Detecting cell-cycle stage difference in glioblastoma cells

Donghyung Lee

2017-08-15

Here, we illustrate how to use the iasva package to detect cell cycle stage difference within single cell RNA sequencing data. We use single cell RNA sequencing (scRNA-Seq) data obtained from human glioblastoma samples (Petel et. al., 2014). This dataset is included in a R data package (“iasvaExamples”) containing data examples for IA-SVA (https://github.com/dleelab/iasvaExamples). To install the package, follow the instruction provided in the GitHub page.

Install packages

#devtools
library(devtools)
#iasva
devtools::install_github("UcarLab/IA-SVA")
#iasvaExamples  
devtools::install_github("dleelab/iasvaExamples")

Load packages

rm(list=ls())
library(irlba) # partial SVD, the augmented implicitly restarted Lanczos bidiagonalization algorithm
library(iasva)
library(iasvaExamples)
library(sva)
library(Rtsne)
library(pheatmap)
library(corrplot)
library(DescTools) #pcc i.e., Pearson's contingency coefficient
library(RColorBrewer)

color.vec <- brewer.pal(3, "Set1")

Load the glioblastoma single cell RNA-Seq data

data("Patel_Glioblastoma_scRNAseq_Read_Counts")
data("Patel_Glioblastoma_scRNAseq_Annotations")
ls()
## [1] "color.vec"                              
## [2] "Patel_Glioblastoma_scRNAseq_Annotations"
## [3] "Patel_Glioblastoma_scRNAseq_Read_Counts"
counts <- Patel_Glioblastoma_scRNAseq_Read_Counts
anns <- Patel_Glioblastoma_scRNAseq_Annotations
dim(anns)
## [1] 434   3
dim(counts)
## [1] 25415   434
summary(anns)
##          run      patient_id     subtype   
##  SRR1294493:  1   MGH26:118   None   :120  
##  SRR1294494:  1   MGH28: 95   Mes    :103  
##  SRR1294496:  1   MGH29: 76   Pro    : 89  
##  SRR1294498:  1   MGH30: 74   Cla    : 46  
##  SRR1294499:  1   MGH31: 71   Neu    : 24  
##  SRR1294500:  1               Pro+Cla: 20  
##  (Other)   :428               (Other): 32
table(anns$patient_id, anns$subtype)
##        
##         Cla Cla+Mes Mes Neu Neu+Cla Neu+Mes None Pro Pro+Cla Pro+Neu
##   MGH26  10       0   0   1       1       0   19  71      14       2
##   MGH28   1       5  56   0       0       7   21   5       0       0
##   MGH29   0       0  28  12       0      12   19   4       0       1
##   MGH30  33       1   8   1       1       0   16   6       6       2
##   MGH31   2       0  11  10       0       0   45   3       0       0
ContCoef(table(anns$patient_id, anns$subtype))
## [1] 0.723431

The annotations describing the glioblastoma samples and experimental settings are stored in “anns” and the read counts information is stored in “counts”.

Extract glioblastoma cells from Patient MGH30

We use read counts of glioblastoma cells from Patient MGH30 (n = 58).

counts <- counts[, (anns$subtype!="None")&(anns$patient_id=="MGH30")] 
anns <- subset(anns, (subtype!="None")&(patient_id=="MGH30"))
dim(counts)

[1] 25415 58

dim(anns)

[1] 58 3

anns <- droplevels(anns)

prop.zeros <- sum(counts==0)/length(counts)
prop.zeros

[1] 0.6279118

# filter out genes that are sparsely and lowly expressed
filter = apply(counts, 1, function(x) length(x[x>5])>=3)

counts = counts[filter,]
dim(counts)

[1] 21151 58

prop.zeros <- sum(counts==0)/length(counts)
prop.zeros

[1] 0.5566493

Subtype <- anns$subtype
Patient_ID <- anns$patient_id

Calculate geometric library size, i.e., library size of log-transfromed read counts

It is well known that the geometric library size (i.e., library size of log-transfromed read counts) or proportion of expressed genes in each cell explains a very large portion of variability of scRNA-Seq data (Hicks et. al. 2015 BioRxiv, McDavid et. al. 2016 Nature Biotechnology). Frequently, the first principal component of log-transformed scRNA-Seq read counts is highly correlated with the geometric library size (r ~ 0.9). Here, we calculate the geometric library size vector, which will be used as a known factor in the IA-SVA algorithm.

