two regions
which are exactly the same shade, but usu-
ally the one in shadow is perceived as darker.
Examples of shadow motion being used to infer object motion can be seen in the work by
Kersten et al. [4], who showed that shadows are a very strong source of spatial information in
the human visual system, often overriding other stimuli, even when the shadows themselves
do not make sense.
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Chapter 1 Background & Objectives

It is interesting to note that the shape of a shadow does not have to follow the shape of the
casting object; the use of shadows to convey depth in paintings is a good example of this. “The
Birth of the Virgin” by Fra Carnevale (figure A.1) has a number of shadows that do not follow
convention, yet it is not immediately obvious. The shadows being cast upwards in this painting
would suggest the scene was lit from beneath, despite any sources of light doing so. They still
help to create depth in the scene, and so their surreal nature goes unnoticed.

Cast
Shadow

Penumbra Cast
Shadow

Figure 1.2: Cast shadows demonstrating different characteristics. The left is a very soft
shadow with a lot of penumbra and which falls off gradually. The shadow on the right is
a lot simpler, with no penumbra and hard edges. The former occurs when an object is lit
from a low angle, the latter occurs when lit from above (such as in direct sunlight)

One of the first groups to notice this independence of shadow shape and perceived depth were
Cavanagh & Leclerc, in their 1989 paper [5]:

“In the stimuli that we have studied, the only requirements for the perception
of depth due to shadows were that shadow regions be darker than the surrounding,
nonshadow regions and that there be consistent contrast polarity along the shadow
border. Three-dimensional shape due to shadows was perceived when shadow areas
were filled with colours or textures that could not occur in natural scenes, when
shadow and nonshadow regions had textures that moved in different directions, or
when they were presented on different depth planes.”

A formal description of shadows can be found in “The perception of cast shadows” by Ma-
maissan et al. [6] They describe five different areas of shadow: Shading, Attached Shadow,
Inter-reflection, Cast shadow and Penumbra. These different types create different cues in the
human visual system: Shading is used to determine object texture, and attached shadow gives
cues about an objects shape. Cast shadows are the most important for depth perception. The
presence of penumbra around a cast shadow gives an indication of the distance between shadow
caster and light source: The more penumbra there is, the further away the light source is.
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Chapter 1 Background & Objectives

1.2 The Importance of Shadows in Computer Vision

Shadows have classically been treated as noise in vision tasks, as they interfere with object
detection, creating False Positives and reducing the accuracy of detectors. A recent survey
of shadow detection techniques by Sanin, Sanderson & Lovell (2013) [3] shows that object
detection does improve when shadows can be detected and accounted for (figure 1.3).

Few have investigated the potential of shadows as features of vision, rather than noise. Recent
studies by Dee, Santos et al. looked at how shadows could be used qualitatively, to allow a
robot to reason about its environment [7]. They suggest that, given a good enough detection
method, shadows could be used to infer the order of objects in scenes, and shape and positional
information. They could be used to perceive depth in a scene, as an alternative or complemen-
tary method to stereopsis – which is more computationally expensive than shadow detection,
and relies on highly textured surfaces to infer depth using multiple cameras, whereas shadow
can be detected on smooth and reflective surfaces.

Figure 1.3: Figure from the Sanin, Sanderson & Lovell paper [3] which demonstrates
how the accuracy of an object detector improves when shadows can be accounted for.

Dee & Santos used awareness of shadows to allow a robot to self-localise itself in its environment.
They used shadows to estimate thresholds for image segmentation, to segment objects from the
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scene background. The size and position of these objects and the angles of their shadows, from
the robot’s viewpoint, were then used to correct odometry errors and allow the robot to more
confidently know where it was in its environment. Compared to simple fixed thresholding
and Otsu’s method (which are explained in the following sections), their knowledge-based
approach had a marked increase in accuracy.

1.3 Computer Vision principles

This project makes use of some common computer vision algorithms. This section gives a very
brief introduction to some of the core concepts used.

1.3.1 Colour Spaces

Colour Space is a mathematical concept referring to the representation of colour through a
distribution of numbers.

Used in this project are the RGB (Red, Green, Blue) colour space, and several HSL (Hue,
Saturation, Lightness) colour spaces. The RGB space provides a simple mapping of a colour
to three values (three channels). In the 8-bit RGB colour space commonly used on desktop
computers, bright red is represented as (255, 0, 0) and bright blue is represented as (0, 0, 255).
Shades of grey range from (0, 0, 0) to (255, 255, 255). RGB is a simple representation, but has
some shortcomings, such as having no way of separating chroma (the colour) from luminance
(lightness).

When dealing with shadows, it is important to consider the luminance of a colour separately
from its chroma – which can be done using the HSL colour spaces [8]. In order to use them
in the project, colours must be converted from RGB, which means colours represented in
HSL spaces will still inherit some of the shortcomings of the RGB space [9]. However, from
a conceptual standpoint they make it easier to extract brightness information from colours.
The simplest HSL space is the HSV (Hue, Saturation, Value) space. Other HSL colour spaces
include YUV, XYZ and L*UV.

Greyscale versions of RGB images are generated by converting the RGB image to a colour
space which has a lightness/luminance channel – greyscale images are usually one or more
components of a colour combined together. In OpenCV 1, the equation to get a greyscale
channel (Y) from an RGB image is:

Y ← 0.299 · R + 0.587 ·G + 0.114 · B

Which seems to imply that the green component will affect the greyscale image more than red
and blue – the default OpenCV implementation is biased towards the green channel.

1http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.

html#cvtcolor
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1.3.2 Thresholding

When referring to “thresholding an image” in this report, thresholding means clamping the
colour values of pixels in an image such that all values are above or below the given value
(threshold). Thresholding can provide a simple way of segmenting an image (dividing an image
up into a small group of discrete colours, or ‘segments’), to find blobs that are certain colours –
a very simple and fast way of tracking coloured objects – for example 2.

The simplest way of thresholding is using a fixed value: Pixel intensities that are below or
above a given threshold value are replaced with another given value – for instance, for detecting
shadows:

if intensity < 25:

intensity = 0

else:

intensity = 255

In the above example, pixels which have an intensity of less than 25 (very dark) are thresholded
to 0, otherwise they are set to 255. This creates a binary mask of the input image.

Fixed-value thresholding fails when dealing with a sequence of images, or even a single image,
which have a lot of noise or drastic changes in lighting. It is difficult to manually find threshold
values which work well across different images. Automatically finding the best threshold
is something which has been studied exhaustively, as shown in a 2004 survey by Sezgin &
Sankur [10].

Some methods of automatic thresholding are quite complex. Apart from fixed value threshold-
ing, this project also makes use of a relatively simple histogram-based approach called ‘Otsu
thresholding‘, named after its author [11]. Otsu thresholding finds the best threshold for an
image based on its histogram – it finds the two highest peaks in an image histogram and sets the
threshold to be in the centre of them, such that the threshold maximizes the margin between
the peaks.

1.3.3 Edge Detection

Edges in image processing are regions of pixels which have a change in colour/intensity/value.
The greater the change, the steeper the gradient and the more defined the edge becomes. Strong
edges in images can indicate the boundaries of objects – or in this project, the boundaries of
shadows. As edges are usually based on gradients within an image, there will be a lot of edges
wherever there are highly-textured surfaces or patterns. Often these are noise – weak edges –
and should be filtered out somehow, leaving just strong edges. This project makes use of the
Canny Edge Detector [12] to detect potential shadow and object edges in images. The Canny
detector mitigates noise in images by using two thresholds; a lower threshold and an upper

2http://www.aishack.in/2010/07/tracking-colored-objects-in-opencv/
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threshold. The upper threshold is used to mark where an edge begins, and an edge only ends
when the gradient dips below the lower threshold. With a good set of thresholds, the Canny
detector performs well at finding natural edges in images containing noise.

1.3.4 Noise Removal

In natural imagery, such as that captured from digital cameras (like Webcams), noise is often
an image. In this project, noise comes in two types; sensor noise (the film grain and colour
spots often seen in digital photographs)3 and artefacts created by lossy compression algorithms,
such as JPEG compression.4

Noise reduction algorithms aim to reduce noise in natural images without also removing too
much useful information.

Gaussian Blurring was tested as a fast and simple way of removing noise. By convolving images
with a Gaussian kernel, noise is averaged out of the image. Applying a Gaussian blurring to
an image before edge detection can help remove unwanted, noisy edges from the result, as
demonstrated in the Laplacian of Gaussian approach. 5 The drawback of simply blurring an
image to remove noise is that it also smooths out strong edges and removes details in the image
– details which may be important.

Later on in the project, Bilateral Filtering was used to remove noise from images. Bilateral
Filtering filters out noise by averaging pixels that are close to each other, both in colour value
and in physical distance. This results in smooth surfaces, but with edges and strong textures
retained [13] – which is useful for when the image needs to be put through an edge detector.

1.4 Machine Learning

Towards the end of the project, it became clearer that attempting to classify shadows based on
their physical models may not be the best approach – even with formal definitions of how
shadows appear and what causes them, they did not always follow these definitions. Therefore,
a statistical approach may be better. The last experiment in the project attempted to teach
several different machine learning algorithms by example. The algorithms would then be able
to predict whether new examples were shadow or not. This section describes three supervised
learning algorithms that were used in the project very briefly due to time constraints.

3http://www.dpreview.com/glossary/digital-imaging/noise
4http://www.stat.columbia.edu/~jakulin/jpeg/artifacts.htm
5http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
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1.4.1 Features, Instances (or Examples) and Labels

A ‘feature’, in the context of machine learning, is a single, usually numeric, value. Typical
features used in vision could be:

• The brightness of a pixel (in the range 0-255);

• The length of an edge (distance in pixels);

• The ratio of colour (between blue and green) of a pixel.

Features can also be known as ‘heuristics’.

An instance is a collection of different features, which represents a single concept (such as an
object in an image). In vision, an instance could be:

• An edge;

• A single pixel;

• A region of the image.

Labels describe what class of concept or object an instance belongs to. In this project, instances
are labelled as Background, Object, Penumbra and Shadow.

Labelled instances can be used to teach a learning algorithm via example: Instances that share
the same label should have a set of features common to them all – a pattern should emerge. A
supervised machine learning algorithm will essentially generate hypotheses such as “instances
where feature X is around 3.14 belong to the class Foo”.

It has been difficult to find papers that give formal definitions of features/heuristics, instances
and examples. A very good reference is the Russel & Norvig book, ‘Artificial Intelligence: A
Modern Approach’. [14]

1.4.2 Support Vector Machines

The best introduction to Support Vector Machines found for this project has been a paper by
Burges (1998) [15]. The following brief explanation of SVMs makes significant reference to
information given in this paper.

Support Vector Machines (SVMs) look for linear separability in data. Given a set of examples
and labels, they attempt to fit a line of best fit which separates the examples based on their labels.
The best-fitting line is the one which has the maximum margin between the differently-labeled
examples. This margin is known as the support vector.

These work best for data which only has two labels, and which can easily be separated by a
straight line – however, by using different kernels, such as a polynomial kernel, a SVM can be
trained on non-linear data.
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Support Vector Machines have been shown to perform well given some fairly complex tasks
such as digit recognition. Unlike other learning algorithms, they do not suffer from “the curse
of dimensionality”. ‘Dimensions’ refers to features in this case – ‘High-dimensional spaces’ are
essentially large sets of features.

However, the performance depends on the kernel chosen. It is difficult to estimate which
kernel (ie. linear or polynomial) would be a good choice for the data it is given.

1.4.3 Neural Networks

An excellent description of Neural Networks can be found in the Russel & Norvig book [14].

Neural Networks are learning algorithms inspired by biology. They are a simplified math-
ematical model of the human brain. A Neural Network is composed of neurons – units
which perform simple mathematical or logical operations on a single input. The neurons are
connected in a network, and the connections can be weighted – similar to how neurons in a
brain communicate via synapses. A number of input neurons accept single values – such as
pixel intensities from a greyscale image – and feed them through a number of ‘hidden layers’ of
neurons, which are connected to output neurons.

Given their ability to take a small number of simple inputs and deduce complex patterns from
them, they have found much use as autonomous control systems, such as in self-driving robots.
In 1995, researchers at CMU successfully trained a Neural Network to steer a van on public
roads, using data from a low-resolution digital camera as input to the network [16], along with
steering data. The network was taught by collecting images of the road and steering data as a
human driver drove the vehicle. After training, the network could then steer the vehicle itself
with reasonable accuracy.

Careful consideration must be taken of the design of a neural network – how many input
neurons it has, how many hidden layers it has, what weights are given for each hidden layer –
all affect its performance. There are a number of parameters which must be chosen carefully –
which can be done via testing and cross-validation – but training can take a long time, compared
to other algorithms, such as Random Forests, which are explained next.

1.4.4 Random Forests

Information on how Random Forests work was taken from the original Breiman paper [17].
This paper assumes the reader has prior expert knowledge on learning systems, especially
decision trees, ‘bagging’ and other ensemble learning methods such as Adaboost. It is possible
that I have misinterpreted how Random Forests work, but I will attempt to explain them as
best as I can below.

Random Forests are an ensemble learning method – that is, they are a collection of differ-
ent learning algorithms combined to get better performance than any of the methods used
individually.
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Random Forests use a collection of decision tree learners to create a “forest” of small decision
trees, based on random selections of features and instances. Each tree generated has its error
rate tested. Decision trees are created that use a small, random selection of features (2 or 3
features is quoted as empirically being a good number, according to the paper). The forest is
grown until the combined error rate of all the trees converges.

The paper claims that Random Forests work well on data that is composed of many ‘weak’
features: Features that may not have strong patterns or correlations within them. It is also
robust against outliers in the data. Compared to Neural Networks or SVMs, Random Forests
(and decision trees in general) can be trained very quickly.

