A Location-Aware

Guidance App For
Events

Colm Patrick Cahalane

Final-Year Project - BSc in Computer Science
Supervised by Prof. C] Sreenan
April 2017

UNIVERSITY COLLEGE CORK
DEPARTMENT OF COMPUTER SCIENCE

Abstract

The Final Year Project (FYP) open day is an event attended by staff, students and industry
professionals every year where around 75 students exhibit projects in different rooms in the
Western Gateway Building. A booklet is produced every year listing the projects, but this is

inefficient for many staff and visitors.

This project (Mizen) aimed to improve this experience by using a cross-platform mobile app
that provides guidance for navigating the event with providing location-aware information,
provided by Bluetooth beacons in each of the rooms. The information should be easy to

search through, and provide the ability to bookmark projects or mark them as seen.

Mizen aimed also to explore the feasibility of creating similar applications for other uses,
exploring the idea of beacon-driven applications for similar events such as trade shows and
conferences, and the reliability of the beacon technology in applications such as the smart

home.

Mizen also aims to explore the feasibility of developing an application for both major mobile
platforms under the time constraint of being available before the FYP Open Day, using the

React Native framework.

Mizen — A Location Aware Guidance App for Events i

Declaration of Originality

In signing this declaration, you are conforming, in writing, that the submitted work is
entirely your own original work, except where clearly attributed otherwise, and that it has

not been submitted partly or wholly for any other educational award.

[hereby declare that:

e this is all my own work, unless clearly indicated otherwise, with full and proper
accreditation;

e with respect to my own work: none of it has been submitted at any educational
institution contributing in any way to an educational award;

o with respect to another’s work: all text, diagrams, code, or ideas, whether verbatim,
paraphrased or otherwise modified or adapted, have been duly attributed to the
source in a scholarly manner, whether from books, papers, lecture notes or any

other student’s work, whether published or unpublished, electronically or in print

Signed: Date:

Mizen — A Location Aware Guidance App for Events ii

Acknowledgements

“And well drink to the gmz‘/e, and meek and the kind,
and the fm@/ [ittle ﬂﬂws in this «%ﬁ/)@/ ﬂ]fjlgﬂ. i

— Conor O'Brien, My Lighthouse” from the album { Awayland}

The design of this document is inspired by the works of Edward Tufte and Donald Knuth.
That said, it’s made in Microsoft Word, so I don’t know if they’d think much of it.

The lighthouse logo provided by Flat Icon is used under the FlatIcon.com Basic Licence.

None of this work would be possible if not for the tireless effort of my parents and the value
that they place on education. This work marks the end of seventeen consecutive years of
keeping at least one of their sons supported through college; so hopefully here’s to some rest

at last. Mizen is named for a place not far from home.

I am also indebted to Prof. Cormac Sreenan, Prof. Ken Brown and Dr. Frank Boehme for
supporting this project with their time, efforts and advice; and for their work as educators
of the highest degree throughout my time at UCC. It’s also important to credit many other
lecturers in the department such as Dr. Derek Bridge, Prof. John Morrison, Prof. Michel
Schellekens and Dr. John Vaughan for inspiring me to follow my interests in the subject and

move towards greater things.

Jonathan O’Mahony, who introduced me to one of the core technologies within this project,

most likely saved it.

Mizen — A Location Aware Guidance App for Events ii

Table of Contents

ADSTIACE wuvevertereieteteere ettt bbb bbb bbb e b bbb e b b a b b e bbb e b s s e s b e b s e ae s s s s s e tene i
Declaration of Originality......c..riririsi s sssnes ii
ACKNOWIEdGEMENTSovvierviriirniiiirn s sans ii
Table Of FIGULES ..ouuvvuienriniiiniinii s sssss s s sssssssss s ssssssssssssssssssssssnes v
I INETOUCHION ettt se s b se s s s s s b s s s s s asaesesasasesassesanes 1
Ll THE SEUAENE ittt sasse s s s s bbb s s b s s s s senesannes 1
1.1.1 ~ Motivations in accepting the Project ... 1

1.1.2 The student’s back@roundccccvureinriiscirisrissisississis s, 1

1.2 Project Back@round ... sssessssessines 1
12,1 The Open Day . eeiereseiesisesisesssesisesssessesasesssesssesssesssssssssssesssssass 1

1.2.2 Managing FYPs.... i 2

1.3 Improving the FYP Open Day — This Project....rririicninesiscsisninns 2

2 ANAlYSS & GOALS .o 3
2.1 Technical Backgroundiiriiiiiiinisississssssissinens 3
2.1.1 BlUetooth BEACONS c.cucvveiveeieiteeeeeiectetesees st sessse s ssssesesas s s sassesasanns 3
2.1.2 Mobile Development & the State of Cross-Platform........coccveeveevuveienciuncnnn. 4

2.2 Existing uses of beacon technology ..., 5
2.3 Requirements ANalYsis......iiiiciiciniiiieissinesssesssssssssssssssssssssssssssens 7
2.3.1 Functional ReqUIrEMENLESccuvuucveniveeiieiineiieiesiiciincisesiesessesesssssssssssesanes 7
2.3.2 Non-Functional ReqUirementsoccciiiriniineriisinsicississisessnnes 7

3 Design & Implementation ... 8
3.1 Developing the Backend.....cc.oovviiiiriiicicicii s, 8
3.1.1 PrOJECION ettt 8
3.12 Extending FPM ... sissssis s sssssssssssssssssssssssssssssons 8

3.2 Developing the App: Native Android.....ccveciucriiciiiisiisiesisssinssineee. 12
3.2.1 Initial plan: TWO SEPArate aAPPs ..cccveeervesreermmnermmermisisessssesssssssssssessssessssssaenes 12
3.22 The Move Away from Native Android......ccceeeveuverneunernernerserneieisesnennn 14

3.3 React Native — Backgroundcciiininnicnicccscsisissssnsnnans 14
3.3.1 COMPONENLS covvrieririciiiriiiissisisiseiisas s ss s sas s sass s s s s saes 14
3.3.2 Development Environment and TOOLS ... 15
3.3.3 Interfacing with the JSON APL......ccviiiiiriiiiisincisissinnns 17
3.3.4 Implementing Beacons in React Native ...cc.ovvuvrirerincivnrisssinesincississinees 18
3.3.5 Handling State.... s sssssssssssssssss 19
3.3.6 USEr INLEIACtION wovvereveeitereeeetereseretse st se s s s s s s s sasseses s sesaesesenes 21
3.3.7 NaVIZAION cevuiririritnitisiss it sss s s s saessaens 22
3.3.8 Miscellaneous Layout Challengesccccciierinericiinriiesinesincisnncinnes 23

3.4 The React Native APPliCation .. ceccecreeceeiiecieeiesieenesseessesssssseessesssessssssssssnesns 24
3.4.1 Initialising the application ... sissississesines 24
342 The Tabs [ayout. s sssssassaaes 24
3.4.3 React Native ListView in use, and cONNection to StAte.....oceeeerererereerereererens 26
344 Defininga Look And Feel for the Application........cccvcviinerincrincienniinns 29

3.5 Design & Branding.....iirinisisiisisi s 31

Mizen — A Location Aware Guidance App for Events iii

3.5.1 I §77<S o USROS 31

3.5.2 The Mizen Wordmarkccoccceeeeveiiereeeiereeereeeseresesesessesesessesessesesessssesessesesenns 31
3.5.3 The Lighthouse Logo ...ccccvuririrrirriirriicsiscsissis s sissssissssssesones 31
3.54 MizZen i DIUE cvuvevveeceecereecteee ettt bbb 31

0 T TS (O AN 15 11 OO 32
3.5.6 MIiZEn iN PriNtueuiuiieceeiceeeeereecereeere e s sesseses s sesssssesesaesessssesessssesessssesesaens 32

4 RELEASE ..ttt bbbt a bbb s e nesas 33
4.1 Android & The Google Play Store ... cissinsinee, 33
4.1.1 Building the application for release.......cccrrinriinriiinricsissssisncsiniinnes 33
412 Uploading to Google Play........ucviviriiinciiiciriccissinsisecsaninns 33

42 TheiOS Release Process & The APp StOre. . iieneieiieiisessessesssssssssans 34
42.1 Developer Accounts & Code Signing.........vucvurciunnisneriscsisssisssssnnins 34
422 TTUNES CONNEC cuiriieieirirerererereiesererereresesssssesesesesesesssas s bebesesesssssasassesesesesesasasaas 35
42.3 Application Review on iOS......iiiniiiiiieineiseneiseisesisessssssssisssssessens 35

S EVAIUATION ettt se s s bbb bbbt b s e b b as b s e s nanee 37
5.1 Automated Testing in React Native . ..oocuriurieerisnerissiisssinsisssissssssessssesssnes 37
5.2 Peer TEStING couuierircircincinisissis s sas s st e 37
5.3 Additional Bugs.....cccoviiiiiiniiiii s 37
54 ISSUC ON OPEN dAY coorrvuriiriiiririniii it ssse s sssssssssssssssssssssenes 38
5.5 Overall accuracy 0f DEACONSuuveuceuueencieiiciieiii s ssssssesasenes 38
5.6 App Performance and Usabilityc.ocviieniiniiniineiniineineineieiciciscsssecsnenns 39
5.7 Revisiting the requirements analysis.......ccocccrierincriinsriciississisiones 39
5.7.1 Functional REQUITEMENLEScuuuvvueveuiverieiineiieiisinesiiesssssesessssesssesssssssenns 39
5.7.2 Non-Functional Requirementsuccciriiieiieinriiscisinsssessncinns 40