Geo_Lib_Size <- colSums(log(counts+1))
barplot(Geo_Lib_Size, xlab="Cell", ylab="Geometric Lib Size", las=2)

lcounts <- log(counts + 1)
pc1 = irlba(lcounts - rowMeans(lcounts), 1)$v[,1] ## partial SVD
cor(Geo_Lib_Size, pc1)
## [1] 0.9595776

Run IA-SVA

Here, we run IA-SVA using Geo_Lib_Size as a known factor and identify five hidden factors. SVs are plotted in a pairwise fashion to uncover which SVs can seperate cells.

set.seed(345)
mod <- model.matrix(~Geo_Lib_Size)
iasva.res<- iasva(t(counts), mod[,-1],verbose=FALSE, permute=FALSE, num.sv=5) ## irlba
## IA-SVA running...
## SV1 Detected!
## SV2 Detected!
## SV3 Detected!
## SV4 Detected!
## SV5 Detected!
## # of significant surrogate variables: 5
iasva.sv <- iasva.res$sv

Cell_Cycle <- as.factor(iasva.sv[,2] > -0.1) 
levels(Cell_Cycle)=c("Cycle1","Cycle2")
table(Cell_Cycle)
## Cell_Cycle
## Cycle1 Cycle2 
##     12     46
pairs(iasva.sv[,1:5], main="IA-SVA", pch=21, col=color.vec[Cell_Cycle], bg=color.vec[Cell_Cycle], oma=c(4,4,6,14))
legend("right", levels(Cell_Cycle), fill=color.vec, bty="n")

plot(iasva.sv[,1:2], main="IA-SVA", pch=21, xlab="SV1", ylab="SV2", col=color.vec[Cell_Cycle], bg=color.vec[Cell_Cycle])

#legend("bottomright", levels(Cell_Cycle), fill=color.vec, bty="n")

cor(Geo_Lib_Size, iasva.sv[,2])
## [1] -0.4870356
corrplot(cor(iasva.sv))

As shown in the above figure, SV2 clearly separates glioblastoma cells into two groups: 12 cells (marked in red) and the rest of the cells (marked in blue). Note that SV2 is moderately correlated with the geometric library size (|r|=0.49). SV5 also captures an outlier cell. However, we will focus on SV2 in the rest of the analyses.

Find marker genes for the detected heterogeneity (SV2).

Here, using the find.markers() function we find marker genes (n=87 genes) that are significantly associated with SV2 (multiple testing adjusted p-value < 0.05, default significance cutoff, and R-squared value > 0.4).