1.5 Statistical Evaluation

1.5.1 Ground Truthing

In the context of statistics, the ‘ground truth’ is the ‘gold standard’ data that can be used
to compare an algorithm’s performance against. Ground truth data is the expected, best
possible output from any given image processing algorithm. Ground Truth can be generated
automatically using a method that is proven to work well – this could be a vision algorithm
proven to detect specific objects in a scene with 99% accuracy – or can be obtained manually.
This project uses manually obtained ground truth data, where input images are taken and
pixels are given different labels such as Object or Shadow.

Figure 1.4: An example input image, and its corresponding ground truth image – which
is also the expected output of a shadow detector (if it had the best possible accuracy). The
pixel values in the ground truth image on the right correspond to specific classes – grey
pixels are Object, black pixels are Shadow.
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1.5.2 ROC Curves

‘Receiver Operating Characteristic‘ (ROC)
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Figure 1.5: What an ROC chart looks
like. The dashed lines denote the True Pos-
itive/False Positive rates of different things.
Most things will not have points plotted
beneath the diagonal line, as that would
mean they perform worse than chance.

Charts are the primary method by which
different shadow detection algorithms are
evaluated in this project. They provide a fast
way of visualizing large amounts of perfor-
mance data, to quickly see if an algorithm is
performing well over large and varied sets of
data.

Figure 1.5 gives an example of an ROCCurve
Chart. The solid line denotes chance – al-
gorithms that perform the same as a ran-
dom distribution would create data along
this line. The bottom left corner is for algo-
rithms which produce very few true or False
Positives, meaning that their True/False Pos-
itive Rates are both low. This indicates that
they generally tend to under-detect things in
images. Anything in the top right corner
of the graph indicates an algorithm is over-detecting the given class, as it has both a high
True Positive rate and a high False Positive rate. Anything in the top left corner indicates
an algorithm is performing well, as it has a high True Positive rate and a low False Positive
rate. There should not be anything in the bottom right corner, as that would indicate that the
True/False Positive/Negatives are being counted wrong.

The True Positive Rate (TPR, otherwise known as Sensitivity) is calculated as:

T PR =
T r uePosit ive s

(

T r uePosit ive s + F al seN e g at ive s
)

And the False Positive Rate (FPR, or Fall-Out):

F PR =
F al sePosi t ive s

(

F al sePosi t ive s +T r ueN e g at ive s
)

More useful metrics which can be plotted on an ROC chart are documented in “An introduc-
tion to ROC analysis” by Fawcett (2006). [18]

1.6 Motivation

The method of detecting shadows in Dee & Santos’ experiments was very simple: thresholding
on the Value channel of the Hue/Saturation/Value (HSV) colour space. They suggest in the
“open issues” section of their paper that a more refined approach to detecting shadows may
improve the performance of their qualitative spatial reasoning methodology.
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The aim of this project was to implement some of the shadow detection algorithms listed in
the Shadow Survey paper [3], and test them on a data-set similar to the one used in Dee &
Santos’ experiments, with the final outcome being an analysis of existing detection methods on
this specific type of imagery (moving cameras, instead of static cameras). Whichever method
performed the best over a varying dataset could be integrated into their PQRS framework.

This project was also an opportunity to learn C/C++ and how to use the OpenCV library,
which is a very popular library for image processing.

1.7 Analysis

This is an exploratory research project, in which the overarching hypothesis is: “Given good
data and a suitable approach, shadows can be detected from cameras on moving platforms.” The
overall plan for the project was to investigate as many things relating to shadow detection as
was possible until time ran out.

Datasets exist for detecting shadows in static scenes (where the camera’s viewpoint never
changes)6. No prior datasets could be found for the specific problem of detecting shadows
from a moving camera, so it was decided that the first objective of the project was to capture
such a dataset, using mobile robots available in the university.

Evaluating the accuracy of shadow detection methods was to be done by comparing their
outputs against ground truth images and calculating the True/Negative False/Positive rates –
as ground truthing could be done by hand as soon as the input data was obtained.

This project focuses mostly on hard shadows, attached to objects. Existing work mentioned in
the previous section has shown that these are easier to detect as they have well defined edges.

The detection methods listed in the Shadow Survey paper [3] have all been tested with static
scenes, where the camera did not move. A large number of them used background subtraction
to help segment shadows and objects in the scene. As this project focuses on images from
constantly moving cameras, it was accepted that any implementation of the methods mentioned
in the survey may perform very poorly, as subtracting background from moving camera images
is a very difficult problem. Some work has been done on background subtraction for moving
observers [19], but it relies on the objects in the scene being static. This problem was considered
out of the scope of this project, due to its complexity, and time constraints.

The output of the detectors could be given in several ways – one would be a list of contours
(lines with multiple segments), or bounding boxes (the rectangle that a shadow area fits into).
A pixel-based representation was chosen, as it would be the easiest to visualize, as regions of
shadow would map directly on to the input images. It would also be easiest to compare, as any
detectors’ output could be compared against the ground truth on a per-pixel basis.

The first hypothesis was that simple greyscale image thresholding would provide the baseline

6http://arma.sourceforge.net/shadows/
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performance, and that most methods would perform better. Therefore the first detection
method to be implemented would be simple greyscale thresholding, with the test harness and
ground truth analysis programs being developed in parallel.

This project did not intend to implement any shadow detection methods in real-time, instead
opting for an offline approach, where data was captured and processed retrospectively. However,
it was decided that the average execution times of each detection method should be recorded,
as it may have occurred that two methods performed with similar accuracy but differed in
speed – and whichever was fastest would be useful to know for future implementations.

For data collection, we decided to create some simple scenes with one or two light sources and
several “casters” – objects to cast shadow. We opted for controlled indoors office environments
where we had full control over the lighting.

1.8 Planning

After initial background reading and analysis, it was decided that this project should consist of
the following tasks:

• Gather video recorded from a mobile robot with a camera attached;

• Create ground-truth images for frames of the captured video, manually labelling image
regions as “object”, “shadow”, “penumbra” or “background”;

• Implement existing shadow detection methods, starting with the simplest to implement;

• Chart the performance of each method during and after implementation, to compare
against the others;

• Iterate the above two tasks for the remainder of the project time, with the aim of finding
an approach that has an acceptable level of accuracy when used on the collected data.

From these tasks, the following deliverables:

• An experimental setup for testing shadow detectors (the test harness), allowing others to
repeat the tests;

• A set of videos recorded from one or more controlled environments using cameras on
board mobile robots (we had several suitable robots available to us);

• A set of ground truth images for representative samples of some of the captured videos,
where visual estimation has been used to label image regions, which is reasonably true to
reality (areas labelled as shadow are shadows in the input image);

• Performance data for each of the detection methods tested.
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At the beginning of the project, an initial Gantt Chart was sketched out (see appendix figure
A.8) which the project would attempt to follow. The project was split into four stages:

1. Data Collection: Nothing could be tested without data to test it on, so data collection
was the first priority.

2. Development of the Test Harness: Developing the test harness (and ground truth
comparison) programs first meant that all the implementation code would be forced to
use a standard set of input and output conventions.

3. Implementation of detection methods: The Shadow Survey paper categorizes different
methods based on the types of image features they are looking at. Initially, investigating
three features was planned, spending two weeks developing code for each. The three
features were Chomacity, Edges and Texture. It was expected that this would entail some
machine learning towards the end, when the best features were found for training a
classifier.

4. Final analysis: Optimistically, by this point some methods would be implemented
which clearly outperformed the others. The analysis would consist of comparing the
algorithms through ROC charts and also comparing their execution speed.

1.9 Research Methodology

This is a very challenging computer vision problem with no clear solution. Because of this, no
major up-front planning was done. Weekly meetings were held between my supervisor and I,
in which results of the week were discussed and work for the following week planned.

I maintained a blog throughout the project7, in which I aimed to post at least once a week,
usually on a Sunday. This would force me to do some analysis and reflection of the results of
that week. It also served as another channel of communication between my supervisor and I,
as they would read it and have some suggestions for me at the next meeting.

This was very much an AI/Engineering project, focusing more on evaluating hypotheses than
designing and implementing concrete software tools. The first stage of development was the
test harness – with a small set of requirements sketched out, this was developed using rapid
prototyping. Configuration files were written first, and the harness developed around these.

For the implementation of shadow detection methods, a test-driven methodology was chosen.
Specific outputs were expected (the ground truth images), and each method had to reproduce
these outputs as accurately as possible. Instead of having a suite of discrete “Pass/Fail” tests,
a methods performance and accuracy would be tested using the test harness. Any bugs or
programming errors would be obvious when programs were ran by the test harness. The
output of each program was to be compared against ground truth images, and their “true
positive rate” versus their “False Positive rate” plotted on a ROC chart.

7http://shadows.odj.me
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1.10 Initial Design Decisions

I decided that I would implement my shadow detection programs in C++. All other code
would be in Python, as I am comfortable with Python and already have working knowledge
of a number of Python libraries. Whilst a lot slower than compiled languages like C++,
Python is popular in scientific communities, as demonstrated through toolkits such as SciPy
and numpy8, the latter of which is used throughout the code of this project. Python also lends
itself naturally to being a “shell scripting” language – as the test harness is intended to simply
execute other programs on the system, it made sense to implement the test harness in Python.
Using C++ code for the actual vision algorithms would make them a lot more lightweight
and much faster than if they were written in Python, hence why I chose to implement that
part specifically in C++.

1.10.1 Development Tools

Whilst an IDE may have helped me with the C++ side of my project, I struggled to find a free
IDE for Linux in which I could write Python code as well as C++. Eclipse9 has plugins for
both Python and C++, but is bulky and combersome.

Being comfortable with Vim10, I elected to write my code in Vim. Plugins exist to provide
intelligent auto-completion11 and syntax checking/highlighting of errors12, which helped me
write in a language, and using libraries that, I was not familiar with.

For source control management, I kept all my code in git repositories13. All my files were also
backed up on Dropbox14.

1.10.2 Choice of libraries (C++)

As this project intended to teach me some C++, it was decided at the start that all shadow
detection algorithms should be implemented in C++ using the OpenCV library.15 Had I
not restricted myself to C++, I could have used ImageJ (in Java)16 or possibly the Python
Imaging Library17. However, OpenCV provides the largest code-base, with implementations of
many computer vision algorithms, as well as machine learning algorithms. It also has Python
bindings, allowing me to also use it for the analysis part of my code (which is all written in

8http://www.numpy.org
9https://www.eclipse.org
10http://www.vim.org
11https://github.com/Valloric/YouCompleteMe
12https://github.com/scrooloose/syntastic
13http://git-scm.com/
14http://www.dropbox.com
15http://www.opencv.org
16http://imagej.nih.gov/ij/
17http://www.pythonware.com/products/pil/
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Python). OpenCV also appears to have the most comprehensive documentation, with an
abundance of tutorials demonstrating how to use different parts of the library.

The programs I implemented later in C++ may require a large number of command-line
parameters. For this reason, they would require a library with robust command line argument
parsing. I found the Boost18 Program_Options19 suitable for this. Being familiar with the
argparse module in Python, it allowed me to consider command line arguments first before
implementing the rest of the program – a form of rapid prototyping.

For compilation of the C++, I required a build system which would compile my code and
link the OpenCV and Boost libraries to it correctly. As I have been working entirely in a Unix
environment for my project, I could write this myself using GNU Makefiles20 – but that could
be time consuming, especially if wanting to compile within different Operating Systems (such
as Windows or OSX). Another option was automake21. However, as OpenCV and Boost
both make use of CMake, I chose CMake instead22. CMake is intended for cross-platform
compilation. It can automatically find a number of libraries (including Boost and OpenCV)
on the machine it is compiling on, and I was able to write a CMakeFile very quickly.

1.10.3 Configuration files

When developing the test harness, the configuration files were written first – inspired by
previous students’ personal projects23 in which they wrote out how data would be stored in
their system represented through JSON ( JavaScript Object Notation), before implementing
the code to generate or use such data.

The configuration files should be self-documenting and self-explanatory; both through simple
syntax and ability to leave comments in the files.

JSON was my first choice, as there are a huge number of JSON libraries for most popu-
lar programming languages.24 However, JSON has some setbacks, such as lack of proper
commenting.

YaML (YAML Ain’t Markup Language) was discovered, after some searching. YaML also
has libraries for many popular languages25. YaML is described as “human friendly data
serialization”, which made it a good fit for my project.

18http://www.boost.org
19http://www.boost.org/doc/libs/1_55_0/doc/html/program_options.html
20http://www.gnu.org/software/make/manual/make.html
21http://www.gnu.org/software/automake/
22http://www.cmake.org/
23http://www.pieratnine.com/shut-up-and-jam
24http://www.json.org/
25http://www.yaml.org/
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1.10.4 Requirements for Test Harness

As the test harness was going to be used to test the shadow detector implementations, some
thought about its design was needed before the first prototype was written.

The test harnesses job was to, given a list of possible parameters for a program or group of
programs, run these programs with all possible combination of the given parameters. It was
expected that this may generate a lot of data.

It was decided that the test harness should run different processing ‘chains’: Groups of
programs, executed one after the other, which would work on images copied to a temporary
directory, with the ground truth program being ran last.

The best way to test every possible combination of program parameters in a chain was to build
a tree of the parameters. Traversing the tree depth-first until it terminated (reached a leaf node)
would result in one full list of parameters for the programs in a chain. Doing this whilst also
moving over the tree breadth-first would result in a list of lists of all parameter combinations.

The following functional requirements were outlined:

• Read all configuration from human-readable file – make configuration as simple to read
as possible, by having default paths/program arguments, variable expansion and shell
globbing 26;

• Accept command line arguments, for selecting which chains to run, which image sets to
test on, as well as ‘verbose’ and ‘test’ modes for programs (to help aid debugging);

• Create a directory tree structure in which all possible combinations of ‘chain’ program
parameters (specified in configuration files) are represented;

• (Optional) Make programs run asynchronously (fork to background) and run in parallel
– but kept in a process pool limited by number of CPUs available.