6 CONCIUSIONS wevererreirreieircreeeie et sesss s s s s s b s s s s s sas et sassesesasaessassesesassesanes 41
6.1 On React Native for cross-platform development........cceccevecunevenevenecreerecnnne. 41
6.2 On beacon-driven [0CatioN.......cciuereicreeeiereeeeeeee s sese s s s s s sesens 42
6.3 MOdern JAVASCIIPE vuuruererrerereniisieseiierieriesise s sssesssesasesssessse s sssesssesssesssesssssane 42
6.4 Reimplementing MizZen NEXE YEarcoucvumrimurrissimssisnsisissssissssssssssssssssssssssssenes 43
6.5 Future options for the technology behind Mizen ..., 43
6.6 A final personal StatemMENt. .. vt ssenane 44
APPENAICES cervernriiriiinrrirciiciieiicii s ssss s sss s s s 46
Appendix A: Denial of Expedite REQUESEcvuuvuerveivinciieiiieiinevisiiesisessssnisssesssssessenes 46
Appendix B: Request for Information — Beacons.........ciuicierinecineiicinsinsineionne. 46
Appendix C: Rejection NOTICE ... sisssssss s sssssssssssssssins 46
Appendix D: The Application Layoutcceeceecmmermnerseriecnmeesssenmsssesesssnesssesssessanens 48
REFEIEIICES vuvvvverecrriieteeste ettt bbb bbb a bbb bbb bbb ae bbbt s s besesasbsesaesesasasseseses 49

Mizen — A Location Aware Guidance App for Events iv

Table of Figures

Figure 1: Screenshot of FPM, the FYP project manager developed by Dr. Boehme 2
Figure 2: An example of a FYP abstract submitted by a student in DOCX format. 2
Figure 3: Three Estimote branded Bluetooth beacons, with iPhone for scale (source: Estimote.com).......ee. 3
Figure 4: Exploded diagram of an Estimote beacon, showing its small interior board and CR 2450 battery ... 3
Figure 5: An example of how Cordova uses HTML for layout. [32] 4
Figure 6: Demonstrating JSX: A React Native method returning a layout specified in XMLovcivivinninecinns 5
Figure 7: Laravel's Eloquent ORM in action to define a One-To-Many relationship 9
Figure 8: A simple route that returns the information required as JSON 9
Figure 9: Missing details 10
Figure 10: Using the Accessor convention and $appends array to add simulated attributescccccuvereccrvnnnn. 10
Figure 11: An example project JSON object containing the new name and room fields. 11
Figure 12: The RoomsIndex page. 11
Figure 14: A Java class representing a project. 13
Figure 14: A Java class signifying the backend APL 13
Figure 15: An interface is written declaring methods. Annotations are used to match them to URL routes.
Arguments are also specified as URL parameters. 13
Figure 16: An example of how the EstimoteSDK was employed to range for and react to beacons in the
scrapped native Android App. 13
Figure 17: Two examples of React Native components; one having the other as a child component, and
passing properties to it. 15
Figure 18: Getting a Response object and parsing it as JSON 17
Figure 19: Calling remotely and handling failure. 18
Figure 20: Using react-native-beacons-manager (imported simply as Beacons) to start ranging
beacons in a region, and attaching a function to be called when a new beacon ranging event fires.conecrvvenes 18
Figure 21: A look at an example reducer for changing project state 19
Figure 22: A function that updates the persistent store when a project is saved or unsaved.ovveecccrreenrsenceens 20
Figure 23: An updated PROJECTS_UPDATE attaches a method that modifies the projectncricunns 21
Figure 24: Android and iOS ActivityIndicator equivalents 24
Figure 25: The Mizen splash screen (Android) 24
Figure 26: The three sections of the app defined as StackNavigator components 25
Figure 27: The StackNavigators are assigned to different panes of the TabView. 25
Figure 28: Android (left) and iOS (right) forms of the nested navigation layout established for the app.......26
Figure 29: An approximation of the app layout so far. Note that this isn't valid JSX. 26
Figure 30: Example of a React-Redux connection and mapState ToProps 27
Figure 31: The ListViewin theProjectsList component 27
Figure 32: An excerpt from ProjectRowI tem showing the layout of the touchable project info......ccouueccvcenes 28
Figure 33: The final All Projects view on both iOS and Android 28
Figure 34: NearbyRoomInfo contains a much more complexmapStateToProps. 29
Figure 35: NearbyRoomInfo contains a much more complexmapStateToProps. 29
Figure 37: An App on the Google Play Store 30
Figure 37: A Mizen listing 30
Figure 38: The lighthouse logo 31
Figure 39: Examples of Mizen's use of blue in its identity 31
Figure 41: Mizen "daylight" concept 32
Figure 40: Results of a Twitter poll rejecting this concept 32
Figure 42: Mizen's icon on iOS 32
Figure 43: The Mizen poster from the FYP Open Day 32
Figure 44: Excerpt from screenshot provided by Apple 35

Mizen — A Location Aware Guidance App for Events v

file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241066
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241067
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241068
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241069
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241070
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241071
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241073
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241074
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241075
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241077
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241078
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241079
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241081
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241081
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241082
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241082
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241084
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241085
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241085
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241086
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241089
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241090
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241091
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241092
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241093
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241098
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241099
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241100
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241101
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241102
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241103
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241104
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241105
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241106
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241107
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241108
file:///C:/Users/Colm%20Cahalane/Documents/Final%20Year%20Project%20113326986.docx%23_Toc480241109

1 Introduction

1.1 The Student

1.1.1 Motivations in accepting the project

The student accepted this project due to an interest in learning functional mobile
development techniques with a cross platform focus. The student had no previous
experience with developing for mobile, and wanted to gain this valuable knowledge. The
time constraint and having a deliverable ready for the Open Day also proved appealing.
Finally, the student’s interest in building software that interacted with the physical world or
networked devices drove him towards this project — the student’s second choice of Final
Year Project would’ve involved using smartphones as controllers for local multi-player video

games.

1.1.2 The student’s background
Colm Cahalane is a final-year UCC student, studying BSc Computer Science. Through the

course, the student gained a development skillset focused on the web, as well as software
development in Java. Through internships, the student further honed these skills, and
expanded upon them, learning the principles of Site Reliability Engineering at Google, and
the agile development methodology working at Teamwork.com. He’s previously worked
with UCC Netsoc both in an organisational role as society finance officer and chairperson,
and as a developer and administrator. In other extra-curricular activities, the student worked
mainly in media, such as taking on a role as art director for Motley Magazine and a radio host

and producer with UCC 98.3FM.

1.2 Project Background

1.2.1 The Open Day
Every year the Final Year Project (FYP) Open Day gives students an opportunity to present

their project to the academic staff, research staff, and industry visitors. Each person typically
decides in advance which projects are most interesting to them, as it is not feasible to visit all
projects. This year, 75 projects were arranged across three rooms — although not all students
who were listed appeared to present on the day. A booklet is given to guests on registration

listing the project abstracts and the rooms where they are located.

This however is inefficient for most visiting staff and industry visitors. It’s not immediately
clear where staff must go to see the projects that they are marking, while industry visitors are
unable to screen projects ahead of time to find the technologies and skills that they are most

interested in. This must be improved.

Mizen — A Location Aware Guidance App for Events 1

1.2.2 Managing FYPs

The process of allocating students to FYPs has been
done using a Laravel-based web application called
Frank’s Project Manager (FPM; project.ucc.ic)
developed by Dr. Frank Boehme, a lecturer in the

department'. FPM is primarily used at the start of

the year, to track the initial assignment of projects

to students, and at the end of the year, to track the

assignment of second readers to projects. Much of
Figure 1: Screenshot of FPM, the FYP project

manager developed by Dr. Bochme the project information never reaches FPM.

Title: Mizen — A Location-Aware Guidance App For Events

For the creation of the booklet and room layout

Abstract:

day is an event attended by staff, students and industry

professionals every year where around 75 students exhibit projects in maps, information is gathered manuaﬂy using

different rooms in the Western Gateway Building. A booklet is produced every
year listing the projects. Still, it is often difficult to find the projects you need

o Sl ot nthe bl o v Microsoft Word and Microsoft Excel files. In
This praject [Mizen) aimed to improve this experience by using a cross-
i s e e oo | generating the booklets, students provide their

of the rooms. The infarmation should be easy to search through, and pravide

Colm Cahalane

Supervisor:
Prof. Cormac

the ahility to bookmark projects or mark them as seen. . . .
et st o roject abstracts in Microsoft Word .docx files to a
’ proj

other uses, exploring the idea of beacon-driven applications for similar events

such as trade shows and conferences, and the reliability of the beacon

i o o Moodle module, and these are then gathered and

Mizen also aims to explore the feasibility of develaping an application far beth

major mobile platforms under the time constraint of being available before . . .

the 4P Opn oy stitched together, in a roughly-alphabetical order.

Keywords: location-aware, mobile, cross-platform, ios, android,

Technologies: React Native, Bluetooth Low Energy, NPM, Estimote

The use of proprietary formats meant it would not
Figure 2: An example of a FYP abstract

submitted by a student in DOCX format. be feasible to create a patscr.

Alphabetical order is often used to assign students to rooms as well, but there are some
exceptions: the VR lab is necessary for some 3D and VR projects that require specialist
hardware, and students who have gained dedicated development machines in Room 1.09
will be given these machines to use for development. In a previous year, a project had to be

hosted outdoors, as it involved a drone.