marker.counts <- find.markers(t(counts), as.matrix(iasva.sv[,2]), rsq.cutoff = 0.4)
## # of markers (): 87
## total # of unique markers:  87
nrow(marker.counts) #87 58
## [1] 87
rownames(marker.counts)
##  [1] "NCAPD2"        "TACC3"         "SPAG5"         "UBE2T"        
##  [5] "NDC80"         "RAD54L"        "TPX2"          "BIRC5"        
##  [9] "KIF4A"         "ORC6"          "CLSPN"         "CDC7"         
## [13] "CENPM"         "ASF1B"         "NCAPG"         "FOXM1"        
## [17] "TIMELESS"      "CDCA3"         "ECT2"          "CENPF"        
## [21] "KIF14"         "NCAPH"         "MND1"          "KIF18A"       
## [25] "ZWINT"         "HJURP"         "DLGAP5"        "FAM64A"       
## [29] "SGOL1"         "TOP2A"         "CCNB1"         "CDCA8"        
## [33] "TROAP"         "TCF19"         "NRM"           "NUSAP1"       
## [37] "KIF23"         "CASC5"         "KIF20B"        "CENPE"        
## [41] "KIF2C"         "NUF2"          "FANCD2"        "TIFA"         
## [45] "CDCA5"         "NCAPG2"        "MKI67"         "SPC25"        
## [49] "SKA1"          "EME1"          "BUB1B"         "CCNB2"        
## [53] "CDC25C"        "RACGAP1"       "SPC24"         "KIF15"        
## [57] "POC1A"         "MAD2L1"        "PTTG1"         "MELK"         
## [61] "C11orf82"      "CENPN"         "TK1"           "PBK"          
## [65] "CKAP2L"        "BUB1"          "CDK1"          "SHCBP1"       
## [69] "ESCO2"         "RRM2"          "UBE2C"         "TYMS"         
## [73] "AURKB"         "TRAIP"         "IQGAP3"        "PARPBP"       
## [77] "XRCC2"         "HMGN2"         "PRC1"          "KIF4B"        
## [81] "PTTG2"         "RP11-192H23.4" "RP11-133K1.2"  "RP11-798K3.2" 
## [85] "RP11-143J24.1" "CTD-2510F5.6"  "CTB-175P5.4"
anno.col <- data.frame(Subtype=Subtype, Cell_Cycle=Cell_Cycle, Lib_Size=colSums(counts))
rownames(anno.col) <- colnames(marker.counts)
head(anno.col)
##            Subtype Cell_Cycle  Lib_Size
## SRR1294928 Pro+Cla     Cycle2  63371814
## SRR1294930     Pro     Cycle2  91372430
## SRR1294931     Cla     Cycle2  58507598
## SRR1294935     Cla     Cycle2 137157795
## SRR1294936     Cla     Cycle2  22486574
## SRR1294938     Cla     Cycle2  67682923
pheatmap(log(marker.counts+1), show_colnames =FALSE, clustering_method = "ward.D2",cutree_cols = 2,annotation_col = anno.col)

Theses marker genes are strongly enriched in cell-cycle related Go terms and KEGG pathways. (See Supplementary Figure 6 in https://doi.org/10.1101/151217)

Run tSNE to detect the hidden heterogeneity.

For comparison purposes, we applied tSNE on read counts of all genes to identify the hidden heterogeneity. We used the Rtsne R package with default settings.

set.seed(323542534)
tsne.res <- Rtsne(t(lcounts), dims = 2, perplexity = 15)

plot(tsne.res$Y, main="tSNE", xlab="tSNE Dim1", ylab="tSNE Dim2", pch=21, col=color.vec[Cell_Cycle], bg=color.vec[Cell_Cycle], oma=c(4,4,6,12))
legend("bottomright", levels(Cell_Cycle), fill=color.vec, bty="n")

As shown above, tSNE fails to detect the outlier cells that are identified by IA-SVA when all genes are used. Same color coding is used as above.

Run tSNE post IA-SVA analyses, i.e., run tSNE on marker genes associated with SV2 as detected by IA-SVA.

Here, we apply tSNE on the marker genes for SV2 obtained from IA-SVA

set.seed(34523)
tsne.res <- Rtsne(unique(t(log(marker.counts+1))), dims = 2, perplexity = 15)

plot(tsne.res$Y, main="tSNE post IA-SVA", xlab="tSNE Dim1", ylab="tSNE Dim2", pch=21, col=color.vec[Cell_Cycle], bg=color.vec[Cell_Cycle], oma=c(4,4,6,12))
legend("bottomright", levels(Cell_Cycle), fill=color.vec, bty="n")

Run principal component analysis (PCA) to detect the hidden heterogeneity (SV2).