26http://www.linuxjournal.com/content/bash-extended-globbing
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1.10.5 Requirements for Shadow Detection Methods

If the detection methods were to be tested in a test harness, it made sense to have a set of
command line arguments and inputs/outputs that would be common to all of the methods.
The requirements for these programs was also outlined:

• Accept any image format accepted by OpenCV’s imread 27 as input (given via the
command line parameter inputs);

• Accept a list of input files and operate on them all;

• Output of the methods must be in greyscale PNG format. Given the command-line
parameter output_dir, output files must have the same name as the inputs, except
with the “.png” extension, and stored within the output_dir directory;

• Output of the methods must use the same values for labels as the ground truth, so they
can be compared;

• All parameters that are adjustable on the command line must follow the double-dash
(--argument parameter) format.

1.10.6 Format for the ground truth / output data

The best way of representing the ground truth was as greyscale, 8-bit, 1-channel images – with
the same width and height as the input images. Pixel values correspond to different labels:

• Background: 0

• Penumbra: 25

• Object: 153

• Background: 255

• Unknown: 250

It was decided to save these images in the PNG format, as this provided good lossless compres-
sion of the data. Lossy formats (such as JPEG) would have introduced artefacts which would
reduce the accuracy of the ground truth.

These standards were decided on at the start of the project. The different pixel shades provide a
good visual representation of the scene, as shadows are dark and objects stand out against the
white background.

27http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_

video.html?highlight=imread
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Chapter 2

Implementation

This chapter documents the actual implementation of code throughout the course of this
project, including problems that were encountered. Actual results of the shadow detection
methods implemented are discussed in the next chapter.

2.1 Data Collection

Two data-sets of natural imagery were captured during the first half of the project.

2.1.1 Pioneer datasets

2.1.1.1 Technical Details

The Pioneer P3-DX1 robot is a small, two-wheeled mobile robotics platform. It has sonar
range sensors and a small-factor X86 computer on-board running Linux. Its movements can be
controlled, and its sensors read, via any program on it that uses the ARIA library.

This particular Pioneer had an analogue camera attached to it, connected to TV capture card.
The resolution of the captured images was 768 × 512 pixels. The images were captured as 8-bit
RGB colour images.

The processor on-board was too slow to save images in compressed formats such as PNG or
JPEG – taking several seconds to capture and save each image. PPM format images were used,
which are an uncompressed bitmap format. As such, they were very large; roughly 2.5MB
each. The Pioneer had limited storage space, so care had to be taken over the length of the
data captures. Even with PPM format images, the rate of data capture was roughly 1 image
every half a second (2 frames per second). The robot was moved in very small increments to
compensate for the low frame-rate, so a smooth movement is still seen when the images are
played back at a higher frame-rate.

1http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
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Due to problems with degraded batteries and initially getting software to compile on the robot,
there was limited time to actually capture any data with the Pioneer. Nonetheless, five different
sets of images were captured. When each capture was finished, the robot was carried back to
its starting position and left to charge whilst the images were copied via SFTP to a laptop with
a bigger hard drive and then converted to maximum-quality JPEG (using the ImageMagick
convert command2).

The range values reported by all the sonar

Figure 2.1: Pioneer Robot in the ISL

sensors on the robot were recorded for each
image frame captured. The robot’s estimated
position and heading per frame were also
recorded – although these are only best-guesses
by the robot.

1.7GB of PPM format data was recorded over-
all. Each image set contained between 186
and 289 images. After conversion to JPEG,
the dataset was 100MB large. Further noise
removal reduced the dataset to 75MB.

2.1.1.2 Environment

The Pioneer my supervisor and I had access to was in the Intelligent Systems Laboratory on
Penglais Campus. This is a large room with lots of open floor space, allowing these Pioneers
room to roam. It has the advantage of having only small windows with blinds, which allowed
us to make the room completely dark and then light it using two high-power lamps. The
rooms overhead lighting was divided into four sections which can be switched on and off
independently.

2http://www.imagemagick.org/script/convert.php
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Figure 2.2: The Intelligent Systems Laboratory environment.

The lamps were at roughly desk-hight, and as such cast much longer shadows than the overhead
lights would. As they were the only source of light in an enclosed environment and were
relatively bright, the shadows they cast were hard shadows (little or no penumbra).

We chose to use one object as the “caster” in this scene: A tall white polystyrene block which
was able to stand upright in the centre of the room. The robot took a circular path around
the block, and then took a similar path in the opposite direction – to capture the cast shadows
from the block at all possible angles.

Five different sets of images were captured:

1. One floodlight on, no overhead lights;

2. One floodlight on, background overhead lights on;

3. One floodlight on, all overhead lights on;

4. Both floodlights on, no overhead;

5. Both floodlights on, background overhead lights on.

(“Background” referring to the section of the room which we were not using)
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2.1.1.3 Quality of data

The images from this dataset ultimately proved too difficult to use. The images were very dark,
making it difficult to discern between cast shadow and simply darkness – especially as shadows
would fade into the distance. This made it very challenging to ground truth, and only 6 images
from the first set of images were ground-truthed before it was decided it was an exercise in
futility.

The images also suffered from multiple sources of noise – sensor noise from the camera,
combined with the noise induced in the analogue signal from camera to TV capture card. The
lens of the camera was also a cheap wide-angle lens which suffered from chromatic aberration
around the edges, due to the distortion of the lens – creating some phantom edges in the image.

The background of the image was far more detailed than the foreground, and the cluttered edges
of the environment cast complex shadows. This all proved too time-consuming to accurately
ground-truth, and all shadows but those cast by the polystyrene block were ignored in the
ground-truth – which means the ground truth itself was far from true.

The carpet in the lab also suffered from self-shadowing: The carpet tiles were all oriented at
right-angles to one another, creating a checker-board pattern in the images, which was quite
prominent under some of the lighting conditions.

The odometry and sonar data captured by the robot was also unreliable. The odometry was
a best-guess estimate that was made increasingly inaccurate as the robot’s wheels slipped or
moved slower than normal. The sonar suffers from a lot of interference from the reflective
metal surfaces which fill the lab (such as metal table legs). This telemetry data never found use
in this project.

The following page has an example image from each set, from the robot’s starting position, to
demonstrate the effects of different lighting on the shadow casting object.

2.1.1.4 Post-Processing

As the images had a lot of grainy noise, especially in dark regions, some noise removal software
was tested as a post-processing stage.

The software used was Neat Image3, commercial software which claims to be able to remove
a number of different noise types from natural images. As this is proprietary software, no
documentation exists on what it does internally to remove noise, although it does seem to
make use of ‘camera profiles’ – where a pattern of noise is detected over a sequence of images
taken on the same camera, which can then be subtracted from the image. This ‘camera profile’
feature was not available to me at the time of testing as the shareware, free version of the
software had restricted functionality.

3http://www.neatimage.com/
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Figure 2.4: Original image (left) and image filtered through Neat Image (right).

The software did reduce the noise in the images, as shown in figure 2.4 – but it also sharpened
edges, creating a ‘halo’ around highly contrasting areas, which could interfere with edge
detection algorithms later. It also took a long time to process the individual images, and taxed
the computer it was running on quite heavily. The noise reduction was promising, but I
decided against using it in the future as it may be removing information which I couldn’t see,
especially in regions of shadow. It also wouldn’t be realistic; any shadow detection algorithm
running on a robot wouldn’t have time to spend several seconds processing each frame to filter
noise. I decided to focus on noise reduction implementations directly available in the OpenCV
library, which were explained extensively in papers available for free online – unlike Neat
Image, which is completely proprietary.

2.1.1.5 Concluding remarks

My analysis of the Pioneer data has been very pessimistic. The data may be a poor fit for this
project, but the images could find use in other experiments. Especially when their resolution is
reduced (which is a very cheap way of removing noise from images).

2.1.2 Kondo datasets

Several weeks later into the project, a fellow student let us borrow the small, bipedal robot they
were using for their own dissertation. This was a Kondo KHR-3HV Humanoid Robot4 which
was much smaller than the Pioneer, and could be walked across table tops. This allowed us to
create a simpler, more controlled scene for it to walk through, using desks against a wall in an
empty office, with some simple household items as props and a single desk lamp for lighting.

4http://www.robotshop.com/en/kondo-khr-3hv-humanoid-robot-kit.html
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2.1.2.1 Technical Details

Kondo was directly tethered to a laptop which used the libkondo4 library from Python
to send it movement commands. Kondo was able to execute a constant walk across the table
whilst a webcam taped to its torso captured continuous video at around 15 frames per second
average. The webcam was connected to the laptop via another USB cable.

The guvcview5 software was used to con-

Figure 2.5: Kondo KHR-3HV robot.

figure the webcam and then capture video.
White balancing and auto-exposure features
were disabled on the webcam so that they
would remain constant throughout the cap-
tured videos, even as lighting levels in the
images changed.

guvcview captured the videos in the H.264
(MPEG4) video codec. The videos were at a
960× 720 resolution; slightly higher than the
image frames captured from the Pioneer cam-
era. However, as these were image frames
being sent over USB (therefore, already com-
pressed) and converted to a lossless video for-
mat, compression artifacting was introduced
to the captured data. The low light levels of
the scene meant that the webcam’s exposure
had to be set quite high, which introduced a
lot of sensor noise.

Three videos were captured – ranging from 45 seconds to 1 minute 30 seconds long. In total,
325MB of video data was captured.

2.1.2.2 Environment

A confined environment was created in the corner of an empty office – desks were joined
together against the walls to create a surface over which Kondo could walk. The camera
attached to Kondo was pointed slightly downwards, so that the rest of the room would never
come into view, keeping the scene simple.

Some objects from around the room were placed in the scene – a fizzy drinks can, a whiteboard
eraser and a remote control (we got creative with our very limited supply of props). A single
desk-lamp was used to light the scene. This cast some strong shadows in the scene, but the
shadows were considerably softer than those in the Pioneer imagery. This was not necessarily
a bad thing, as now the penumbra of the shadows could be investigated also.

In each of the videos, Kondo walked through the scene past the various objects in a straight

5http://guvcview.sourceforge.net/
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line. Considerable body movement of the robot was captured on the camera, creating an
interesting effect – there are constant small changes in the camera viewpoint’s pitch, roll and
yaw. This could possibly be used as a way of inferring depth in the 2D images [20], which
could help determine what is “foreground” and what is “background” – information which
could be used by shadow detection methods.

2.1.2.3 Selection of video frames

As this dataset was in compressed video format, there was a need to extract frames from the
videos in order to ground truth against them and use them in the detection methods (which, as
mentioned earlier, took lists of images as inputs).

The fact that the video was in a format which used key-frames was exploited to extract a
selection of frames that were reasonably different from each other.

To extract the frames as JPEG images, ffmpeg6 was used. ffmpeg contains a very powerful
command-line tool for interacting with video files. Using the select filter, ‘I-frames’ that
were at least 3 seconds apart were extracted. ‘I-frames’ are the frames within a video stream
which contain a full image – as opposed to ‘B-’ and ‘P-frames’ which contain only differences
in motion.7 This is the command that was used:

ffmpeg -v debug -i kondo1.mkv -vsync 0\

-vf select=’eq(pict_type\,PICT_TYPE_I)*(isnan(prev_selected_t)’\

’+gte(t-prev_selected_t\,3))’\

-f image2 ’%4d.jpg’ 2>&1 | fgrep ’select:1’

This was done for the first data-set only. 32 frames were extracted and subsequently ground
truthed against. For this dataset, a ground truthing tool was developed – which is described
later in this chapter.

Figure 2.6: Example frames from the kondo1 image set.

6http://www.ffmpeg.org
7MPEG Key-frames explained: http://nickyguides.digital-digest.com/keyframes.htm
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2.1.2.4 Noise removal

For this dataset, Bilateral filtering was tested on the extracted images. This was implemented
in C++ using OpenCV’s bilateralFilter function. The pixel neighbourhood, colour
sigma and space sigma were all set empirically at 33, which had a strong smoothing effect on
the images. In this data set, textures are not particularly important, so this was acceptable.
Strong object and shadow edges were still retained.

Bilateral Filtering, whilst taking a few seconds to iterate over , was considerably faster than the
methods in use in the Neat Image software. It could potentially be used as part of an image
processing pipeline running in near- real-time.

Figure 2.7: Results of Bilateral Filtering (right) on an image from the kondo1 image set
(left). Note how the noise is completely gone, but strong object edges have been retained.

2.1.2.5 Concluding remarks

This seems to be a better quality data-set when it comes to shadow detection. The shadows are
much darker than the surface they are being cast on. The simple objects in the scene made
it easier to draw ground-truths for the extracted frames. The whole scene has a strong red
component in the RGB channel, due to the warm colour of the light emitted by the desk lamp.
For testing shadow detection methods, the kondo1 image set was used far more than the
others.

2.1.3 Artificial datasets

Shortly after collecting the Kondo data, the thought occurred that some artificial data may be
a good idea – to provide a source of ‘perfect’ data on which the algorithms could be tested and
debugged first.
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Using 3D modelling and raytracing software, it would be possible to create environments over
which we had full control of lighting and shadowing, without the issue of noise, and which
had perfect ground truthing for every image frame.

With this in consideration, two days were devoted to learning how to use Blender in order
to create and render some artificial image sets. Blender8 was chosen because it is Free, Open
Source Software (similar software is mostly commercial with a price attached, such as 3DS
Max9). Blender comes with a very capable ray-tracing renderer, which can render scenes with
very complex lighting and shadowing, taking into account ambient occlusions, reflectivity,
surface emissions and sub-scattering. However, all shadows could only be rendered as hard
shadows with no penumbra.

Three different environments were created. Each one had the camera move around the scene
and return to its original position. There were 250 frames in each, and the frames were saved
as PNG images. All the images were rendered at a 960 × 720 resolution.

The first environment was very simple – three primitive shapes with solid black shadows and
primary colours against a background, with a camera rotating around them. The second one
was an intentionally dark scene, with volumetric lighting and some highly-contrasting textures.
It also had shadows that faded into the black background. This was intentionally similar to
the Pioneer data. The final one made use of coloured lighting and contained more objects and
multiple lights.