1.3 Improving the FYP Open Day — This Project

The original project description outlined a plan to improve the Final Year Project Open Day
by implementing “a smartphone app (for both Android and iOS)” that “will likely involve

the use of Bluetooth beacons” to “offer a tailored guide for each person”. [1]

This report discusses the implementation of a cross-platform, location-aware guidance
application (“Mizen”) that aims to improve the FYP open day by providing location-aware
information, a searchable project list, the ability to mark and save projects, and view external

sources of additional information.

! Notably, the tools used to manage Final Year Projects with a single web application and data source was the
aim of another final year project this year: Fatima Zhara, supervised by Dr. Kieran Herley.

Mizen — A Location Aware Guidance App for Events 2

http://project.ucc.ie/

2 Analysis & Goals

2.1 Technical Background

2.1.1 Bluetooth Beacons

A “Bluetooth Beacon” is a Bluetooth Low-Energy (BLE)
device that emits identifying information depending on
its broadcasting standard. BLE allows beacons to emit

small data-frames while only using a fraction of the power

required by normal Bluetooth, ranging from 20% to as
low as 1% of the power of standard Bluetooth within the
Figure 3: Three Estimote branded BLE
beacons, with iPhone for scale [5] beacon, and 3% to 1% in the end-user’s device. [2]
iBeacon, devised by Apple, is one example of a standard for beacons. It is tightly integrated
with 10§’ own CoreLocation framework, but is widely implemented in libraries for other
operating systems. It specifies that each beacon emits packets containing these fields [3]:

e A UUID (Universally Unique Identifier) that specifies the application in use.

® A “major number”, and a “minor number” that can be given app-specific meanings.

An example is a chain department store that would use a
UUID to represent the company, major number to denote
fin ‘ ‘ individual stores, and a minor number to denote

- ‘ departments. Other beacon standards include Google’s
Eddystone and AltBeacon, which broadcast more complex

Figure 4: Exploded diagram ofan data. For example, Eddystone-URL links beacons to

Estimote beacon, showing its small

interior board and CR 2450 bactery ~ URLs, a concept known as “the Physical Web” [4].

The CS Department in UCC owns several Estimote-branded beacons. Estimote
manufacture beacons that are compatible with both iBeacon and Eddystone [5], however
some of UCC’s stock are early developer units which only support iBeacon. As the
functionality of iBeacon was sufficient for this small-scale deployment (spanning six rooms

on the FYP Open Day) the student decided to use it for this project.

2.1.1.1 Working with iBeacons

Apps detect and interact with iBeacons in two ways: ranging and monitoring. (5]
e Monitoring: actions are triggcred on entering/exiting region’s range.

e Ranging: actions are triggered based on proximity to a beacon; that is, a method is

given a list of beacons in range, with an estimated proximity to each of them

Notably, monitoring can happen in the background, but ranging requires the app to be open.

Mizen — A Location Aware Guidance App for Events 3

2.1.2 Mobile Development & the State of Cross-Platform

There are two major mobile operating systems, Android and iOS. Android recently became
the most common operating system among internet users. iOS powers Apple’s successtul,
high-end iPhone range. Developing applications for these platforms traditionally had some
major restrictions. Android apps must be written in Java, and iOS applications must be
written in either Swift or Objective-C. Furthermore, there are completely different libraries

and conventions for UI design and implementation, and dealing with user interaction.

2.1.2.1 Cordova - Using Web Technologies to Unify
App Development
Cross-platform development traditionally relied on styling

web applications written using HTML, CSS and JavaScript

to look like native applications, and wrapping them as apps

Figure 5: Example of Cordova for both devices. A tool known as Cordova originally
using HTML for layout. [32] appeared in 2009 allowing for this style of development. The
open-source core of Cordova has been succeeded by Adobe PhoneGap and Ionic. [6] Here,

the term “Cordova” is used to refer to all implementations of this style of development.

An argument against Cordova-driven development is the interface lag associated with
HTML\CSS\JavaScript leading to a poor user experience. The lack of a “native feeling” to

these apps makes them undesirable: a native app will be faster and more pleasing to use.

Another argument against the use of Cordova is that it is difficult to bridge to native APIs
and features; though it offers a plugin framework to write functions that interface with
native APIs and features, it is unwieldy. There is a community associated with PhoneGap

that provides many of these plugins, but it is still rather imperfect.
It was decided early in the project development stage to avoid using Cordova.

2.1.2.2 React Native: A Modern Take on Unified App Development

A more recent development in cross-platform application development is React Native,

pioneered by Facebook.

Mizen — A Location Aware Guidance App for Events 4

return (
<View style={styles.splashScreen}>
<Spacing />
<Image source={require('./splashimg.png')}
style={{width: 400, height:400}} />
<ActivityIndicator
animating={true}
style={{height: 80}}
size="large"
color="white"
/>
</View>
)3
Figure 6: Demonstrating JSX: A React Native method returning a layout specified in XML
React Native is built upon Facebook’s web MV C framework, React.js, which introduced the
concept of JSX — a pre-processor step allowing the developer to write XML within

JavaScript files to specify the layout of components. [7]

React Native is like Cordova in its use of JavaScript, and like React.js in its use of JSX. The
primary difference is that it doesn’t use the HTML/CSS Document Object Model. Instead,
XML is used to specify app layouts that are then rendered using native UI Components on

both platforms. This allows for the user interface to work at 60fps and achieve a native look

and feel. [8]

React Native has a strong, active community as it is tightly linked to NPM, the Node Package
Manger. NPM is the package ecosystem for any programming language, well over twice the
size of Java’s Maven Central [9]; as such it is easy to import libraries developed by the

community.

Although React Native is powered by modern JavaScript (ES7) and uses tools like NPM and

Babel, it is not an implementation of Node.js for mobile. It uses the OS’ own JavaScriptCore.

Originally, the student had aimed to develop two separate native applications. The pivot to
React Native happened at a later stage: upon realising that the workload of learning and
implementing the two radically different styles of application would be unfeasible within the
time requirements, the decision was made to use React Native to unify the development

process.

2.2 Existing uses of beacon technology

Beacon manufacturer Kontakt.io has written a few whitepapers on different uses of beacons,
exploring the use cases of beacons at events and museums.
e The event whitepaper [10] deals with a deployment of the enterprise event app
framework MOCA at the Mobile World Congress (MWC) in Barcelona. It
concludes that using proximity data and beacons at the MW C led to 235% higher

engagement than a standard event app would have given, and using beacons rather

Mizen — A Location Aware Guidance App for Events S

than GPS to trigger notifications allowed them to reach 17x the number of people
that would otherwise be possible. Here are some of the features that the beacon-
driven event app permitted:

o Itallowed attendees of the MW C to register for the event at the airport: the
app would notify a registration desk if an attendee was in the airport and
their badge would be pre-printed there.

o0 The app would notify users when they were near points of interest at the
event.

o The app would display transport related information as it noticed the user
was leaving the event.

e The museum whitepaper [11] deals with a deployment of a beacon-driven audio
tour app Muzze at 40 museums, primarily in the Netherlands. It notes that
deploying a beacon-based audio tour in a museum can cost as low as 3% of the cost
of traditional tech for this purpose, and that it has a 240% higher engagement rate
compared to other audio tour applications.

For local examples, an Irish start-up known as Pulsate provides beacon solutions to Irish
retailers such as Brown Thomas, BoyleSports and Topaz to power loyalty programs and

location-driven marketing. [12]

The findings from the whitepapers validated the use case of beacons for the Final Year
Project Open Day. The FYP Open Day shares elements in common with both the event and
exhibition use cases described, despite existing on a smaller scale than the enterprise

deployments discussed in those papers.

Mizen — A Location Aware Guidance App for Events 6

2.3 Requirements Analysis

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED”, “MAY", and "OPTIONAL" in
this analysis are to be interpreted as described in RFC 2119. [13]

2.3.1 Functional Requirements

These requirements that

1.
2.

The user MUST be able to see at a glance what projects are in the room they are in.
The user MUST be able to search and filter through a list of all projects — all fields
of the project SHOULD be searchable.

a. Title, Description, Student Name, Supervisor Name and Second Reader

Name MUST be searchable.

The user MUST be able to bookmark projects to view later, and to mark them as
done/seen.
The user MAY be able to separately “like” a project.
The user MAY be provided suggested projects based on the projects they have
previously shown an interest in.
The user MUST be able to see at a glance what other rooms are nearby.
The user MUST be able to see additional information about the project such as its
full abstract, student and supervising lecturer.
The user SHOULD be able to follow links to additional content such as the

student’s online presence or related documents to the project.

2.3.2 Non-Functional Requirements

These requirements must be fulfilled for the functional requirements to be fulfilled:

1.

There MUST be a web backend and single data source for all information relating
to projects.
This MUST allow for projects to be assigned to rooms.
a. This MAY be an extension of the existing department tool FPM.
b. This MAY be a wholly new application.
This backend MUST have an endpoint for revealing project data as JSON.
a. This backend SHOULD have a caching layer on the JSON endpoint.
The app MUST be able to retrieve and interpret this JSON data.
The app MUST be able to store some of its state permanently, so that saved/marked

projects persist as the app is used over time.

Mizen — A Location Aware Guidance App for Events 7

3 Design & Implementation

Within this section, code samples will be used to illustrate concepts and their implementation. These have
been simplified and adapted for use in the report and do not necessarily reflect the final state of the project.

3.1 Developing the Backend
3.1.1 Projector

A very simple web backend called Projector was developed over two weeks in October to be
used in the proof of concept, as Dr. Bochme initially did not respond to a request to make
the source code for FPM available. Projector was a simple Laravel application that allowed
students to register accounts and upload information about their project, and provided an
endpoint for project information as JSON. Using this backend, the first proof of concept

Android application was developed.