Here, we use PCA to detect the cell cycle stage difference (SV2) detected by IA-SVA.

pca.res = irlba(lcounts - rowMeans(lcounts), 5)$v ## partial SVD

pairs(pca.res[,1:5], main="PCA", pch=21, col=color.vec[Cell_Cycle], bg=color.vec[Cell_Cycle],
      oma=c(4,4,6,14))
legend("right", levels(Cell_Cycle), fill=color.vec, bty="n")

plot(pca.res[,1:2], main="PCA", pch=21, xlab="PC1", ylab="PC2", col=color.vec[Cell_Cycle], bg=color.vec[Cell_Cycle])

PCA failed to capture the heterogeneity.

Run surrogate variable analysis (SVA) to detect the hidden heterogeneity (SV2).

Here, for comparison purposes we use SVA to detect the hidden heterogeneity in our example data.

mod1 <- model.matrix(~Geo_Lib_Size)
mod0 <- cbind(mod1[,1])

sva.res = svaseq(counts,mod1,mod0, n.sv=5)$sv
## Number of significant surrogate variables is:  5 
## Iteration (out of 5 ):1  2  3  4  5
pairs(sva.res[,1:5], main="SVA", pch=21, col=color.vec[Cell_Cycle], bg=color.vec[Cell_Cycle], oma=c(4,4,6,12)) #4,4,6,12
legend("right", levels(Cell_Cycle), fill=color.vec, bty="n")

plot(sva.res[,1:2], main="SVA", xlab="SV1", ylab="SV2", pch=21, col=color.vec[Cell_Cycle], bg=color.vec[Cell_Cycle])

SVA failed to detect the cell cycle stage difference.

Correlation between SV2 and the geometric library size

cor(Geo_Lib_Size, iasva.sv[,2])
## [1] -0.4870356

By allowing correlation between factors, IA-SVA accurately detects the cell cycle stage difference, which is moderately correlated (|r|=0.49) with the geometric library size (the first principal component). Existing methods fail to detect the heterogeneity due to the orthogonality assumption.

Session Info

sessionInfo()
## R version 3.3.2 (2016-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: macOS Sierra 10.12.5
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] RColorBrewer_1.1-2  DescTools_0.99.19   corrplot_0.77      
##  [4] pheatmap_1.0.8      Rtsne_0.11          sva_3.22.0         
##  [7] genefilter_1.56.0   mgcv_1.8-16         nlme_3.1-128       
## [10] iasvaExamples_0.1.0 iasva_0.95          irlba_2.2.1        
## [13] Matrix_1.2-7.1      knitr_1.14          devtools_1.12.0    
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_0.12.10         plyr_1.8.4           formatR_1.4         
##  [4] bitops_1.0-6         tools_3.3.2          boot_1.3-18         
##  [7] digest_0.6.12        manipulate_1.0.1     gtable_0.2.0        
## [10] annotate_1.52.1      evaluate_0.10        memoise_1.0.0       
## [13] RSQLite_1.1-2        lattice_0.20-34      DBI_0.6-1           
## [16] yaml_2.1.14          parallel_3.3.2       expm_0.999-2        
## [19] mvtnorm_1.0-6        withr_1.0.2          stringr_1.2.0       
## [22] S4Vectors_0.12.2     IRanges_2.8.2        stats4_3.3.2        
## [25] rprojroot_1.2        grid_3.3.2           Biobase_2.34.0      
## [28] AnnotationDbi_1.36.2 XML_3.98-1.6         survival_2.40-1     
## [31] foreign_0.8-67       rmarkdown_1.3        magrittr_1.5        
## [34] MASS_7.3-45          scales_0.4.1         backports_1.0.4     
## [37] htmltools_0.3.5      BiocGenerics_0.20.0  splines_3.3.2       
## [40] colorspace_1.2-7     xtable_1.8-2         stringi_1.1.3       
## [43] munsell_0.4.3        RCurl_1.95-4.8