To generate full sets of ground truths for each of the environments, nearly all the rendering
options were disabled. Object materials were set to a uniform grey colour (rgb(153, 153,

153)) with lighting disabled. The sky/background was set to bright white. Anti-aliasing was
switched off. This produced very accurate ground truth data. What couldn’t be disabled was
the gradual fall-off of shadows: So instead of being uniform black in the ground truth, some
shadows would gradually fade out. The solution to this problem was simply to make all code
which made use of the ground truth treat values that did not correspond to any of the labels
(Background, Shadow, Object, ...) as either shadow or background, depending on what they
were using it for.

2.2 Ground Truthing

Ground Truthing can be a time-consuming task: labelling complicated shapes accurately within
dozens of images is not an easy feat. In this project, the ground truth images were obtained
by opening an input image in graphics editing software, creating a new empty layer overlaid
on the original image, and then manually painting the ground truth onto this layer using the
paint tool with the mouse. The ground truth layer was then saved as a separate image. This
was done for every image which needed to be ground truthed.

8http://www.blender.org
9http://www.autodesk.com/products/autodesk-3ds-max/overview
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2.2.1 Comparison of different tools

2.2.1.1 Existing Tools

GIMP was the first tool to be used – for ground-truthing the Pioneer images. It is a very
powerful graphics editing package, often considered the free and open-source alternative to
Adobe’s Photoshop. It has tools for selecting image regions with complex shapes (including
some ‘intelligent’ edge fitting tools), which can then be filled in with a solid colour. It also has
tools for editing images at the per-pixel level, useful for making small adjustments which could
make a ground truth more accurate. The concept of “layers” in GIMP is useful as the ground
truth could be kept as a semi-transparent layer above the original image, making it easier to
follow the natural boundaries in the original.

Due to GIMP’s complexity as a graphics package, it also has a complicated user interface which
is mostly mouse-driven. Whilst some keyboard shortcuts exist, too much of my work-flow
involved navigating through mouse-driven interfaces. Opening, editing and then saving each
ground truth image was taking too much time (one of the reasons that only nine of the
Pioneer images were ground truthed). Because of this, it was decided to investigate whether
any software existed specifically for the task of labelling complex regions in images for the
purposes of ground truthing.

Some tools do exist, such as GEDI10 – GEDI was not tested as it can only output image
annotations in XML format. It also seemed to only allow for simple image regions to be
defined: rectangles and simple polygons.

ICY11 also looked like promising software for this purpose. ICY is an image analysis tool
aimed at biological imagery analysis. It contains tools for annotating images. However, it was
found that the interface was very “clunky”, with a steep learning curve – it took too long to
learn, so was not used.

There seems to be a conceptual difference between what is considered ‘ground truth’ in this
project, and what is used in others. This project uses ground truth where images are labelled at
the per-pixel level, but in vision projects such as LabelMe12, images are commonly annotated
at a higher level: usually bounding boxes (rectangles or polygons) defined around regions of
interest.

2.2.2 Implementation

Having had experience with writing simple painting programs before, it was decided that a
tool ground-truth painting tool should be written specifically for this project. One day was
spent on this. Python and the Pygame framework were used, as they allowed for a working

10http://gedigroundtruth.sourceforge.net/
11http://icy.bioimageanalysis.org/
12http://labelme.csail.mit.edu/Release3.0/
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prototype to be developed very quickly. Pygame13 contains libraries for loading and displaying
images, drawing primitive shapes, and input (keyboard and mouse) handling.

The first prototype was written to implement the following functionality:

• Accept a list of input images via the command-line only: No time-consuming “Open
File” graphical dialogues;

• Display the input image as a ‘display-only’ layer beneath the ground truth layer;

• Have a single tool for painting, which paints using adjustable-radius circles;

• Switch between different label classes (Shadow, Object, Penumbra) using a mouse button,
erase via holding right-click;

• Save the ground-truth layer for the currently displayed image to another directory as
greyscale PNG by pressing the S key;

• Be able to cycle through these images with the keyboard arrow keys (and re-load existing
ground truth image if it exists for an image).

This first working prototype was implemented within several hours. It proved a lot quicker to
use than GIMP, due to the fact all interaction was done via the mouse or single keyboard keys
– the only graphical interface was the window in which the image (and mouse cursor) were
displayed.

To make shadows easier to ground truth, OpenCV’s Canny edge detection was then used to
detect edges in the input images and display them as an extra display-only layer when the E

key was held down. The mouse cursor was intended to ‘snap’ to the closest edge in this mode,
to make it easier to follow edges – but in practise this does not work very well if at all. That
being said, simply displaying edges in the images does help with painting a more accurate
ground truth.

This tool was used to ground-truth the 32 images of the kondo1 image-set. This task took
roughly one day to finish. There are some inaccuracies in the resultant ground truths due to
having to draw around shadows using the mouse, but most inaccuracies were from human
error rather than problems with the tool.

2.3 Test Harness

The test harness software was a major part of this project. It took roughly a week to implement
the functionality outlined in Chapter 1.10.4, Requirements for Test Harness. The configuration
files were written first. Command-line argument parsing was then implemented using the
Python argparse module, which provides a sophisticated way of parsing these arguments.

13http://www.pygame.org
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With sensible configuration files and command-line arguments, the rest of the script could be
implemented fairly quickly.

2.3.1 Parameter Tree building

A challenging part of writing the test harness was implementing the parameter list generation.
Given this configuration, for example:

chain:

program1:

argument1: [’foo’, ’bar’, ’baz’]

argument2: [1, 2]

program2:

argument1: [’a’, ’b’, ’c’]

The test harness had to generate a list of command-lines:

[

’program1 --argument1 foo --argument2 1; program2 --argument1 a’,

’program1 --argument1 foo --argument2 1; program2 --argument1 b’,

’program1 --argument1 foo --argument2 1; program2 --argument1 c’,

...

’program1 --argument1 baz --argument2 2; program2 --argument1 c’

]

Which the test harness could then loop through and pass to a shell (bash) for execution. The
parameters in the above configuration example would result in a list of 3 × 2 × 3 = 18 unique
shell statements in which program1 would be executed followed by program2.

It was known that this could achieved by building a tree structure of the parameters, but how
exactly to construct this tree was a difficult thing to conceptualize. The tree was implemented
using Python’s dict (Dictionary) structures, which are essentially hash-tables (dynamic arrays
where items are referenced by key rather than index; this key is usually a string).

Getting the tree structure right took a lot of trial and error. Luckily, since Python is an
interpreted language, it is easy to experiment with. The interactive mode of ipython was
used to prototype functions for building a tree as well as generating the command line strings
from branches of the tree.

Building command strings from the tree was fairly simple. The tree is recursed in a depth-first
manner. Every node down a branch is a dictionary of dictionaries. Dictionary keys are
appended to a string. When a dictionary contains only one value (and that value is null, or
None in Python), this is considered a termination condition for the recursion. The resulting
string is added to a list of strings.
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The difficult part is knowing which strings are program names and which are program
arguments, as this information is not encoded in the string. The simple way of solving this
was to replace instances of “--program_name” in a string with “; program_name”. The
preceding semicolon is inserted to let the shell executing the command statement know that
this is a separate program. Obviously this approach would cause problems if program_name
was also an argument or parameter to one of the other programs. These issues could be avoided
had proper tree data structure classes been implemented.

Once the tree structure was implemented, getting the test harness to run chains full of programs
was easy to implement using the subprocess module.

Development of the test harness continued throughout the majority of the project – new fea-
tures being implemented only when they were needed. Focus was on making the configuration
files for the harness simple to read and change, so new shadow detection methods could be
tested with minimal effort.

2.3.2 Process Pools

Mode Time

Serial (Default) 3m32.757s
Parallel (-p flag) 0m53.802s

Table 2.1: Execution times for the test harness in serial and parallel execution modes
(times averaged over 10 runs each). This was tested on a laptop with 8 processors.

Once the first shadow detection methods was properly implemented, the test harness started to
take quite a while to test the chains. The harness executed all the programs serially, and the time
it took to execute each program was CPU-bound rather than Input/Output-bound (CPU usage
whilst the harness ran would spike, but there was little hard disk activity). Because of this, it
was decided to add a ‘parallel’ mode to the test harness, which would run the chains in parallel
on N − 1 CPUs, (where N is the total number of processors on the system). One CPU was
kept free as using all CPUs caused desktop applications to stall whilst the harness was running.
Introducing a parallel execution mode had a definite improvement on the execution time of
the test harness, which came in very useful later in the project as testing more complicated
shadow detection programs with a greater number of parameters could take hours to finish.

The parallel mode is implemented using a “process pool”. This is a queue structure. How this
pool works is best explained through the pseudo-code in the appendices (algorithm A.11). Jobs
can be ran asynchronously to the test harness by creating subprocess.Popen objects in
Python, which forks the processes by default. Determining when jobs have finished is done by
polling the queue every 100 milliseconds.
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2.3.3 Scalability

Since the test harness was able to produce so many unique sets of parameters for any given
chain, there was concern that the output of the chains would use up considerable memory
(if kept in /tmp as is default; a directory which is commonly stored in memory on modern
Linux systems) or disk space, or the large number of directories would cause problems (e.g. be
slow to enumerate).

However, this has proven not to be the case. The output images produced by the chains,
being highly-compressed greyscale PNG images, are very small – around 4 kilobytes max-
imum. The largest image sets (the artificial data) contain 250 images each. One of the
more complicated shadow detection programs has a configuration with 5 different parame-
ters with 2–4 possible values each. This results in 216 different chains (3 × 3 × 4 × 3 × 2).
250 image s × 216 cℎains × 4KB = 5, 4000KB = 52.7MB. This is still a very conservative
amount of memory consumed.

There were several occasions where running the test harness on all image sets using all chains
exhausted the memory of the machine it was running on – but this could be attributed to the
large number of large desktop programs also open at these times.

One problem left unsolved is the error handling of the test harness. It had no means of
detecting when a program crashes due to a segmentation fault (segfault) rather than a normal
error. When testing a new shadow detection method in parallel, there were points where they
would segfault rapidly. This would eventually cause the whole system to grind to a halt and
then throw a kernel panic (It was a proud moment when innocuous userland code brought the
whole system under).

This was later solved by adding a prompt to the test harness – when the number of errors
reaches a threshold amount, the script pauses and waits for user input.

2.4 Simple Thresholding program

Once the first functioning prototype of the test harness was written, with Pioneer images and
some ground truth images readily available, development began on the C++ shadow detection
programs. Before the ground truth comparison code could be written, there needed to be
an algorithm with output images to compare it to. A simple thresholding program which
converted input images to greyscale and then thresholded based on command line parameters
was written.
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2.4.1 Configuring CMake, finding libraries

In order to compile anything, CMake had to be configured, which meant creating a CMakeFile.
This was fairly easy to achieve by following the documentation for CMake, but it had
some problems finding the libraries for OpenCV. This was solved by finding a copy of
FindOpenCV.cmake, a module for CMake which automatically found OpenCV libraries.

CMake had some trouble detecting the configuration of my system and incorrectly determined
that my machine couldn’t link to libraries dynamically. It statically linked all of OpenCV and
the Boost Program_Options library to my programs at first. This was not discovered until
later on in the project, when the static linking started to cause problems with memory leaks
in OpenCV functions. Once this problem was discovered and fixed (by forcing CMake to
link libraries dynamically), some of the memory leaks and segmentation faults went away. It
also meant that my programs loaded faster (not having to load all of OpenCV into memory
per-program, every time they were ran) which had a noticeable impact on the execution time
of the test harness.

2.4.2 A minimal design

The first thing to be written was shadows.hpp; a header file containing the pixel values for
the different classes output by all the shadow detectors. By including this header, all programs
could make use of the global variables C_SHADOW, C_BACKGROUND, C_PENUMBRA and
C_UNKNOWN. If it was decided that the values of these variables should be changed in the
future, only this header would have to be altered.

2.4.3 Command-line parsing

Before a list of images could be processed, the program needed a way of obtaining such a
list. Boost’s Program_Options library provides a powerful command-line parser, which
allows ‘multi-token’ arguments. The library parses command-line arguments into the correct
data-types (if the ‘-threshold‘ argument is passed to an int, the parser converts it to an
integer first). It also handles unknown arguments well; it can be made to exit with errors if an
unknown argument is passed to a program, or simply ignore it.
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2.4.4 Using OpenCV

Learning to use OpenCV was very easy. Thresholding an image can take as little as four lines
of code:

Mat image = cv2::imread("image.jpg", cv2::CV_LOAD_IMAGE_GRAYSCALE);

Mat output = cv2::Mat(image);

cv2::threshold(image, output, 50, 255, cv2::THRESH_BINARY);

cv2::imwrite(output, "output.png");

It has extensive documentation and tutorials, the former of which make it very easy to start
using without having to have much experience with C++. As most of the library functions
use the cv2::Mat (Matrix) data structures, very rarely do arrays, pointers or manual memory
allocation have to be used.

Occasionally, it will have some issues with memory allocation which cause it to crash programs
with segmentation faults.

It also has some conceptual differences which can be confusing at first. Instead of using the RGB
colour space by default, it uses BGR – the red and blue channels flipped. When used with other
image libraries, without converting to RGB and back, this can lead to strangely-coloured images.
Images are also accessed in (row, col umn) format, or (y, x ), instead of (col umn, row ), or
(x, y). This can be confusing when experienced with other libraries or software which refer to
images column-first.

After several days of learning how to use OpenCV and the Boost libraries, a working thresh-
olding program was ready to be ran through the test harness. It could load a list of images
and then output PNG images to a directory specified by the --output_dir command-line
argument.

2.5 Ground Truth comparison program

In order to test the simple thresholding program in the test harness, the program for comparing
program output with the ground truth had to be developed. The code to load files and loop
through the input images was copied and pasted from the thresholding program, with the
thresholding options removed and a -ground_truths option added. The program assumes
that the input images and ground truths are in the same order – it does not do any sorting.
This could be a problem if running it manually from the command-line, but the test harness
sorts files before passing them to the ground truth program.