3.1.2 Extending FPM

After Dr. Boehme provided the student with a copy of the source code for FPM and a copy
of the database, Projector was scrapped. In its place, FPM was extended. FPM is a web
application written using the Laravel framework for PHP, which the student was already
familiar with. Laravel is an MVC framework which allows for easy modification and

extension of its models and controllers. The original version of FPM had these classes:

Project User

id int(11) id int(11)

title varchar(255) firstname varchar(255)
abstract text lastname varchar(255)
description text email varchar(255)
type_id tinyint(4) password varchar(60)
proposer int(11) interest text
supervisor int(11) multirole int(11) (project ID or other role)
sndreader int(11) signature text

role () type () // degree program
is_lecturer() link() // URL

is_student() proposer_string()

is_admin() supervisor_string()

fullname() sndreader_string()

assigned_ project() view_type()
proposed_projects() owner()

is_public()
is_visible()

iS_fI‘CCO // true if no students assigned

//must be lecturer
co_supervised_projects()

supervised projects
P —Proy () takers() // students assigned

url()

supervised_students()

Mizen — A Location Aware Guidance App for Events 8

3.1.2.1 Extending Models

The first step of updating the application was to add another class:

A room_id attribute and room() method was added to the project class to support the one-

to-many relationship of Rooms and Projects. This was easily done with Laravel:

This makes use of Laravel’s “Eloquent ORM”, which allows for a database-agnostic approach

to querying for individual instances of classes and defining relationships, as well as define

Room
id int(11)
name varchar(255)

minor_number int(11)

projects()

class Project extends Model

{
public function room()
{
return $this->belongsTo('App\Room');
}
}
class Room extends Model
{
public function projects()
{
return $this->hasMany('App\Project');
}
}

Figure 7: Laravel's Eloquent ORM in action to define a One-To-Many relationship.

accessor methods.

Migrations were also used to extend the Project class, adding the attributes i7zage (a URL
for a project’s featured image in the app), /inkedin (an external link to the student’s linkedin

page) and misc, a text field for information that’s useful for filtering but not intended to be

user facing, like a keyword list.

3.1.2.2 Creating a JSON Endpoint

Route::get('/projects.json', function() {

s

$ret = [];

SassignedProjects = \App\User: :where('multirole', '>', '0')

->lists('multirole');

Sprojects = \App\Project: :whereIn('id', S$SassignedProjects)
->get();

Sret["projects"] = $projects;

Sret["rooms"] = \App\Room::all();
return $ret;

Figure 8: A simple route that returns the information required as JSON

Mizen — A Location Aware Guidance App for Events

A new route was created that returned an array of all projects that are assigned to students

and an array of all rooms encapsulated as a JSON object. This was easily done in Laravel: a

controller method that doesn’t return a View or Response object will instead return its

output as JSON. As a result, the JSON endpoint was written quite quickly: the model that

was defined did most of the work here.

However, the initial take on this was database intensive and slow. This was linked into

Laravel’s caching layer to increase speed. Laravel provides a simple caching API, where

depending on implementation on the server, cache may be stored on disk or in memory.

3.1.2.3 Back to Modelling: Accessors

proposer: 14, Despite a functioning JSON endpoint, a significant amount of data is

supervisor: 14, absent. For instance, an object containing the IDs of the project’s

sndreader: 9,

second reader and supervisor is returned, but this does not contain

room_id: 4,

their actual names to display in app. It’s clear that the Project class has

Figure 9: Missing proposer_string(), sndreader_string() and other methods; so

details

it must be possible to use those while serialising the projects.

class Project extends Model

{

protected Sappends = ['proposer_name', 'supervisor_name',
'sndreader_name', 'student_name', 'room'];

public function getProposerNameAttribute(){
return $this->proposer_string();

}

public function getRoomAttribute(){
return \App\Room::find($this->room_1id);
}

Figure 10: Using the Accessor convention and $appends array to add simulated attributes

Laravel’s Eloquent ORM allows the developer to define accessor methods using the naming

convention getAttrNameAttribute() to modify the contents of $object->attr_name

before returning it. If an attribute doesn’t exist, it can still be defined as an accessor method.

The name of the simulated attribute can be added to the $appends array. This way, the

information is appended to the serialisation.

Mizen — A Location Aware Guidance App for Events 10

id: 218,

created_at: "2016-03-20 99:02:04",

updated_at: "2017-04-83 17:39:23",

title: "Mizen - A Location-Aware Guidance App For Events”,

abstract: "Every year the Final Year Project Open Day gives students an opportunity to present their project
to the academic staff, research staff, and industry visitors. This project is to develop a smartphone app (for
Android and 10S) to offer a tailored guide for each person.”,

description: “Mizen provides a framework allowing event organisers to mark areas with BLE beacons and allow
visitors to get location-specific information as they explore the event, as well as information on other
locations nearby. This app is built using React Native, which allows for creation of a cross-platform mobile
application with a common codebase (using JavaScript) that nonetheless behaves on par with native apps, and
still allowing us to use native APIs. It does this by translating React.js view components into each
platform’s own native view components. In doing so, it encourages code reuse with web-platform React code, and
allows extensive use of NPM packages. This app for both i0S and Android has been deployed at this event, the
final year project Open Day, and shows the user which projects are active in their current room. To do this,

the internal tool for managing final year projects was expanded in a way that allowed it to communicate up-to-
date project details to the app.”,

type_id: @,
proposer: 111,
supervisor: 111,
sndreader: 18,
room_id: 4,
image: "https:

colm.cf/temp.pn

linkedin: "https://colm.cf/in",

misc: ”
Estimote”,

location-aware, mobile, cross-platform, ios, android React Native, Bluetooth Low Energy, NPM,

proposer_name: "Cormac Sreenan”,
supervisor_name: "Cormac Sreenan”,
sndreader_name: "Ken Brown”,
student_name: “Colm Cahalane”,

- room: {

id: 4,

created_at: "2017-84-83 16:45:52",
updated_at: "2017-84-83 16:45:52",

name: “Reom 1.11°,
minor_number: 1608

Figure 11: An example project JSON object containing the new name and room fields.

3.1.2.4 Creating the rooms admin panel

Rooms

Create Room

Room Name

slelyy

Minor Number

Room 1.11 (1000)
Room 1.09 (9494)
Room 1.19 (63730) x
VR Lab (35342) x
Room 1.17 (6212) x
Room 1.22 (3063) x

X
X

Assign Project To Room

Eric Bickerdyke
Anna Crotty

Alan Lehane

Sean Cronin
Stephanie Murphy
Kieran O'Driscoll
Conor Molloy

Neil Cronin

Eoin Cotter

Rob O'Neill

Shane Hickey
Caroline Corcoran
Martin Neville

Room 1.11 ¥
Room 1.17 ¥
Room 1.19 ¥
Room 1.11 ¥
VR Lab v
Room 1.09 ¥
Room 1.09 ¥
Room 1.11 ¥
Room 1.11
Room 1.11 ¥
Room 1.09 ¥
Room 1.11 ¥
Room 1.22 ¥

Figure 12: The
RoomsIndex page.

It would be far from useful to construct this backend without
having a frontend capable of providing the ability to assign

projects to rooms.

A new Rooms Index view was created that allowed for the

creation of new rooms and the assignment of projects to rooms.

CRUD

(create/read/update/delete) operations on rooms, as well as

A Rooms Controller was built to handle the

provide an endpoint for assigning projects to rooms. These were

restricted to users with Lecturer or Admin status.

A form allows for the creation of new rooms with their assigned

minor numbers.

All projects are listed and have an individual form with a select

form.

JavaScript was used to create AJAX calls so that when the room

assignment is changed on the page, it updates the backend.

The layout for this page was designed to mirror the rest of the
application and was built with Laravel’s Blade Template syntax

and the Bootstrap CSS framework, mirroring the rest of FPM.

Mizen — A Location Aware Guidance App for Events 11

3.2 Developing the App: Native Android
3.2.1 Initial plan: Two separate apps

It was decided early in the project to try and develop two separate native apps. The student
had studied Java in modules such as CS2500, so the plan was to develop an Android
application first and develop the iOS application in the quieter second semester. The student

drew out an original plan for the development time, fortnight by fortnight:

10 Oct Start of FYP Start getting up to speed with Android Studio and develop some toy
Plan apps and examples working through tutorials. Develop project
description.
24 Oct Develop Projector web backend (API-first) while working on Android
development skills.
7 Nov Start development of a proof-of-concept Android app that can interact
with backend APL This doesn't need to be a final version.
21 Nov Work more closely on the Android app from a design point of view.
5 Dec Study Week & Slowed development but try and make the Android app feature-complete.
Exams
19 Dec Exams & Work on a more polished Android v1 over Christmas.
Christmas
2 Jan Holidays Aim to have Android app near-complete by end of holidays - final testing
etc.
16 Jan Semester 2 iOS app takes priority from here. Should aim to have access to Mac and

iPhone for now. Initial ramp-up time to learn iOS development and start
implementing the app.

30 Jan Make iOS proof-of-concept app that interacts with the API and backend.
13 Feb Make iOS app feature-complete.

27 Feb Make iOS app design-ready.

13 Mar Testing and prep for release on both major platforms and app stores.

27 Mar Open Day App should be in release preparation stage well before the open day itself -

this is because the App Store review process may take some time. Release
a' V1 and work on potential updates. Start collecting real-life data for the
APL

10 Apr Work on report, and analyse what went well or not during the open day.

Survey students, staff and users on effectiveness.

