
Lock-Free 
Cuckoo 
Hashing

By Ross Coker and 
Calvin Giroud



Why do we care?
● Hash tables are a prevalent data-structure with widespread use cases
● Specifically, fast general purpose concurrent hash tables can help speed 

up algorithms:
○ Transposition tables in chess engines
○ Unique tables in generating binary decision diagrams
○ Generalizes to any search problem involving memoization



Cuckoo hashing gives us worst-case guarantees
● A hashing scheme in which two hash functions are used

○ Keys can exist at two possible indices: hash1(x), hash2(x), each in a separate table.

● Search: 
○ Look at the two possible indices
○ Worst case constant time

● Insert: 
○ Insert in one of the two possible indices

■ If both are taken, evict a key from its slot, thus triggering a chain of relocations
○ Expected constant time



A possible “cuckoo path”



Lock-freedom is optimal for our purposes
● Lock-free solutions better than locking solutions when:

○ Contention is high
○ Machine architecture cannot be optimized against
○ Suitable for general purpose implementations

● However, they are difficult to get right:
○ ABA problem
○ Memory reclamation
○ Tricky to guarantee correctness



Issue: Moving Keys
● Consider a search(x) operation, where key x is in the table. A possible 

result of a naive implementation is:
○ Look at index hash1(x). Key is not there
○ Key x at index hash2(x) is relocated to index hash1(x)
○ Look at index hash2(x). Key is not there. Return “key not found”

● Solution: A two-round querying solution with version counters to keep 
track of number of relocations



Issue: Floating Keys
● When relocating a key, a naive implementation might evict a key, which 

will a trigger a set of evictions
● Problematic in concurrent environments:

○ From the time the key has been evicted to until it evicts another key, it is inaccessible to 
other operations

● Solution: Separate cuckoo path discovery and eviction.
○ Step 1: Discover the cuckoo path (i.e. find an empty slot)
○ Step 2: Relocate empty slot backwards along the cuckoo path
○ The “floating key” is now the empty slot, which does not affect correctness 



Issue: Memory Reclamation
● Lock-free data structures operate under the assumption that the local 

copy of data read cannot be invalidated
○ This is not true when dealing with dynamically allocated memory

● Example: 
○ Thread 1 looks up a key in the table, getting back a pointer
○ Thread 2 removes the same key from the table, and frees the pointer
○ Thread 1 could make an illegal memory access

● Solution: Hazard pointers 
○ Safe memory reclamation technique

■ Threads will announce their intention of holding hazardous memory references
■ Memory references are only freed if no one else is holding it



Test Scenario
● Latedays Cluster

○ Two six-core Intel Xeon E5-2620 processors

● 10,000,000 operations
● Benchmarking against:

○ C++ unordered_map
○ Intel’s concurrent_hash_map

● Measuring throughput (ops/msec)



13x speedup over an unordered_map



Still 13x speedup under more realistic test



LF Cuckoo performs well under high contention



Questions?