As this program was keeping counts of true/false positives/negatives for four different classes
(Shadow, Object, Penumbra, Background), some C++ classes were defined for storing data.
The ROC class for storing the counts for each taxonomical class. A Statistics class stores
four ROC instances for the taxonomical classes.
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The ROC class was also responsible for performing the calculations relating to ROC curves:
True Positive Rate (Sensitivity), False Positive Rate (Fallout), along with some other calcula-
tions. These calculations were taken from the Wikipedia entry for ROC curves14, under the
section “Terminology and derivations from a confusion matrix”.

Output of the ROC data was in Comma-Separated Value (CSV) format, as it is a very portable
format which can be pasted directly into most Spreadsheet applications and read easily by
most tools and languages. It is also very easy to output CSV from a C++ program: In this
case, a ofstream (output file stream) was opened – roc.csv in the directory specified by
--output_dir was created and opened – and values from the ROC classes output directly to
the stream:

// s == an instance of the Statistics class

// csv == std::ofstream(’roc.csv’) in the current working dir (output_dir)

csv << s.shadows.true_positives << ’,’ << s.shadows.true_negatives << ’,’

<< s.shadows.false_positives << ’,’ << s.shadows.false_negatives << ’,’

...

<< s.objects.false_positives << ’,’ << s.shadows.false_negatives

<< std::endl;

This approach becomes more difficult to manage when the number of columns in the CSV
is high. When including all possible derived ROC statistics for each of the four classes for
every image, the number of columns can be very large. Each of those columns also requires a
header. A lot of care has to be taken that the headers of the CSV file align with the columns of
data. A good data structure which stores headers as well as columns of data in the same order
may solve this problem. As only the True Positive and False Positive rates have been used for
evaluating shadow detection performance so far, time was not spent exploring this.

Counting the positive/negatives for each class is fairly trivial; each input image is looped
through by row first and then column. The pixel at (y, x ) in the input is compared with the
pixel at (y, x ) in the ground truth. The logic for this is demonstrated in figure A.10.

To verify that the ground truth program was keeping correct counts of positives and negatives
for each class and correctly calculating the true positive and false positive rates, some very
small simple 3× 3 pixel images were created. The pixels in these images were very easy to count
by hand and calculate the correct true positive and false negative rates. The CSV output was
pasted into a Spreadsheet application (LibreOffice Calc) and an ROC curve charted using the
charting tool available in that program.

2.6 Graphing the Results

Now that there was a detection method which could be compared against the ground truth
using a program whose output could be trusted, a means of plotting the resulting data on an

14http://en.wikipedia.org/wiki/Sensitivity_and_specificity
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ROC curve from a large number of CSV files was needed. Importing all the CSV files into a
spreadsheet application would be difficult, especially as there may be hundreds of files created
per chain tested by the harness.

There existed several ways of automating the process of converting a large number of CSV files
into a single graph. GNUPlot15 could have been ran from command-line, or an Octave script
could have been written to plot the data 16. Having plenty of experience with Python, it was
easiest to load the CSV files in Python using numpy.recfromcsv. Then matplotlib17

was used to plot the graphs; matplotlib is able to plot large amounts of data efficiently and
save the resulting graph in a number of formats (including PDF – useful for this report).

A script to graph results from the test harness was therefore written in Python using numpy to
read in the CSVs and matplotlib to display the graphs. An annotation class was written –
any function in the Python script with the @graph annotation could be picked as a command-
line argument. This allowed a number of different graphs to be defined in the script, which
shared common data.

Importing the CSV files into a numpy “record array” allowed for some advanced filtering, as
numpy arrays can be indexed using arbitrary boolean expressions:

array[array[’True Positive Rate’] > 0.5]

would return a view of an array where all the array column named “True Positive Rate” had
values above 0.5.

Later on in the project, it was decided to store all of a chain’s parameters in the ROC CSV files
– so ROC curves could be coloured in a number of ways: Instead of comparing different chains
(in different colours), the ROC charts could display different values of the input_blur
parameter in different colours. This allowed to test how different parameters of programs
affected the true positive and false positive rates.

Getting the graphs right also took a lot of trial-and-error development, and like the test harness,
extra features were implemented throughout the project. ROC curves are plotted as scatter
plots rather than line graphs, as the sheer number of data points created very crowded graphs
which took a long time to draw when lines were used.

2.7 Different colour spaces & Otsu thresholding

Once the test harness, ground truth comparison and graphing programs had functioning
prototypes, a testing framework was therefore in place which would allow the evaluation of
other methods of detecting shadows.

15http://www.gnuplot.info/
16https://www.gnu.org/software/octave/doc/interpreter/Two_

002dDimensional-Plots.html
17http://matplotlib.org/
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The second method to implement was Otsu thresholding. This required a very small modifica-
tion to the original greyscale thresholding code – to enable Otsu thresholding within OpenCV
means simply passing the THRESH_OTSU flag to the threshold function. An extra com-
mand line parameter was added, --otsu_mode, which could be true or false (false being the
default). Then a new chain was defined in the test harness configuration, otsu_test.

The next step was to test converting the input images into a number of different HSL colour
spaces and threshold on the luminance (brightness) channel of those colour spaces. This was
only slightly more complex, requiring another command-line argument, --colour_space,
and OpenCV’s cvtColor (“convert colour”) function called in an if-statement in the main
body of the program.

Next, Gaussian blurring was added to the simple thresholding program, as part of an exper-
iment to see whether blurring the input images would help to reduce noise. This was yet
another simple change requiring an extra command-line argument and a call to OpenCV’s
GaussianBlur function.

These three pieces of functionality were implemented very quickly and were also tested very
quickly using the test harness.

2.8 Implementing existing methods from a paper

Now having learnt the basics of OpenCV and becoming more confident with C++, it was
time to implement some existing shadow detection methods. The simple chromacity based
approach to shadow detection used in the Shadow Survey paper [3] (section 3.1 Chromacity-
based Method) was chosen. This method was originally described in a 2003 paper by Cucchiara
et al. [21]. It is a per-pixel method which uses the saturation and value components of the HSV
colour space to determine whether a pixel is shadow based on three different conditions:

1. β1 ≤
(

F V
p /B

V
p

)

≤ β2

2.
(

F S
p − BS

p

)

≤ τS

3. �
�
�
F H
p − BH

p
�
�
�
≤ τH

Where Fp is the foreground pixel and Bp is the background pixel. H, S and V are those pixels’
values in the HSV colour space. β1, β2, τS and τH are all thresholds which must be chosen
empirically.

In the original paper, the shadow detection step is part of a longer image processing pipeline.
The concepts of background and foreground pixels come from an earlier step in that pipeline,
when what the paper describes as “Moving Visual Objects” (MVOs) are detected. The back-
ground image is a rolling average of the pixels wherever the scene is static, and the foreground
image contains only those pixels which are different to the background average.
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This approach works well for fixed-camera systems such as surveillance cameras, where the
camera is assumed not to move often, or with very predictable motion (such as a CCTV
camera panning to one side). However, background subtraction would perform very badly
when the camera is in motion, as the rolling average of pixel values will be constantly changing
and the concepts of “foreground” and “background” will degrade – as shown in figure 2.12.

Figure 2.12: Testing background subtraction using a laptop’s webcam. The middle image
is the background image as seen by the camera. The image on the left is a correctly
detected foreground object, as the background remains static. The image on the right is
the result when the camera itself is panned upwards towards the ceiling. This experiment
was performed using OpenCV’s BackgroundSubtractor class.

Without the concept of foreground and background, it was decided that the sliding-window
approach used in the Shadow Survey paper should be adapted. In that paper, the shadow
detection method was implemented with a 5 × 5 window of pixels rather than looking at every
pixel of an image separately.

This project’s implementation made use of such a window as a substitute for foreground and
background images. The centre pixel of the window was treated as the foreground pixel. A
mean average of the pixels surrounding it (the window) was used for the background. This
resulted in an implementation which detected edges within images but did not fill in the regions
that these edges bordered.

2.8.1 Filling in the gaps

A simple way (in theory) of getting shadow regions instead of just shadow edges was to detect
the edges output by the method and then “flood-fill” whichever side of the edge had the darker
pixels.

To get a list of edges and the (y, x ) coordinates of their pixels, the OpenCV function
findContours was used. findContours uses an implementation of the contour-finding
algorithms originally described in a 1985 paper by Suzuki [22]. This returns a list (std::vector
in the C++ implementation) of contours. Each contour itself is a list of (y, x ) pixel coordi-
nates.
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How to sample pixels from either side of an edge was the next investigation in the project,
discussed in the following section.

2.9 Edge Analysis

Nearly all of the methods described in the Shadow Survey paper used the concept of back-
ground and foreground images. This meant that different approaches would have to be explored.
Detecting shadows based on edges in an image looked promising, so an investigation into
whether shadow edges and object edges exhibited different properties was conducted.

This required a means of seeing the changes in pixel values across edges in an image, or a set
of images – which was the next thing to be implemented. Another Python tool which used
OpenCV’s Python bindings and matplotlib was written to plot the values across edges,
with hue, saturation and value channels plotted separately. This tool was implemented in
Python rather than in C++ as it involved some complicated functions and data structures
which would be easier to write in Python.

To get values across an edge required sam-

Shadow
Edge

Edge
Normals

Object
Edge

Figure 2.13: Diagram demonstrating the
concept of edge normals.

pling lines of pixels that were perpendicular
to the line segments within the edge – getting
the normals of the edge.

A normal of a line is the line itself rotated
by 90◦, which is a very trivial calculation. A
normal will be of equal length to the origi-
nal line. When investigating changes across
an edge, a fixed-length normal was desired,
which requires slightly more complicated
trigonometry, but is still very easy to im-
plement.
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2.9.1 Calculating normals

The steps for getting a normal of a fixed length N are as follows:

1. Find the centre point of the line:

CENT REx,y = Ax,y +
(Bx,y−Ax,y )

2
(Where A and B are either ends of the line)

2. Calculate the difference between point A and B :
DI F Fx,y = Bx,y − Ax,y

3. Calculate the angle of the line:
ANGLE = at an2(DI F Fx,DI F Fy )

4. Using this information, create a new line which has it’s origin at the centre of the original
line, but is of fixed length N and is rotated by 90◦ to ANGLE :

NORMALa =
(

CENT REx −
N
2 × s in(ANGLE ),CENT REy −

N
2 × cos (ANGLE )

)

,

NORMALb =
(

CENT REx +
N
2 × s in(ANGLE ),CENT REy +

N
2 × cos (ANGLE )

)

(Where NORMALa and NORMALb are the end-points of the new line)

Care had to be taken here, as OpenCV returns points in (y, x ) form rather than (x, y) form.
Python’s trigonometry functions also work in radians rather than degrees.

2.9.2 Simplifying edges

To confirm that normals were being calcu-

Figure 2.14: Normals of edges detected
in the ground truth for an image in the
kondo1 image set, overlaid on the origi-
nal image.

lated correctly, they were displayed on the
original image (as seen in figure 2.14). This
visualization of the normals was useful for de-
bugging. The contours detected by OpenCV
for these natural images were shown to be
very complex, consisting of many line seg-
ments that are only a few pixels long each.
Many of them crossed each other due to the
changes in line angle, which meant that the
same pixels were sampled repeatedly, result-
ing in very crowded graphs and skewing the
averages.

Without a clear way of getting an equal distri-
bution of normals across an edge (e.g. every
10 pixels), it was decided to try some methods of “simplifying” contours by strategically
removing points from them, resulting in contours which will be less accurate but should follow
the general shape of the original contour. After some experimentation, a method of simplifying
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the contours by removing line segments that were close to each other was implemented. If the
distance between a point and its previous point in the list of points that made up a contour
was below a given threshold, the previous point was removed from the list.

This was a very naive implementation that did not take into account the shape of the contour.
It introduced occasional bugs where “closed” contours (those which make a concrete shape,
like a circle, rather than being open lines) would become open. Occasionally it would change
the shape of the contour itself.

OpenCV’s own “polygon approximation” function, approxPolyDP, was also tested, but had
little effect on the contours – even with a high epsilon value (the maximum allowed difference
between the original contour and the simplified one), points that were very close together
were not removed.

Due to the bugs in implementation, contours were not simplified in the graph tool. This
resulted in more data being sampled in the images (as shown in figure 2.14). The “minimum
distance” function is used in the feature extraction tool (explained in the following section) to
reduce the number of instances however.

2.9.3 Getting pixel values across normals

The Python bindings for OpenCV represent images as numpy arrays. This means that all
numpy functions can be used with loaded images. As these arrays support 2-dimensional
indexing, diagonal lines of any angle can be used to index an array (using numpy.hypot) and
get a 1-dimensional list of values.

numpy does, however, interpolate these values. Should a line cross two pixels at once, the result
is the average of those two pixels. This does not have much of an effect on natural imagery
where even sharp edges change gradually at the per-pixel level, but this results in strange
plots when tested on the artificial image sets. It is important to be aware of this sub-pixel
interpolation, as it is essentially synthesizing new data, and may not always be accurate.

2.10 Shadow Edge Detection using Machine Learning

Once the edge edge analysis tool was written, interesting patterns did appear in the resulting
graphs, which indicated that shadow edges did differ from other edges in the images. It was
decided that the final method of detecting shadows should incorporate some machine learning,
using edge normals as features. These features could be used to train a learning algorithm.
Given a good training set, such an algorithm could be used to classify new edges in an image as
“shadow edge” or “not shadow edge”.

The idea of using edges as machine learning features came from the approach to detecting
shadows demonstrated by Lalonde et al. [23]. Their approach proved a high success rate
on outdoor photographs taken from public sources on the internet (photos outside of any
controlled environment). They trained a decision tree classifier to discern between detected

40 of 89



Chapter 2 Implementation

edges in an image using a large number of different features (such as the changes in brightness
and saturation over an edge at different angles).

This proved to work with high accuracy on consumer photographs, but there were some things
which would make a full implementation of their approach unsuitable for this project:

• Image Quality: The images used to test their approach were of considerably higher
resolutions than the images used in this project – coming from still-image digital cameras,
as opposed to the video-capturing cameras used in this project. This meant that noise
may have been much less of an issue.