24 Apr Report Due at this point, project ends

However, the student struggled to keep up with the plan. The workload involved in learning
the conventions and standards of Android development proved too demanding, and it was
unrealistic to balance this with academic and other extracurricular workloads in the first
semester. As a result, the student fell significantly behind schedule and had failed to complete
the Android V1 by January.

3.2.1.1 Retrofit: Interfacing with the backend API
The Android app used a Java library called Retrofit to connect to the backend APIL. The

JSON, as it would be parsed, would be used to create an instance of a Java class.

Mizen — A Location Aware Guidance App for Events 12

This works by creating a class to represent the API service, individual classes to represent
object types returned by the API, and a class that represents the form in which these objects

are returned. Here is an example of how that would look in Mizen:
s ProjectorApiService {
ic final String DOMAIN

ic ProjectorApi create()ireturn create(DOMAIN) ;|
e, String student
ic ProjectorApi create(String 1)
pClient httpClient new OkHttpC .Builder()
.build()

Retrofit retrofit new Retrofit.Builder()
.baseUrl("htt n)
.addConverterFactory(GsonConverterFactory.create())
.client(httpClient)
.build()
n retrofit.create(ProjectorAp

}

@GET(
Call<ProjectsResponse> getAllProjects()

@GET("projects")
Call<ProjectsResponse> getProjectsByRoomMinor (@Query("minor") String filter)

Figure 15: An interface is written declaring methods. Annotations are used to
match them to URL routes. Arguments are also specified as URL parameters.

3.2.1.2 Beacons in Android

beaconManager = new BeaconManager (this);
region = new Region("ranged region",
UUID. fromString("B9407F30-F5F8-466E-AFF9-25556B57FEGD") ,null,null);

beaconManager.setRanginglListener (new BeaconManager.RanginglListener() {
@Override
public void onBeaconsDiscovered(Region region, List<Beacon> list) {
if (!list.isEmpty()) {
Beacon nearestBeacon = list.get(0);

Toast.makeText(getContext(),
"Nearest Beacon changed " +
nearestBeacon.getMinor (),
Toast.LENGTH_SHORT) . show() ;

s

Figure 16: An example of how the EstimoteSDK was employed to range for and react to beacons in the scrapped
native Android App.

To interact with beacons in the Native Android app, the Estimote SDK was used. It
introduces BeaconManager, which can be told to perform ranging on beacons with a
specific UUID and given a RanginglListener that is called when the list of beacons in
range changes. The onBeaconsDiscovered method of the RanginglListener receives an
ordered list of beacons by their proximity! This allows for an app to be created that reacts

properly to changes that occur while the device is in motion throughout a set of beacons.

Mizen — A Location Aware Guidance App for Events 13

3.2.2 The Move Away from Native Android

Progress remained very slow on the Android front. Though the toolset to build an
application with the required functionality was there, time pressure and a failure to deliver
a working interactive proof of concept by Semester Two raised questions on the ability to

deliver a working cross platform solution.

On February 1%, a friend of the student mentioned React Native in passing as a cross-

platform development toolchain without many of the issues faced by Cordova.

Having taken a few days to consider and research the pivot, the decision was made to scrap
the Android take of Mizen and develop a cross-platform app using React Native the

following day.
The decision was made as:

® There would simply not be enough time to develop separate polished, reliable apps
for both platforms in the remaining two-month span, given that the student was
approaching a month behind schedule.

e React Native had active community support for beacons with a simple and effective
APL

e React Native’s community and support was thorough, with many modules available
via NPM and GitHub to extend the application.

e React Native’s use of JavaScript and its similarity to web application frameworks
meant it was reasonably familiar to the student, who had experience with client-side

JavaScript, MVC frameworks like Knockout.js, and server-side JavaScript with
Node.js.

3.3 React Native — Background

3.3.1 Components

React is a component-based framework. A component can be imagined as a function that
takes in arbitrary inputs and returns a display element on screen. For web-based React, the
eventual output of a Component could be imagined as HTML: a component specified as
<Navbar /> would output a navigation bar that might reduce to a standard tag with
some specific behaviour and styling. Components can contain other components; they nest

and define the layout of the application as a tree.

Each React Native application has points of entry defined as index.ios.js and
index.android. js that run boilerplate code and define the root components of the
application. The app layout takes shape from this point.

Mizen — A Location Aware Guidance App for Events 14

Components are generally declared in their own JavaScript files: for example, a ProjectList
component would generally be declared in a file called ProjectList . js (and for this project
these are generally a Components folder). If necessary to define components differently on
iOS and Android, they can be defined as ProjectList.ios.js and
ProjectlList.android. js.

class Greeting extends Component { In RN, instead of generating HTML, these reduce to
render () {
return (some fundamental basic Ul Components such as
<Text>Helle {this.props.name}!</Text> . . .
. <View>, <ScrollView> and <Text> which are

H

. provided by React Native itself. Other such

fundamental components can be written natively and

class LotsOfGreetings extends Component {

render() { implemented as React Native components. The
return (. .

View style-{{alignTtems: 'conter'}}> components that React Native provides are analogous
<Greeti ='Rexxar' />
P to standard classes in both Android and iOS - <View>

reeting name='Jaina' />
oreering mase e ” maps toUIViewand android. view;in web terms, it'd
</View>
s be equivalent to <div>.

¥

} , . .
RN’s fundamental components provide options for

Figure 17: Two examples of React Native

styling and layout. These are vaguely analogous to CSS

components; one having the other asa

child component, and passing properties (in that most of the properties have similar names, and

to it. [8] Flexbox is primarily used for layout).

Components have szate and properties; where state is mutable and changes to the state cause
the component to re-render, and properties are treated as the fixed inputs to the component,

passed by their parent.

The clear majority of the development of the application comes in defining these
Components, and in planning the shape of the application they comprise both

implementation and design; a notable benefit of React development.

3.3.2 Development Environment and Tools

3.3.2.1 React Native: Environment

React Native projects behave similarly to Node.js packages; they can import other packages
that are stored in a node_modules folder, these packages are installed with NPM, and
package information is stored in a package. json file. Despite this it’s not a Node.js
application; the code written runs on JavaScriptCore on a phone’s OS, or on V8 on the

development server.

React Native applications don’t run on a desktop operating system (however, Microsoft has
started work on adapting React Native to build Universal Windows Platform apps [14]) so
the Android SDK must be installed (to build and run Android applications) as well as

Mizen — A Location Aware Guidance App for Events 15

XCode (to build and run iOS applications) installed. XCode is currently only available on
macOS. [15]

React Native comes with a command line tool that allows automation of most of the SDK
work: react-native run-androidand react-native run-ios willload debugbuilds
of the application in their respective simulator/emulator, and run a development server

(which can also be loaded with react-native start).

This command line tool is also used to link additional native libraries and assets downloaded

from NPM: react-native link.

The development server is React Native’s greatest strength. It allows for instant live reloads
of the application as soon as code changes on the development machine, rapidly speeding up
the development of the application by effectively eliminating app compile time. (There is a
JavaScript compile phase to parse JSX etc. but it’s significantly faster than rebuilding the app
from scratch). This is possible over Wi-Fi allowing for a completely wireless development

setup.

Live reloads are also enhanced by optional hot reloads where an individual module of the
application is reloaded in place; this allows for rapid layout and design changes on a single

module.

There is a secondary advantage to the development server in that it provides a remote debug
mode where the app’s JavaScript is instead executed on the development machine inside the
Chrome browser using its V8 JavaScript Engine. This allows Chrome Developer Tools to
be used within the development process, alongside a console to debug the application state
and monitor timings, resources, etc. This is powerful, especially when combined with the
live/hot reloading system, in that it provides a hugely efficient workflow in making changes

and getting results immediately.

Regardless of if the remote debugging mode is used, React Native offers interactive error
messages on the device based on a stack trace. Tapping on a line in the stack trace will
navigate directly to that line in the text editor on the development server, so identifying

errors is generally quite simple.

3.3.2.2 Version Control - Git

Git is a popular version control system (VCS) developed initially by Linus Torvalds to
manage the development of the Linux kernel. It is a distributed VCS designed with a focus
on speed, support of collaboration and supporting non-linear, branched workflows [16]. Its
distributed fashion proved useful — even though the student developed the project alone, he

made use of two separate development machines to develop the project. He used GitHub, a

Mizen — A Location Aware Guidance App for Events 16

central web platform for hosting Git projects, as a backup and hub for the distributed

development of the app.
3.3.2.3 Sublime Text & Babel

Sublime is the student’s preferred text editor, and supports RN’s interactive error messages.
The Babel plugin enables it to understand JSX syntax and comes with code completion and

snippets.

3324 XCode

XCode is an integrated development environment for macOS, necessary to develop iOS
applications. Although much of the work is done by the React Native CLI, XCode’s own

interface is used for building and signing binaries to run on devices and package for release.

3.3.2.5 Gradle & the Android SDK

Gradle is an open source build automation system like Apache Maven that is used in the
Android build pipeline and it is at the core of the Android SDK. Most tasks required in the
RN development workflow are automated by the RN CLI, but generating a release must be

done manually.