• Outdoors Photography: Their approach focuses on outdoors photographs, in which
sunlight is the only source of light, and which casts well-defined hard shadows. The
shadows in this projects image sets have more varied characteristics than “outdoors
ground shadows”.

However, as their approach was shown to work well on a varied set of images, it was decided
to use some of the concepts described in their paper. The implementation used in this project
is described in the following sub-sections.

The feature extraction was implemented in Python first, being easier to debug than C++ and
having access to numpy. Should it result in a successfully trained classifier, it was planned to
be re-implemented in C++ for the performance benefits – but with only a week allocated
remaining in which to write code, this was not a priority.

2.10.1 Detection of edges

First, a large number of “weak” edges are detected in an input image. This is achieved by
computing gradient magnitudes on the input image. This can be achieved by applying two
Sobel operators to the image – one in the horizontal direction and one in the vertical direction.
Then the gradient magnitudes can be calculated. This is simple to do in OpenCV:

Mat gradient_boundaries(Mat input) {

Mat Sx, Sy, mag, mag_uint;

Sobel(input, Sx, CV_32F, 1, 0, 3); // 1, 0 == horizontal (1 x, 0 y)

Sobel(input, Sy, CV_32F, 0, 1, 3); // 0, 1 == vertical

magnitude(Sx, Sy, mag);

mag.convertTo(mag_uint, CV_8UC3) // convert back to an 8-bit image

return mag_uint;

}

Their approach then uses the “watershed” algorithm on the gradient map. Their reasons for
using watershed are not explained in the paper, but it appears to have the effect of strengthening
strong edges and weakening weak edges (essentially increasing the contrast between them).
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The next step is to run the Canny edge detector with a small difference between its thresholds,
to filter out weak edges, leaving only strong edges in the image.

Figure 2.15: The Lalonde et al. approach to detecting edges. The image on the left shows
the gradient magnitudes in an image in the HSV colour space. The middle image shows
the effect of applying the watershed algorithm to the magnitudes. The image on the right
demonstrates Canny edge detection performed on a (grayscale) version of the watershed
output.

2.10.2 Extraction of features

Lalonde et al. use “oriented gaussian derivative filters” to sample pixels on either side of an
edge. A clear way of doing this was not obvious during the project, so this project makes use
of edge normals instead, as it was known how to calculate these thanks to the image analysis
done previously.

Normals were divided into two sides (either side of the edge which the normal was centred
around). Using these sides, the following features were computed:

• Colour ratios, calculated as:
min( f1 (p), f2 (p))
max( f1 (p), f2 (p))
Where f1 and f2 are either side of the edge.

• Mean, minimum and maximum values for both edges.

This was done independently for each of the channels in the Hue, Saturation, Value colour
space, as well as each channel in the Red, Green, Blue colour space.

Other features were tested (such as ratios between channels rather than between edges), but
due to the already high amount of features these were left out at the end of the available
implementation time.

This resulted in 32 different types of features in total. These features were extracted for every
normal of every edge detected of every image. The results were output as comma-separated
value format (CSV) files, which would be easy to import into a number of other packages,
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such as Weka (which was used later to test the data). Columns in the data corresponded to
individual features, and rows corresponded to instances. Some images contained a very high
number of edge normals. The kondo1 dataset contained around 3, 000 normals per image, for
example. The feature extraction script takes several minutes to execute when given the entire
kondo1 image set.

2.10.3 Labelling instances

Using the ground-truth, instances were labelled as ’shadow’ or ’background’, based on the class
which was most prominent across a normal:

V ALU E = ar gmax (g roundnormal )

LABEL =
{′sℎadow ′ i f V ALU E = 0; ′b ackg round ′ ot ℎerwise .

}

Where g round is the greyscale ground-truth image corresponding to the input image currently
being looked at, and normal is the list of (x, y) coordinates corresponding to a generated
normal.

2.10.4 Reducing data size

A huge amount of data was produced, which had to be reduced in order to fit into the machine’s
available memory. Before reductions, the largest CSV file (features extracted from the kondo1
dataset) was approximately 150MB in size. The files were reduced in size to approximately
120MB by rounding down all the floating point numbers they contained to 3 decimal places.
This resulted in a loss of precision in the data, but did not have a noticeable effect on it when
used in Weka. The data was also compressed using the GZip compression, as Python’s gzip
module makes this very easy to implement.

This shrank the files considerably (120MB files becoming 20MB ), which was helpful for storage,
but did not solve the problems that occurred when decompressing that data in memory.

Upon inspecting the CSV files, it was found that a considerable number of instances were
negative examples – examples labelled as “background” – at a far higher rate than those labelled
as “shadow”. Background examples made up 90% of the data. This itself could introduce bias
in learning algorithms, as they would have far more negative examples than positive ones,
making them far less likely to predict a new example as shadow. It was decided that the data
could further be reduced by including a much lower ratio of background examples to shadow
examples.

This was achieved at the CSV output stage of the script, when instances were still stored as a
list in memory. For every image processed, the following was done:

1. Get a list of the extracted edge instances labelled as ‘background’;
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2. Shuffle this list randomly;

3. For all instances in the original list:

If the instance is labelled ‘shadow’ (positive example), print to file;

If the instance is labelled ‘background’, print to file only if
|b ackg round ins t ance s |
| sℎadow ins t ance s |

> N , where N is an adjustable ratio.

With an enforced ratio of 3× as many background (negative) examples as there were shadow
(positive) examples, the total number of instances was greatly reduced.

2.11 Using Weka to experiment with learning algorithms

The extracted features needed to be analysed somehow, to see if any of the features contained
useful information about shadow edges which could be used to train a learning algorithm.

A suitable learning algorithm also had to be chosen. Lalonde et. al.’s approach used Boosted
Decision Trees, but it was decided to test the training data on a selection of different algorithms.
Neural Networks, Support Vector Machines and Random Forests were chosen for this.

Several frameworks exist for the evaluation of learning algorithms given different data. Weka18

was suggested by the project supervisor. Others have suggested the Pythonmodule scikit-learn19.
Weka was chosen, as no code had to be implemented in order to use it, which was good given
the limited project time left by this point. Whilst it had a complicated user interface, Weka
also had less of a learning curve and had reasonable defaults for evaluating learning algorithms.

Weka was able to read the CSV files generated by the feature extraction scripts. Once the learn-
ing curve of the user interface had been overcome, it was easy to configure the “Experimenter”
to perform 10-fold Cross Validation tests using the three different learning algorithms on the
edge normals data.

The training by Weka was quite intensive and took hours to complete, so was only performed
three times during the project (left to run overnight).

2.11.1 Reading results from Weka

When testing learning algorithms via the Experimenter, Weka outputs a lot of statistics in
ARFF format. ARFF is an extension of the CSV format, where the data is comma-separated
values, but the file also contains more descriptive headers which define the columns – the types
of data they contain (for examples: a variable string, a variable integer, a value which is one of
three discrete classes), as well as their associations to other columns.

18http://www.cs.waikato.ac.nz/ml/weka/
19http://scikit-learn.org/stable/
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This can be interacted with within Weka, through the Experimenter’s “Analyse” tab. It can
also be read into Python using the arff module20.

However, the best output came from Weka’s “Classifier output” field in the Explorer. This
gave more detailed statistics, such as the confusion matrix seen in the second Weka screenshot
(figure 2.16). No means of getting this confusion matrix seems to be available from the data
produced by the Experimenter.

20http://code.google.com/p/arff/
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Figure 2.3: The different lighting conditions used in the Pioneer dataset. The image in the top-
right is the ground truth for the top-left image – to illustrate the difficulty in ground-truthing
this particular dataset. Many background objects have been ignored in the ground-truth.
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Figure 2.8: Example images from the artificial data sets (left) and their corresponding ground
truth images (right).
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Figure 2.9: Screenshot of the final iteration of the Ground Truth Painting Tool. The image
being displayed is at a 2× magnification, and the viewport has been panned to the top left of
the image. The green ring in the image is the mouse cursor – the colour of the ring indicates
which label class it will paint with (green for ‘Object’), and the radius of the ring is the size of
the circles it uses to paint with. The original image is shown beneath the ground truth. The
ground truth can be seen underneath the cursor – the grey and black regions are already-painted
ground truth. The edges detecged in the input image are displayed as the top layer.

Figure 2.10: Three examples of ground truths produced using this tool.
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Figure 2.11: Graphical representation of the tree structure built from the configuration file
example. The different colours represent different branches of the tree being followed.
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Figure 2.16: Screenshots of Weka in use on features extracted from the pioneer2 image set.
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Chapter 3

Results

This chapter gives the results of testing the different shadow detection methods described in
the previous chapter. The methods based around thresholding and chromacity were evaluated
using the test harness, and as such the metrics of “True Positive Rate” and “False Positive
Rate” are used to evaluate them, as well as visual analysis of the the physical images they have
produced.

For the method based on edge-features, the Weka outputs are analysed. These consist of
Confusion matrices and error rates.

Throughout this chapter, the same image has been used for comparative purposes – Image
number 20 from the kondo1 image set. This image was chosen as it contains two objects as
well as two complex shadow shapes with different levels of penumbra. All the methods were
tested on all the images within the pioneer2, kondo1 and artificial0 image sets.

3.1 Simple Thresholding

The first hypothesis was that fixed-value thresholding on greyscale copies of images would
produce a True-Positive Rate and False-Negative Rate with a high variability, that was slightly
better than chance.

Thresholds of 0, 25, 50, 100 and 200 were tested (pixels whose brightnesses were beneath
these thresholds were counted as shadow). Thresholds between 25–50 gave the best ratio of
true-positives versus false-positives, however this is very variable, differing greatly between
images in the same set.
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Figure 3.1: Results of shadow detection based on fixed-value, greyscale thresholding.
Values between 25–50 gave the most accurate results.

3.1.1 Otsu Thresholding

The next hypothesis was that Otsu thresholding would actually perform worse than with a
fixed-value threshold. This was based on the results of the work by Dee & Santos. Again,
this hypothesis proved to be true. Otsu thresholding performed poorly because it had a high
false-positive rate. It appears to set the threshold for many images too high, meaning that large
areas of images are incorrectly marked as shadow. This can be seen in figure 3.2.
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Figure 3.2: Comparing the performance of fixed-value thresholding (blue) versus Otsu
thresholding (red).

3.1.2 Using different colour spaces

Disappointingly, using different colour spaces made little difference to the thresholding. Only
minor differences in output could be seen. The best way of showing this is in the following
ROC chart, which demonstrates little relation between overall accuracy and the colour space
used.

For this experiment, both fixed thresholding and Otsu thresholding were tested. The fixed
thresholds were 0, 25, 50, 100 and 200.

When the results are viewed as a bar-chart, there is very little difference in performance. It does
show the greyscale method performing equally to the LAB and LUV colour spaces. HSV has a
slightly lower True Positive rate than the others, but also has the lowest False Positive rate.
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Figure 3.3: Comparison of different colour spaces tested on the pioneer2 and kondo1
image sets, respectively.

Converting to 3-channel colour HSL colour space is useful for more complex methods (where
saturation and hue information may be needed), so it is promising that the discrepancies
between the greyscale colour space and the HSL colour spaces are very small.

Because of this lack of variability between the colour spaces when used on these image sets,
HSV was ultimately chosen for the later methods as it had the lowest False Positive rate overall
and was conceptually the simplest to understand.

3.1.3 Gaussian Blur

The next hypothesis was that Otsu thresholding had a high false-detection rate due to the noisy
histograms of the original images – perhaps it was finding a threshold between the wrong peaks
in the histograms. Applying different levels of Gaussian blur could have a ‘smoothing’ effect
on the histograms; removing particularly bright or dark spots which may have occurred due to
unfiltered sensor noise.

This was tested on the greyscale space only, using Otsu thresholding. The blur values tested
(size of the Gaussian kernel used) were 0, 3, 9, 15 and 33. Applying even the heaviest Gaussian
blur made very little difference in this method’s performance, as shown by table 3.1.
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Image Set Mean TPR; blur= 0 = 3 = 9 = 15 = 33
pioneer2 0.98 0.98 0.98 0.97 (-0.01) 0.96 (-0.02)
kondo1 0.96 0.96 0.96 0.96 0.96
artificial0 0.92 0.92 0.91 (-0.01) 0.91 (-0.01) 0.89 (-0.03)

Table 3.1: Mean True Positive Rates across the three image sets with different levels of
Gaussian blur. Values in brackets are the differences between the value in that column
compared to the value in column 1 (where blur = 0).

3.2 Chromacity-based method

The chromacity-based method had five different adjustable parameters: window_size (the
size of the frame surrounding each pixel as it is checked), thresh_hue and thresh_sat
(the maximum differences in hue and saturation allowed to count a pixel as shadow – assuming
that shadows have a similar saturation and hue to their casting surface), and beta2 (maximum
allowed ratio between frame’s average value and pixel value 1).

The hypothesis here was that, provided a selection of values for each parameter, a good set of
parameters could be found that generalized well across the image sets tested. This would be
seen as a clustering of points on a ROC chart, hopefully with a high True-Positive Rate and a
low False-Negative rate.

This approach had very poor results; nearly all of the images were blank, meaning a very low
detection rate. This chromacity-based method mostly followed what was documented in the
original paper [21] – but the significance of the four parameters was not clear.

After some visual experimentation, a better set of parameter values was found. The thresh_sat
and thresh_hue were set at 50, meaning that, in the HSV colour space, a maximum dif-
ference of 50 was allowed for the hue and saturation of a pixel compared to its surrounding
window. As this projects implementation dealt with 8-bit images, all values should be in the
range 0–255. beta1 and beta2 seemed to be the most significant. Also being scaled to the
0–255 range, it was found that only values over 200 had any appreciable effect; values below
that would result in white images. These two parameters were both tested with the values 200,
220, 240, 250 and 254. The window_size parameter was also significant – as seen in figure
3.4, a large window size could have an “inversion” effect, where areas of shadow and areas of
background were reversed.

True Positive and False Positive rates remained below 0.5. beta2 appears to be the most
significant parameter as it exhibits clusters when plotted on an ROC chart.

This approach performs poorly on the data-sets. According to the ROC graphs it performs
worse than chance 50% of the time – much worse than the fixed-value thresholding.

1‘value’ referring to the Value channel of the HSV colour space
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Given its best combination of parameters (beta1 = 220 and beta2 = 250), it appears to
be falsely detecting a lot of small spots of shadow within the images. These appear to be
symptoms of artifacting from the image compression.

Figure 3.4: Comparison of different values of window_size on the Chromacity-based
method. (Left: window_size = 1, right: window_size = 17)

Gaussian blurring the input images before running this method had a positive effect on noise
on the image which was visually inspected (figure 3.5). No patterns emerged on the ROC
chart for this, but when visualized as a bar chart, the False Positive Rate had a definite decrease.
When testing Gaussian blur, all other parameters were fixed – beta1 of 220, beta2 of 250,
and a window_size of 1 and 17. The window_size of 1 consistently performed the best.
A window of 1 actually means the program samples a 3 × 3 window around each pixel. This
was not known until the results of this method were analysed. The next section explains why
this happens.
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Figure 3.5: Effect of different levels of Gaussian blur. Left: Gaussian blur of 49, showing
a clear reduction of noise. Right: Bar chart showing mean True Positive rate (top) and
False Positive rate (bottom).

3.2.0.1 Investigation into window_size

Here is a section of the code which calculates the pixel coordinates for the frame around each
pixel:

int half_window;

if(window_size % 2) { // if window_size is an odd number

half_window = 1 + (window_size / 2);

} else { // if window_size is an even number

half_window = window_size / 2;

}

int x_start = x - half_window; int x_end = x + half_window;

int y_start = y - half_window; int y_end = y + half_window;

When window_size is 1, half_window is 1 plus (1 divided by 2). As these variables are
all integers, C++ rounds the results of these divisions down (‘floors’) to the nearest whole
number – which will be 0, in this case. It adds 1 to the result so that half_window will
always be an odd number; creating a square in which the pixel at (x, y) is always the centre of.
When window_size is 2, half_window is also 1.

This means that the reported window size is slightly wrong; a window_size of 3 actually
creates a 5×5 window around pixels, as half_window = 1+ 3

2 = 2 (in C++ integer division),
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As this was not known until the final results of this method were analysed, it was decided to
mention this in the report. The effects of fixing this implementation bug at this stage were not
known.

To summarize, a window_size of 1 actually uses a 3 × 3 window around each pixel.

3.3 Dice Coefficients

To compare the two thresholding approaches against the chromacity-based sliding-window
approach, a simple metric that can be used is the Dice Coefficient. This is a single value which
indicates how much a set of results “agrees” with the ground truth.2

The Dice Coefficient for a set of results is calculated as follows:

Dice =
T P

(F P +T P ) + (T P + F N )

Values of the coefficient range between 0 and 1. A coefficient of 0 indicates no overlap between
a results set and the ground truth. A coefficient of 1 indicates perfect overlap.

Table 3.2 shows the Dice Coefficients of the three different approaches for each of the image sets.
The results are very varied. For images with a high contrast between shadow and background
areas (as is the case with the artificial0 image set), Otsu’s method outperforms the others
by a fair margin. The chromacity-based approach works best on natural imagery where lighting
conditions are good (the kondo1 image set).

Image Set Fixed Threshold Otsu’s Method Chromacity
pioneer2 0.063 0.061 0.043
kondo1 0.093 0.102 0.130
artificial0 0.173 0.479 0.025
Combined 0.113 0.241 0.056

Table 3.2: Comparison of three different detection methods, on three different image sets.
For the fixed-value thresholding method, a threshold of 50 was tested. The chromacity-
based approach was tested with the following parameters: beta1 of 220, beta2 of 250,
window_size of 1, input_blur of 49, thresholds set at 50.

3.4 Investigation into Edges

As the Chromacity-based method seemed to be better at detecting the edges of shadows rather
than shadows as a whole, it was decided to investigate how colour values changed across an
edge.

2http://sve.bmap.ucla.edu/instructions/metrics/dice/
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It was hypothesized that shadow edges would have a much more pronounced change in
luminosity than other edges (for instances, the boundaries of objects). This hypothesis is
visualized in figure 3.6.

As mentioned in the previous chapter, this
Background Penumbra Shadow

Figure 3.6: Hypothesis of how luminance
would change across a shadow boundary.

hypothesis was tested using an analysis tool
to plot pixel brightnesses across edge normals
on a line graph. A normal length of 30 pixels
was used in initial tests. The ground truth of
an image was used to get edges – the ground
truth was put through a Canny filter, and
the detected edges were used to populate a
list of normals from which to sample pixels
from the original image.
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Figure 3.7: Changes in value across different classes of edge in an image from the kondo1
images. Values sampled from edge normals with a length of 30 pixels, with a minimum
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intensity, and the horizontal grey line is the centre of the normal.

80

100

120

140

160

180

200

220

240

Sa
tu

ra
ti
o
n

Shadow Edges

80

100

120

140

160

180

200

Sa
tu

ra
ti
o
n

Penumbra Edges

50

100

150

Sa
tu

ra
ti
o
n

Object Edges

Figure 3.8: Mean saturation values for all edges within the kondo1 images.
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Figure 3.7 shows the change in pixel brightnesses (intensities) across all detected edges in the
kondo1 image set. There is high variability in the brightnesses across the edges, creating very
noisy graphs. Calculating the mean pixel values for every horizontal step in the graph makes a
pattern emerge however. This is denoted by the black line on the graphs. For shadows and
penumbra, it does appear as though there is a sudden drop in pixel intensities across the edges.

There was also assumed to be a change in saturation across edges which would be characteristi-
cally different in areas of shadow, penumbra and object. This turned out to be true for the
kondo1 images, as shown in figure 3.8. Shadows have the lowest saturation on average, and
penumbra has the most distributed levels of saturation. The objects in the kondo1 image set
are highly-coloured, which is likely why object edges have the highest saturation.

This hypothesis could not be tested on the pioneer1 or artificial0 image sets, as they
lacked enough ground truth data (appendix figure A.5) and were too simple (appendix figure
A.4), respectively.

Adjusting the length of the normals also had a strong effect on the results. With normals set
at 10 pixels long, the patterns in the data broke down. This can be seen in appendix figure
A.6, where little or no changes across edges can be seen. The patterns discovered across edges
using the value and saturation channels at normal length 30 also break down at longer lengths –
appendix figure A.7 shows the results of sampling with normals that are 50 pixels long.

3.5 Learning algorithms evaluation

The kondo1 images had different characteristics between the three different edge types. The
hypothesis arising from this was that, given a good set of features extracted from all of these
edges, a learning algorithm could be chosen which would correctly classify new examples with
reasonable accuracy.

Features were extracted from the normals of detected edges in the kondo1 image set. Normals
that were at least 3 pixels apart were selected. This generated 3MB of compressed CSV-format
data. This data contained 51,675 training examples, with a roughly 1-to-1 ratio between
negative examples (normals classed as ‘in background’) and positive examples (normals classed
as ‘in shadow’).

3.5.1 Attribute selection

Before evaluating any of the learning algorithms, Weka was used to evaluate the attributes
(features) to get an initial idea of which features were useful. Information Gain Ratio was
chosen as an Attribute Evaluator, and attributes were ranked by their entropy best-first (using
Weka’s “Ranker” search method).

Table 3.3 shows that even the best 10 features are very low in entropy (informational content),
indicating that patterns in the data may not be found by any learning algorithms tested later.
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The attributes ranked “best” were also unexpected – all relating to the colour channels. It was
predicted that the attributes ranked the most highly would be features relating to the brightness
(HSV ‘Value’ channel) of pixels across edges, as this is where patterns emerged during the
image analysis.

Gain Ratio Attribute
0.004202 edge2_blue_mean
0.004129 edge1_sat_mean
0.004114 edge1_blue_min
0.004042 edge1_sat_max
0.003566 edge1_blue_mean
0.003549 edge1_green_min
0.003533 edge1_green_mean
0.00332 edge1_red_mean
0.003299 edge2_green_mean
0.003258 edge1_red_max

Table 3.3: Best 10 features according to the Information Gain Ratio attribute evaluator in
Weka.

3.6 Random Forest evaluation

The “Random Forest” learning algorithm was tested first, as it was the quickest to train. It was
trained using Weka’s default parameters – Random Forests of 10 trees each, each tree testing 6
randomly-chosen features.

The algorithm was trained and tested 10 times. The data was divided into 10 sets of instances.
Each test took 9 sets at random for training, and the remaining 10% of instances were used to
test (this is known as 10-fold cross-validation3.

Random Forests performed slightly better than chance, with a high True Positive Rate for the
shadow class (0.739) but also a high False Positive Rate (0.630). This indicates that, with the
data it has been trained on, the Random Forest with 10 trees would be likely to over-classify
new edges as shadow edges. This is verified in the confusion matrix 3.4.

3http://www.cs.cmu.edu/~schneide/tut5/node42.html
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Classified as Shadow Classified as Background
Actually Shadow 20708 7298

Actually Background 14908 8761

Table 3.4: Confusion Matrix showing what number of instances were correctly and
incorrectly classified as each class.

3.7 Neural Network evaluation

The Neural Network tested was a back-propagating network with multiple hidden layers – oth-
erwise known as a Multi-Layer Perceptron (MLP). This was tested using the default parameters
supplied by Weka – one hidden layer, a learning rate of 0.3 and a momentum of 0.2, and 500
training iterations.

This was also evaluated using 10-fold cross-validation. Similarly to Random Forests it had a
low rate of accuracy, as it over-classified the test examples as shadow. The confusion matrix
and resulting True Positive and False Positive rates were nearly identical to those of Random
Forests.

3.8 Support Vector Machine evaluation

The SVM was tested using the default parameters it was supplied with: a “radial basis” kernel,
C-SVC, with a cost (‘slack variable’) of 1. The SVM implementation tested in Weka was
provided by LibSVM4. It has a wide range of adjustable parameters. There was not enough
time to investigate what these parameters did, so they were left at their defaults.

Out of the three algorithms, the SVM took the longest to train and was also the most memory-
intensive. Roughly 10 hours were spent waiting for the SVM to train multiple times in the
cross-validation environment.

The results show a complete failure of the SVM to classify anything as background, classifying
all test data as shadow. This can be seen in the Confusion Matrix results for this algorithm
(table 3.5).

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Classified as Shadow Classified as Background
Actually Shadow 28006 0

Actually Background 23669 0

Table 3.5: Confusion Matrix for the Support Vector Machine.

3.9 Comparison of the algorithms

Algorithm Correct Incorrect Relative Error Time Taken
Forests 57.0276% 42.9724% 94.5247% 2.93 seconds
MLP 56.9811% 43.0189% 96.457% 3 minutes
SVM 54.1964% 45.8036% 92.257% 51.8 minutes

Table 3.6: Performance of the three learning algorithms. Shows correct and incorrect
classification of instances as a percentage. “Time Taken” is the amount of time it takes to
train the algorithm once (for a single iteration out of the 10 iterations done in the 10-fold
cross-validation).

The results in table 3.6 show that all the algorithms performed poorly at predicting the classes
of new examples. The rate of correctly identified instances being slightly over 50% may be
attributed to the fact that there is a roughly 50/50 split between shadow and background
instances.
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Chapter 4

Conclusion and Evaluation

In this chapter, the previous results section is summarized and discussed. This is followed by a
more informal evaluation of the project as a whole.

4.1 Discussion of the results

All the shadow detection methods performed fairly poorly at their task, performing slightly
better than chance. There are many reasons why this could be. The first three (fixed thresh-
olding, Otsu’s thresholding and the sliding-window chromacity based approach) were very
simple and contained a lot of fixed parameters for which the best values had to be empirically
derived. It was shown that these algorithms did not generalize well, varying greatly in their
performance depending on the dataset used.

Simply thresholding the brightness of an image could be a good way of detecting shadows as a
“first pass”; it is likely to pick up a lot of false positives (dark objects) but is also likely to pick up
a lot of true positives also, assuming a good threshold is found. A good way of automatically
finding the best threshold is needed. Otsu’s method of determining the best threshold based
on the image histogram proved not to be fit for this purpose. A better method of automatic
thresholding could make use of the fact that there are multiple images in sequence and use it to
determine the general lighting conditions of a scene – in the images captured in this project,
shadows are generally within a specific range of values and saturations, due to being cast on a
single surface. Anything dark but outside the ranges could be considered an object instead.

The analysis of edges showed characteristic differences between shadow, penumbra and object
edges in the value and saturation channels of the HSV space. This is promising and, given the
past work by Lalonde et al., could mean that an approach that uses suitable machine learning
techniques would have a high probability of detecting shadows in this project’s images.

One does not simply dive into using Machine Learning algorithms, as this project did, however.
The two weeks given to thinking of a method of extracting features, implementing it, and
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evaluating the data in Weka, was too short. Not enough time was given for background reading,
meaning that the best parameters for each of the algorithms were not fully understood; how
these algorithms perform on specific datasets can vary greatly depending on how they are
configured.

The features extracted from the images may have been an important factor when the algorithms
failed to pick out any interesting patterns in the data – it was very hard to know whether the
right features were being used. Possibly taking the minimum, maximum and mean values of
colour channels from edges in the images was not the right approach, or using normals instead
of oriented Gaussian filters was the wrong thing to do. Certainly, Lalonde’s methods were
shown to work very well in their method, so perhaps this was an implementation issue.

Had there been more time, a “grid-based” approach was to be tested, which divided the images
into a uniform grid of N × N pixel squares and used those squares for getting features instead
of edge normals. This simpler approach would have less problems with detecting the correct
edges. This was partially implemented but time ran out before it could be finished.