3.3.3 Interfacing with the JSON API
React Native provides the Fetch API [17]. This is a simple API for interacting with REST

API endpoints. To get an object containing the contents of remote JSON, there are two

steps:

async function getProjectsFromAPI() {
let response = await
fetch('https://colmfyp.netsoc.co/projects.json');
let data = await response.json();
return data;

}
Figure 18: Getting a Response object and parsing it as JSON

Note the use of await — Fetch is asynchronous and by default returns a Promise object,
which is a JavaScript convention for handling asynchronous functions. In ES2017, if called
from a function denoted as async, await will hold on for the Promise object to return its
final value before continuing; effectively removing the complexity of Promise-oriented

programming

The fetch response object has a quick method for parsing the response as JSON and
returningits value. This should be wrapped ina try/catch block to mitigate any exceptions
and network/parser errors that may be thrown. Here in this app, that block triggers an alert

prompting the user to try again.

Mizen — A Location Aware Guidance App for Events 17

async function initProjects(){

try{
let data = await getProjectsFromAPI();

store.dispatch({type: 'PROJECTS_UPDATE', projects:data.projects});
store.dispatch({type: 'ROOMS_UPDATE', rooms:data.rooms});

ready = true;
} catch(error) {
promptUser (error);

}

Figure 19: Calling remotely and handling failure.

The Fetch API provides some more advanced functionality for making POST requests or
custom headers etc.; however, it is only required to download the project list, so these extra

features are out of scope.

3.3.4 Implementing Beacons in React Native

The package react-native-beacons-manager provides a bridge to native libraries for
beacons on both iOS and Android by providing this functionality under a (mostly) common
APL There are some differences between the iOS and Android implementations, but for the

most part the code returned is the same.

By specifying a “region” to search in (specified by the beacons’ UUID; see Section 2.2.3), the
developer notifies the program to start ranging beacons that match the UUID. Usinga React
Native module called DeviceEventEmitter, a function can be specified to be called every

time the beaconsDidRange event fires.

The function attached to this event receives an array of beacons; on Android, each beacon
has a numeric distance, on iOS it’s assigned a Proximity value from this set of values:

“Immediate”, “Near”, “Far” or “Unknown”.

As it can be seen above it is very easy to obtain a selection of nearby beacons. However, to
use this information in the user experience, there must be a way of managing the

application’s state.

const region = {
identifier: 'WGB',
uuid: 'EBD21AB7-C471-770B-E4DF-7OEE82026A17"'
}s
try {
await Beacons.startRangingBeaconsInRegion(region.identifier, region.uuid);
} catch (error) {
console.log(Beacons ranging not started, error: ${error}’);
}
DeviceEventEmitter.addListener ('beaconsDidRange', (data) => {
if(data.beacons.length > 0){
data.beacons.sort(compareDistance);
store.dispatch({type: 'BEACONS_UPDATE', beacons:data.beacons});

s
Figure 20: Using react-native-beacons-manager (imported simply as Beacons) to start ranging beacons in

aregion, and attaching a function to be called when a new beacon ranging event fires.

Mizen — A Location Aware Guidance App for Events 18

3.3.5 Handling State

How React’s component tree works, where each component has szaze and properties, is fine
for most cases but makes asynchronous changes to the global application state difficult.
Considering the layout of Mizen; the same set of projects is to be called upon by different
views; and from each of these views it should be possible to change the state of a project by

saving it or marking it as done.

3.3.5.1 Application-Level State with Redux

Redux is a state-container for JavaScript that works with any view framework but comes
with an excellent React-focused companion package react-redux. It has a minimal API

and one that is particularly suited to the React style of development. [18]

The state of the app is stored in an object tree inside a szore. To change the state tree, an
action is emitted, an object explaining what change is to occur. To interpret actions, a reducer
is built: a function that takes in the current state and the action and describes how the action

will transform the current state into the next state.

Examining previous sample code snippets given in throughout this section so far, some of
them already contain these Redux store.dispatch(action) calls after new information
is received in asynchronous actions. It appeared where the list of projects received from the

AP is updated, or as the list of nearby Beacons updates (the beaconsDidRange event).

The reducing function itself is very long, so for the purposes of this report, the example will

be used of the reducer with only one action in Figure 21.

function state(state = defaultState, action) {
switch (action.type) {
case 'PROJECTS_UPDATE':
action.beacons = state.beacons;
action.rooms = state.rooms;
action.nearbyRooms = state.nearbyRooms;
return action;
}
}

store = createStore(state);
store.dispatch({type:'PROJECTS_UPDATE', projects:data.projects});

Figure 21: A look at an example reducer for changing project state

In the first part of the figure, the reducer function is defined. This reducer is made into a
store using the createStore method in the second section. When a list of projects is
dispatched to the store with the action type PROJECTS_UPDATE, as is done in the figure, the
reducer takes action. The other fields from the current state, merge them with the action
object that contains the new Projects array, and returns this new state. Anything that

subscribes to this state is notified.

Mizen — A Location Aware Guidance App for Events 19

3.3.5.2 Connecting Components to Redux

The remaining challenge is to attach these changes in state to React components. Luckily,
Redux provides a way of doing this. It provides a component called Provider that takes a
store as a property, and subscribes to the store, interpreting its state and managing how that

effects its child component.

By writing a function that maps the state to the desired properties of the child component,
conventionally referred to as mapStateToProps, this function can be connected to a
component, and as the state changes, these changes are reflected in the properties of the child
component. This concept does take some getting used to: however, as the design and
implementation of the project is discussed further, examples of how this was employed in

developing Mizen will become apparent.

3.3.5.3 Persistent Storage — React Native’s AsyncStorage

React Native provides an AsyncStorage object that implements a key-value storage on
both iOS and Android. It is analogous to the web’s LocalStorage. On Android, it uses
either RocksDB or SQLite as its backend depending on what is available; on iOS, it provides
its own implementation using file-based storage. It operates globally, but it tends to run slow
and it doesn’t provide an option for subscription like Redux. In Mizen it is only used to offer
persistence in storing what projects are saved or marked done. In this implementation,
Redux actions are used to change a project’s status, and redundantly store these changes to

AsyncStorage.

Whether a project is saved or not is represented by storing its ID in a JSON array of Saved

Projects:

async function updatePersistentStore(id, todo){
let savedProjects = [];
try {
s = await AsyncStorage.getItem('savedProjects');
if(s !'= null){
savedProjects = JSON.parse(s);

}

} catch(error) {/* suppress silently and use blank */}

if(todo === "save" && !savedProjects.includes(id)){
savedProjects.push(id);

} else if(todo === "unsave" && savedProjects.includes(id)){
savedProjects.splice(savedProjects.index0f(id), 1);

}

try {

AsyncStorage.setItem('savedProjects', JSON.stringify(savedProjects));
} catch(error) {/* suppress silently */}

Figure 22: A function that updates the persistent store when a project is saved or unsaved.

The list of saved projects is retrieved when the app first opens and whether a project is saved

is tested using savedProjects.includes(id).

Mizen — A Location Aware Guidance App for Events 20

3.3.5.4 Modifying State on User Interaction

JavaScript’s variable scoping can make it difficult to access the store to perform a
store.dispatch(action) call. It should be possible to add methods to projects that allow
them to modify themselves and update the state of the application so that a project saved

once is saved everywhere it appears.

In Mizen, this is implemented by attaching a method to the project within the reducer, as
the store is within the scope at that point. Deeper into the application, it should still be

possible to call this method on the project and receive the desired effect.

case 'PROJECTS_UPDATE':

for (i in action.projects){

action.projects[i].changeStatus = function(todo){
store.dispatch({type: 'PROJECT_CHANGE_STATUS',
projectID: this.id, todo:todo});

}

}

action.beacons = state.beacons;

action.rooms = state.rooms;

action.nearbyRooms = state.nearbyRooms;

return action;

Figure 23: An updated PROJECTS_UPDATE attaches a method that modifies the project
react-redux does offer a parallel tomapStateToProps called mapDispatchToProps for
updating the state at a component level, but in practice it felt more natural to just map these

changes in state to methods like this: at lower levels of the application, it will be clearer how

this works.

3.3.6 User Interaction

3.3.6.1 React Native's Bundled Components

Concepts discussed thus far in the report form most of the pieces required to frame the

application. However, how React Native handles user interaction has not yet been covered.

Certain elements in React Native are considered “Touchable” such as Button and
TouchableOpacity and therefore have an onPress property that is set to a function that
should be evaluated on that event. onLongPress is also supported. TouchableOpacity is
one of a class of components: it changes the opacity of the view on press; but there are several

others such as TouchableFeedback that react differently.

RN also provides a TextInput component and a class of other such components like

Picker and DatePicker for input fields that mirror the expected native behaviour.

3.3.6.2 react-native-searchbar

The react-native-searchbar package generates a search bar that has a native look and

feel, but also implements a filter method on a provided collection across all fields, and

Mizen — A Location Aware Guidance App for Events 21

generates results that are presented to a handleResults method. This is significant in that
it essentially provides a complete search functionality out of the box that that can be plugged

in without much effort to the Project List view and add much to the user experience.

3.3.7 Navigation

In many ways, this is the final barrier to fulfilling all the requirements. It has been
demonstrated above how to build interactive views that have the required traits, all that

remains is to provide a way for the user to navigate between different views:

e Alist of all projects.
e A nearby-focused view.

e Alist of projects grouped by rooms.

Under each of the views, there is also a need for the ability to navigate between individual

projects pages and the lists that they’re generated under.

In React Native there are a few ways to go about this; it’s a difficult topic to come to grips

with and there are inherent flaws with many of the approaches.

RN provides stock navigation elements: the stack based Navigator, a reworked iOS only
version with a more native feel called NavigatorIOS, and the deprecated
NavigatorExperimental. There’s also some platform-specific components in the form
of TabBarIOS and ViewPagerAndroid. However, navigation in React Native has never
been easy; the APIs for many of these components are difficult to understand for newcomers.
This, combined with poor performance on the stock Navigator caused Facebook to

officially start endorsing community solutions in favour of their stock components in March

2017. [8]

React Navigation (reactnavigation.org [19]) is a developer collective that has produced the

newly-preferred navigation libraries. Their solutions are superior in that they:

e Built on native components where available.

e Have a simpler API: defining a navigator, its child elements and naming routes can
be done in a line of code for each route.

e Nest nicely within other navigators.

e Use the Animated class for native 60fps animations.

e Are reasonably and reliably customisable and open for styling.

e Obey platform-specific conventions to a very fine level of detail. The Android
navigators will cast heavier shadows and follow Material Design conventions on
touch and interaction. The iOS ones are suitably more minimal and run on speedier

animations.

Mizen — A Location Aware Guidance App for Events 22

On Android, it recognises the platform’s hardware/software Back button and

responds as expected to change.

The student had attempted to implement another stack navigator in the project to no avail

prior to switching to React Navigation’s StackNavigator. However, the student had

difficulty implementing React Navigation’s TabNavigator in this project — it appeared fine

on Android but not on iOS. He had earlier succeeded in implementing the package react-

native-tab-view, so he continued to use it.

react-native-tab-views TabView took significant extra effort for initial setup over

the React Navigation alternative, in that there was more manual state management involved.

However, this paid off dividends in providinga reliable, native-feeling tab navigator that ran

cross-platform with ease.

3.3.8 Miscellaneous Layout Challenges

On iOS, the area used by the status bar is not reserved by the system, so the status
bar clashes with the app’s layout by default. Also, the status bar may change size
depending on the phone’s context. Using a package called react-native-
status-bar-size the application monitors for the size of the status bar and add
padding as necessary.

On both platforms, if the keyboard displays on screen, a RN app doesn’t by default
give space to the keyboard, meaning that in search results, some results will be hidden
behind the keyboard. react-native-keyboard-spacer provides a
KeyboardSpacer component that occupies this space where necessary, which is

placed near the root component.

Mizen — A Location Aware Guidance App for Events 23

3.4 The React Native Application

Having described a significant amount of the conventions, development strategies and
challenges that went into creating the React Native application, this next stage of the report
will focus on the exact process of the implementation, and what design choices were made

throughout this process.

3.4.1 Initialising the application

When Mizen is opened, it needs to perform some basic tasks:

1. Set up the Redux store.

@ mizen 2. Initialise the Bluetooth Beacon library and start ranging
xa—

for beacons.

3. Download the information from the backend.

u ‘ 4. If there are saved projects or projects marked done in

cearch nearby AsyncStorage carry them over to the newly fetched

save projects you want see information about

to see, mark them done the projects where you PrOjCCtS
.

when you've seen them are & where to go next

Steps 2-4 should take place
asynchronously. In the main thread, a -

Figure 24: Android

Figure 25: The Mizen splash screen is initially displayed that

splash screen (Android) gives some usage details and an and iOS
. ActivityIndicator

animated loading activity icon)
equivalents

(ActivityIndicator, which shows a platform appropriate icon). If
an error occurs in the network setup, an error message is displayed with a button to re-trigger

the setup - see Section 3.3.3.
The component then checks for readiness until the setup tasks are completed.

The Splash Screen uses the colour #2196 3. This is Material Blue 500, and serves as the
root colour for the app. The text displayed in this screen aims to provide some guidance on

the usage of the app.
3.4.2 The Tabs layout

It was decided to divide the app into three main sections:

e Projects — List of all projects for searching and filtering,
e Nearby — A view of the projects in the current room and details on what other rooms
are in range.

e Rooms - Allowing a user to manually look through projects room-by-room.

Mizen — A Location Aware Guidance App for Events 24

This division was necessary to provide all the functional requirements of the application in
a way that allowed for a simple, minimal, clean design. Each of the three sections of the app

will need to be represented as individual StackNavigator components; react-native-

tab-view was used as the main navigator for the application.

const NearbyNav = StackNavigator({
Nearby: { screen: NearbyScreen },

IndividualProject: { screen: IndividualProjectScreen

1)

const AllProjectsNav = StackNavigator({

AllProjects: { screen: AllProjectsScreen },

In each of these
y components, there are a
few possible pages that

can be viewed: Either the

IndividualProject: { screen: IndividualProjectScreen } section’s main screen or

)

const AllRoomsNav = StackNavigator({
AllRooms: { screen: RoomListScreen },

IndividualRoom: { screen: IndividualRoomScreen },
IndividualProject: { screen: IndividualProjectScreen }

)

Figure 26: The three sections of the app
defined as StackNavigator components

an individual project.
Rooms has an
intermediary screen,
where each of the rooms
has a list of projects as

well. In StackNavigator,

cach of these “screens” are represented by a component and are given a name used for

navigation.

There must be a Tab View that encapsulates these three panes.

react-native-tab-view’s TabView doesn’t take in the same style of inputs as the

StackNavigator components. Instead, it has a renderScene method that returns JSX

representing the required view for the currently selected route.

_renderScene = ({ route }) => {
switch (route.key) {
case '1l':
return (

<AllProjectsNav style={styles.stackNav}

screenProps={this.props} />
)3
case '2':
return (
<NearbyNav style={styles.stackNav}
screenProps={this.props} />
)3
case '3':
return (
<AllRoomsNav style={styles.stackNav}
screenProps={this.props} />
)3
default:
return null;

1
Figure 27: The StackNavigators are assigned
to different panes of the TabView.

Whichever route is currently
selected is managed in the State of
the component that contains the
TabView, which must also contain a
method for setting that state and
handling changes in the currently
selected tab. This makes it possible
to use Redux to manage state if
desired, but local state works in this

casc.

Navigating between different tabs of
the app are performed by interacting
with a TabBar that the tab view

provides. Within the tabs though,

the StackNavigator will need to be provided instructions by a function.

Mizen — A Location Aware Guidance App for Events

25

Each of the StackNavigators receives a screenProps of { this.props}; meaning that the
properties of the Tabs layout are passed as properties to each of the individual screens. This

is how the Redux store is passed down to the individual screens of the app.
The Tabs layout also features the spacers discussed in Section 3.3.8.

The TabBar provided in the tab view package ended up being the core reference point for
the application’s design. Although it is customisable, the default look it uses is based around
Material Blue 500 (#2196f3) and Material Yellow 500 on Android; UIColor
Blue #007aff and the same yellow on iOS. The Android blue was used for the app’s

branding elements on both platforms.

On iOS and Android, it also sets the tone by having platform-specific shading, colours and

fonts:
PROJECTS NEARBY ROOMS PROJECTS NEARBY. ROOMS

& A guidance app for Final Year Project Op... { Back A guidance app for Final Yea...

Figure 28: Android (left) and iOS (right) forms of
the nested navigation layout established for the app

3.4.3 React Native ListView in use, and connection to state

Each of these navigators features a first screen that contains some form of a list element, and
the elements in this list are used to navigate. The Project List is the first one that the user

sees in the app, so is a good starting point for analysing this setup.

3.4.3.1 Connecting to state, and creating the lists’s datasource

To recap on the structure of the app: within the main Tabs navigator, and within the
AllProjectsNav is the A11ProjectsScreen, which contains the Al1ProjectsList

component, wrapped in a Provider, which receives the app’s Redux szore.

<Mizen>
<Tabs>
<All1ProjectsNav>
<All1ProjectsScreen>
<Provider store={store}>
<AllProjectsList navigation={ap_nav} />
</Provider>
</Al1ProjectsScreen>

</Al1ProjectsNav>

</Tabs>
</Mizen>
Figure 29: An approximation of the app layout so far. Note that this isn't valid JSX.

An extended version of this diagram is included in Appendix D: The Application Layout

Mizen — A Location Aware Guidance App for Events 26

AllProjectsList connects the Redux Store to the generic, reusable ProjectsList
component. It takes the current state and maps the current list of projects in the state to
properties of the ProjectList. A List Data Source that contains the projects is also created:
this is a quirk of React Native List Views, where rows can be grouped by section headers or
data from different elements in an array can be grouped into a single row. In this case, each

element of the array maps to an element of the data source one-for-one.

const mapStateToProps = (state, ownProps) => {
let datasource = new ListView.DataSource({rowHasChanged: (rl, r2) => rl1 !== r2});
props = {
ds : datasource.cloneWithRows(state.projects),
projects: state.projects

}

if(typeof ownProps.navigation !== "undefined"){
props.navigation = ownProps.navigation;

}

return props;

}

export const AllProjectsList = connect(mapStateToProps) (ProjectList);

Figure 30: Example of a React-Redux connection and mapStateToProps

When the state changes, the mapStateToProps function is re-called, and the component

reloads.

3.4.3.2 React Natives ListView

<ListView
style={this.ListViewStyle}
dataSource={this._getDS()}
renderRow={ (rowData) =>
<ProjectRowItem
project={rowData}
callonClick={
(project) =>
navigate('IndividualProject', { project: project })
}
/>
Y />
Figure 31: The ListView in the ProjectsList component

This is the ListView made using the list of projects. The ListView takes a renderRow
property that takes a function that shows how the data of each row of the list is rendered in
the layout. For this, the student created a new component to avoid cluttering this section of

the code.