Noise was also an issue throughout the project: even after efforts to reduce sensor noise in
the images via proprietary software and later a strong bilateral filter, the natural images still
contained a lot of noise – the webcam used for the Kondo images had sensor noise in the form
of blotchy colours which were too large to be filtered out without also removing a lot of the
information encoded in the images. This could have contributed to the poor quality of the
features extracted, and would explain why features based on colour were chosen as the best
attributes by Weka.

The ground truth images were also difficult to create and could only give a rough estimation
of the correctness of an algorithm’s output. Differentiating between areas of shadow and
penumbra was difficult to do with simply visual estimation. This was considered acceptable
for ground-truthing as the output of the algorithms were compared against the ground truth at
the per-pixel level, but the inaccurate ground truth images were also used during the feature
extraction to label edges – this may also be a reason why the learning algorithms trained on
the data so poorly.

This project has shown that detecting shadows in moving-camera images is very challenging.
The “state-of-the-art” methods which exist work well for specific environments, such as ground
shadows outdoors (Lalonde et al.) or from fixed cameras where the background can be
subtracted (Shadow Survey). They did not function well on this project’s type of imagery.

Future work could consider combining the approaches tested into a more accurate method
– thresholding is a good way of getting an initial shadow mask. A thresholded binary image
could also be used as input to an edge detector, reducing the number of edges that an edge
classifying method has to process.

Given more time and better camera equipment, it would have been good to capture some better
data-sets: Filming a scene filled with simple objects in direct sunlight using higher-resolution
video cameras would likely have resulted in natural images with less noise. Having more other
people spend time producing more accurate ground truth images could also improve things –
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using a service such as LabelMe1, the ground truths could be crowd-sourced.

4.2 Self-Evaluation

4.2.1 What I would do differently

Having done very little with vision before this project, at the beginning I wasn’t sure what to
expect. Were I to do this project again I would implement the shadow detection methods in
reverse – focusing first on the machine learning elements, and then finding ways of improving
the performance of the algorithms by reducing the features through thresholding and noise
reduction.

I would also get some people to help me with the ground truthing – 2n eyes are better than 2.
The time it took to ground truth 32 of the Kondo images (roughly 6 hours split over 2 evenings)
made me decide against trying to capture more data in a brighter environment (to get images
with less sensor noise), as the ground truthing would take too long. Having other people help
me with the ground truthing was a suggestion from my mid-project demo feedback. Writing
my own crowd-sourcing web interface for ground truthing my images wouldn’t actually be
too difficult, but would have taken too much time at that point in the project.

4.2.2 Design and Planning

My code was written in a very “I need this right now” way. A lot of my Python code lacked
any form of design or planning beforehand. I wrote what I needed when I needed it for the
experiments I was doing. Due to this, there are some Python scripts with very long-winded
functions. Had this project been focused more on developing software than research, I would
have separated out this code into smaller functions across multiple classes and files, creating
proper Python modules for things. As the focus of this project was on research, I think this
is acceptable. I have tried to keep to the Python style guide2 where possible. I feel as though
my C++ code could be a lot better written; once I discovered compiler macros I used them
frugally to hide the boiler-plate code which was the same across my shadow methods. I now
realize that this is obfuscating the code and would make it harder for other people to debug.

Looking back at the Project Specification I wrote at the beginning of the project, I have
certainly produced all of the deliverables mentioned in it. I have followed the project outline
fairly dilligently, although what methods I implemented did change. I wanted to experiment
with methods of detecting shadow via textures (a shadow cast on a surface should have the
same texture as the surface, only darker), but spent more time than expected on the simpler
colour-based method, so texture comparison ended up as a hastily-implemented afterthought

1http://labelme.csail.mit.edu/Release3.0/
2http://docs.python-guide.org/en/latest/writing/style/
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in the feature extraction code of my edge-based method (I used Local Binary Patterns; they
didn’t tell me anything useful and I likely implemented wrong).

I think the initial design that I did was sensible, and the test harness, image analysis and ground
truth creation tools have proven to be very helpful. So whilst I failed to implement a good
detection algorithm, I now have a framework in which my results can be recreated very easily,
and new methods added to the test harness very quickly. The test harness is deliberately generic
and could be used for any experiments involving sets of input images and ground truth images.
This could be useful – at the time of writing, I can only find two other generic test harnesses
for vision projects: HATE3 and MVTH4. MVTH appears to be lacking documentation and
according to their website, HATE is essentially vapourware (its “new version” slated for release
in February 2004).

4.2.3 Implementation issues

The test harness is not without fault. Its error handling could be improved, and there are a few
problems with its implementation which I haven’t been able to fix. The commands it generates
are very long-winded, as it passes multiple lists of files to each command. This has been fine
in practise, as the size of the command-line argument (argv) buffers used on modern UNIX
systems are very large (roughly 2MB on my Linux system) – but this would not scale well
when there are thousands of images with very long file paths. It works fine for my purposes, so
time wasn’t taken to fix this. The fix would be to pass directory paths to programs the harness
ran, rather than explicitly pass them every input and ground truth image.

4.2.4 Time management

My supervisor Hannah and I planned how I should spend time on different parts of the project
at the beginning, as seen in the Gantt Chart we initially sketched out (appendix figure A.8). I
managed to keep to that mostly, although more time was spent implementing each detection
method than was hoped.

I should have anticipated this – time was wasted on debugging strange bugs in C++ code
which turned out to be because CMake was linking libraries with my code wrong – putting
my code through GDB and Valgrind was showing my code breaking in places that weren’t
in my code (the statically linked OpenCV libraries, which had no debugging information
themselves).

Overall I think my time management was reasonable. Having group meetings and individual
meetings with Hannah once a week helped keep me on track. Because the results of my
implementation have been poor I feel as though I could have done a lot more, but have been
reminded that I did a lot of experiments – I am very close to the 20,000 word limit writing

3http://peipa.essex.ac.uk/hate/index.html
4http://gna.org/projects/mvth
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about them in what I consider is still quite a brief way.

4.2.5 Challenges

The most difficult part of this project was probably this report. Remembering everything
that I have done in the project and talking about it in academic passive third-person was hard.
Keeping a blog throughout the project has helped – although some weeks of the project are
missing blog posts. If I were to do the project again I would keep a diary full of shorter notes
so I could remember exactly what I did and in what order.

The second most challenging part was definitely the experiments with edges and normals and
extracting features from normals. There were a lot of edges, which created a lot of data. There
were a lot of numbers and it was very difficult to make sense of it all. Weka was meant to make
sense of the data and pick out good features, but I couldn’t understand the outputs of Weka
enough to find out why the extracted features were so bad.

4.2.6 What I’ve learnt

It is easy for me to be critical of this project’s results. It was disappointing that by the end
of the project I didn’t have a shadow detection method implemented that works better than
simple thresholding. That said, I have definitely gained a lot of useful, practical knowledge
when it comes to actually implementing computer vision algorithms. I now have good
working knowledge of some fundamental computer vision tools, such as HLS colour spaces,
morphological filters, Gaussian kernels, different algorithms for detecting edges – things that
are core components to more complicated image processing chains.

This was my first real experience with computer vision projects, as well as my first experience
with using machine learning algorithms on “real world” data (as opposed to studying them in
theory and testing them on the conveniently prepared datasets of the Stanford class online). It
was also my first experience using C++, and I hadn’t touched C since an assignment in my
second year. A lot of learning new tools happened in this project, which is great.

Overall I am pleased with what I’ve achieved with this project, despite the disappointing results
from the experiments. I was warned straight from the start that this would be a challenging
project, being a vision project using real-world images. I have definitely gained some insight
into just how challenging real-world imagery is when you want to do computer vision things
with it.
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Figure A.1: Excerpt of the Carnevale painting, showing shadows being cast upwards.
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Figure A.2: Three random edge normals chosen per class. This random selection exhibits
differences between edge classes better than the whole set of edges.
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Figure A.3: Mean normal values for every image within the Kondo dataset (total of 32 images).
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Figure A.4: Normal values for an image in the artificial0 dataset. On this simple
artificial data, edges are too sharp for any meaningful patterns to be discerned.

74 of 89



Appendix A Additional Figures

0

50

100

150

200

250

300

V
al
u
e

Shadow Edges

0

50

100

150

200

250

V
al
u
e

Penumbra Edges

0

50

100

150

200

250

300

V
al
u
e

Object Edges

Figure A.5: Normal values for an image in the pioneer2 dataset (edge normal length of 30).
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Figure A.6: Normal values for an image in the pioneer2 dataset (edge normal length of 10).
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Figure A.7: Normal values for an image in the kondo1 dataset (edge normal length of 50).
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Figure A.8: Initial Gantt Chart for the project.
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# Directory to save all the output of the test harness to.

# Also used as the working directory -- input images are copied here before any

# programs are ran on them, to prevent the original data accidentally being

# overwritten.

#

# Special variables:

# {image_set}: The name of the image set being tested

# {chain}: The processing chain being ran

# {tunables}: The parameters for every program in the current chain. Expands to

# a large number of subdirectories.

scratch: ’/tmp/test_harness/{image_set}/{chain}/{tunables}’

# Defaults for programs

program_defaults:

path: ’~/Dissertation/code/detection_methods/build/’ # where to find it

argument_format: ’{parameters} --input {input_images}’ # argument format

# Here we define some chains

chains:

simple_test: # name of the chain

simple_threshold: # name of the program (also its filename)

shadow_threshold: [0, 10, 25, 50, 100] # --shadow_threshold param

object_threshold: [255, 200, 150] # --object_threshold param

# And also some image sets

image_sets:

pioneer1: ’~/robot_images/pioneer2/*.jpg’

ground_truths:

pioneer1: ’~/robot_images/ground_truth/pioneer2/*gt.png’

Figure A.9: Initial configuration file used to develop first prototype of test harness.
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Statistics s = Statistics(); // plain old data object class

uchar iv, gt; // uchar = unsigned 8 bit integer

for(int i=0; i<image.rows; i++) {

for(int j=0; j<image.cols; j++) {

iv = image.at<uchar>(i, j); // pixel value from input image

gt = ground_truth.at<uchar>(i, j); // pixel value from ground truth

// If input pixel == ground truth pixel, and both == shadow value (0),

// count as true positive

if(iv == shadow_value && gt == shadow_value)

s.shadows.true_positive += 1;

// If input pixel and ground truth pixel both != shadow,

// count as true negative

if(iv != shadow_value && gt != shadow_value)

s.shadows.true_negative += 1;

// If input pixel == shadow, and ground truth != shadow,

// that’s a false positive

if(iv == shadow_value && gt != shadow_value)

s.shadows.false_positive += 1;

// Conversely, if input value != shadow, but ground truth == shadow,

// that’s a false negative.

if(iv != shadow_value && gt == shadow_value)

s.shadows.false_negative += 1;

}

}

Figure A.10: Code used to count true/false positive/negative shadow pixels in images
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N = number of CPUs −1
while there are jobs to run do
while pool size >= N do
for all jobs in pool do
if job has finished then
get job’s return code
if return code = 0 then
success + = 1

else
error + = 1

end if
remove job from pool

end if
end for

end while
add new job to pool
run job

end while

Figure A.11: Process pooling algorithm

Figure A.12: Initial design: Diagrams on which the test harness software was based.
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Appendix B

Third-Party Code and Libraries

All of my image processing code, in both C++ and Python, makes extensive use of the
OpenCV libraries (http://www.opencv.org). OpenCV is open sourced under the BSD
license. The library was linked dynamically and used without modification.

My C++ programs also use elements of the Boost library for command line argument parsing
and general utility functions (http://www.boost.org). Boost is open sourced under
their own license, the Boost Software License. This is a very permissive license similar to the
BSD/MIT licenses.

Within my Python code, I have used the following additional libraries:

• numpy (http://www.numpy.org): Used for mathematical functions and multidi-
mensional arrays. Is open sourced under the BSD license.

• matplotlib (http://www.matplotlib.org): Used for plotting graphs and charts
of data from numpy arrays. The graphs and charts in this paper are outputs from
matplotlib. It is open source under its own license, similar to the Python Software
Foundation License, and compatible with BSD licenses.

• PyYAML (http://www.pyyaml.org): Used by the test harness scripts, for parsing
of configuration files. PyYAML is under the MIT license.

• Pygame (http://www.pygame.org): Used for the ground truth painting tool. Pro-
vided graphics and image libraries suitable for the rapid development of a simple painting
tool. Pygame is released under the GNU Lesser GPL (LGPL) license.

For data collection using the Pioneer robot, the ARIA SDK
(http://robots.mobilerobots.com/wiki/ARIA)
was used to gather telemetry data and control the robot’s movements, and imalib by Frédérick
Labrosse (ffl@aber.ac.uk) was used for image capture. The ARIA SDK is under the
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GNU GPL license. imalib is internal to Aberystwyth University and is not distributed with a
license.

Control of the Kondo robot was done using libkondo4
(https://bitbucket.org/vo/libkondo4/wiki/Home)
which uses the Apache License, version 2.0.
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The MIT License (MIT)

All of the code written by myself in this project is under the MIT License (MIT), unless
otherwise specified.

Copyright ©2014, Owain Daniel Jones & Aberystwyth University

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
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descriptions of CRFs, this paper gave the clearest in its introduction section.
As CRFs were not implemented in this project due to time constraints, this
paper was only skim-read, but appears to cover most aspects of CRFs.

[25] H. H. Bülthoff, “Optical illusions.” [Online]. Available: http://www.kyb.tuebingen.
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This webpage contains three videos which demonstrate very clearly how
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A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Springer
Berlin Heidelberg, 2012, vol. 7577, pp. 228–241. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-33783-3_17

This paper documents an impressive method of extracting foreground from
moving camera images, using camera trajectory modelling. Since background
subtraction was decided against in this project it wasn’t looked into much, but
the results in the paper look good.

[27] H. M. Dee and P. E. Santos, “The perception and content of cast shadows: An
interdisciplinary review,” Spatial Cognition & Computation, vol. 11, no. 3, pp. 226–253,
Aug. 2011. [Online]. Available: http://dx.doi.org/10.1080/13875868.2011.565396

A comprehensive literature review on shadows which covers art, the human
vision system and computer vision.
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