An arrow function describing how each project can navigate to their own page within the
StackNavigator is passed down to the individual row items. Some quick observations and

explanations:

Mizen — A Location Aware Guidance App for Events 27

e The DataSource provided to the ListView is fetched by a function, not
specifically the one created in mapStateToProps. This is done so that as the user
filters and search through the list of projects, a data source containing search results
can be provided instead.

e The callOnClick property is just like any other property — it must be tied to the
onPress property of a Touchable component for it to have any effect.

e Navigating within a StackNavigator is simple; provide the name of the screen
that is being navigated to, and providing parameters that the screen uses while

rendering.

The row item components are relatively simple components; taking in the project, they
layout some of the project’s details in a TouchableOpacity component mapped to navigate
to the project’s own screen, and Save and Done buttons to the project’s changeStatus

function.

<TouchableOpacity style={styles.main} onPress={() => this.pressHandler()}>
<View style={styles.main}>
<Text style={[styles.title]}>
{this.props.project.title}
</Text>
<Text style={[styles.owner]}>
{this.props.project.student_name} (with {this.props.project.supervisor_name})
</Text>
</View>
</TouchableOpacity>

Figure 33: An excerpt from ProjectRowItem showing the layout of the touchable project info.

® Uyl w 4:31 | eeese vodafone E = 15:18 T 2%
PROJECTS NEARBY ROOMS PROJECTS NEARBY ROOMS

All Projects All Projects
GR_2016-2017_Student Specified GR_2016-2017.Student Specified

Multiplayer App for Android w @ Multiplayer App for Android @
Anna Crotty (with Gavin Russell) Anna Crotty (with Gavin Russell)

Optimising Battery Management for Optimising Battery Management for

Android Phones w @ Android Phones @

Mex Allen (with Gregory Provan) Max Allen (with Gregory Provan)

Google Wear Investigation % @ Google Wear Investigation)
Sean Cronin (with Sabin Tabirca) Sean Cronin (with Sabin Tabirca)

Smartphone assistant for cloud- Secure Content Management System

based image analysis w @ Evan Smith (with Frank Boehme) ©
Shane Fitzgerald (with John Herber)

HTMLS bissd systech for 2D Smartphone assistant for cloud-based & ©
character animation w @ Kmage snetyss

Shane Fitzgerald (with John Herbert)

Azim Bhayla (with James Bowen)

HTMLS-based system for 2D
character animation v @
Azim Bhayla (with James Bowen)

Figure 32: The final All Projects
view on both iOS and Android

The IndividualProjectScreen component is simple and mostly layout based, so it

won’t be covered in this section of the report.

Mizen — A Location Aware Guidance App for Events 28

3.4.3.3 Beacons in this workflow

return {
room: state.nearbyRooms.shift(),
nearbyRooms: state.nearbyRooms,
projrm: projrm, // Projects In Room
nearbyDS: ds.cloneWithRows (projrm),
projects: state.projects, // All Projects

Figure 34: NearbyRoomInfo contains a much more
complexmapStateToProps.

The relatively simple example of the Projects list outlines how app state, layout and
navigation can be intertwined in React Native (and the dual nature of implementation and
design in this style of application development). The Nearby screen shows a more complex

case.

ProjectList is reused — rather than use A11ProjectsList and wrap it in a Provider,
the projects specific to a room are provided as properties — these are determined in the

mapStateToProps function. A ListView Data Source is also generated and used.
A list of other nearby rooms is also determined from the state.

These details change frequently; a change in the order of nearby rooms, or change in room
altogether, can occur every few seconds. Still, this view must be completely up to date. Any

detected change must be instantly visible.

The mapStateToProps function handles this flawlessly, reloading the page and yet still
maintaining details like a user’s position in any ListViews etc. The changes propagate to

lower levels of the layout tree with ease.

3.4.4 Defining a Look and Feel for the Application

React Native provides a CSS-like styling system for the View components it provides. Given
that many of the interactive components come with their own styling by default, this was
made somewhat easier; the only items that required much in-depth styling were the

individual rows in the List views and the projects page itself.

3.4.4.1 Flexbox

Flexbox styling was introduced in CSS3, allowing responsive elements in a container to align

themselves in each direction and share space by given ratios. [20]

In React Native these rules are reimplemented. As the sizes of mobile device screens are
unknown and React Native doesn’t allow for styling by percentages, flexbox is the

preferred way to allow items to fill space on the screen.

Mizen — A Location Aware Guidance App for Events 29

3442 Row Items

Row items in the Project List follow the typical iOS menu item style, which looks well also

on Android. Items are given a thin border, ample padding, and a white background.

Placed across from the item are two buttons. They were sourced from the react-native-
vector-icons package, which implements the FontAwesome icon set. A star was used as
the Favourite icon, and the checkmark implemented as the done icon; they change shape
and colour when activated to reflect the project’s status in a way that should be semantically

obvious to users.

3.44.3 Project pages

Project pages are contained in a ScrollView, contain header text, subheadings, action
buttons (from the same react-native-vector-items set) and an optional project
image, roughly modelled on the appearance of apps in App Stores. App Store was an

original source of inspiration for many of the design focuses throughout Mizen.

odafone [E 5 15:18

PROJECTS NEARBY

{ Back A guidance app for Final...

A cross-platform quidance
app for the Final Year Project

Open Day, using beacons.

g Androidify

Google Inc. ¥

A guidance app for Final Year Project
10,000,000+ downloads Open Day

Student: Colm Cahalane

=5 2 7 Supervisor: Cormac Sreenan
/4 \ {
10) .] 5
< x ULO Yy save @ Mark Done

102,147 & Entertainment Christopher Taylor Wimberly ~ Collin
Chavez in Linkedin

Every year the Final Year Project Open Day gives
Personalize your Android. students an opportunity to present their project to the

academic staff, research staff, and industry visitors.
Each person typically decides in advance which
projects are most interesting to them. There are many
projects spread over several rooms. This project is to
develop a smartphone app (for both Android and iOS)

::“'_’““”’ 2| W seony to offer a tailored guide for each person. Possible
s T features:
&s e o BHE -input, display and search the list of projects
Figure 37: An App on the Figure 37: A Mizen listing
Google Play Store

Mizen — A Location Aware Guidance App for Events 30

3.5 Design & Branding
3.5.1 Mizen

The concept of the lighthouse as a metaphor for beacon technology is a common one; it’s
found in the Kontakt.io whitepapers [10] and in the naming of Google’s Eddystone, after
the world’s first open-ocean lighthouse (built in 1699) [21].

Paying homage to this theme with a local twist, the student selected an Irish lighthouse,
Mizen, found on Ireland’s southernmost point. References to Mizen Head are common in

weather forecasting and Irish geography and as such would be familiar to guests at the event.

Mizen is not the name of any existing app and is a short five-letter, two-syllable word. It is

perfect for an application and would perform well in search engines.

3.5.2 The Mizen wordmark

The Mizen wordmark uses Avenir Light. It was picked

m i Z e n as it paired well with both Android’s Roboto and iOS’
San Francisco, and embodied the clean look of the app
and logo.

3.5.3 The Lighthouse Logo

This icon was made by Flaz Icon for Flaticon.com and is

licenced under the Flaticon Basic Licence. [22]

This icon was selected for its aesthetic qualities. It also exhibits
traits of both the iOS flat design and Google Material Design
styles for its use of lighting and colour. It combines well with

the wordmark. It was available for free download in vector

formats on FlatIcon.com under licence.
Figure 38: The lighthouse logo

3.5.4 Mizen in blue

To introduce the application in the

o initial splash screen and usage

instructions Mizen uses a colour

palette derived from the application’s

@m
=

search nearby

colours. The logo is modified with a
white ring replacing the darker outer

ring from the original mark, and the

Figure 39: Examples of Mizen's use of blue in its identity wordmark is written in white.

Mizen — A Location Aware Guidance App for Events 31

An alternate all-blue “day” look was tried out, but was rejected after

poor results on a 24-hour Twitter poll.

17% day

mizen 66 votes « Final results

Figure 40: Mizen Figure 41: Results of a Twitter poll rejecting this concept

"daylight" concept
3.5.5 10S identity

Apple enforces square icons with rounded corners on iOS. The icon is

redesigned and tweaked for display on the App Store and on the iOS

home screen (“springboard”).
Figure 42: Mizen's
icon on iO$ Various sizes had to be produced; vector icons were not permitted.

3.5.6 Mizen in Print

Adobe InDesign was used to design an A4 advertisement that was distributed to visitors on
the Final Year Project Open Day. It uses the blue brand identity defined by the app’s own
colours, though slightly washed out; the bolder colours are kept for the app as it appears on

screen.

Explore the FYP open day.
Mizen is a location-aware
guidance app for today’s event.

A final year proj / Colm Cahalane

mizen

Nearby: learn about what's
happening around you. Mizen
uses Bluetooth to find out where
you are, and tells you more about
the projects right beside you.

{ Back Aguidance app for Final...

Search: Find the projects you're

interested in by searching for

relevant terms or even searching

for the project’s supervisor or £R0ncs Sep K S R
second-reader: save the ones o Suden:com Caralane

you need to see, mark them it p g
done as you progress. e
Connect: Some students even

have linked their projects to their

LinkedIn profiles. Find out more .

about the graduating class once - o, oy 3 e o et ofprojcts
you've seen their work

iOS builds and demo
Google Play available by request: visit

http://colm.cf/mizen my stand in Room 1.11
Figure 43: The Mizen poster from the FYP Open Day

Mizen — A Location Aware Guidance App for Events 32

4 Release

4.1 Android & The Google Play Store

4.1.1 Building the application for release
Android applications are bundled as application package (APK) files that contain the

application and some metadata. An APK can be installed manually on any device using the
package installer, or over USB by Android Debug Bridge, but the most viable option for

mass distribution is the Google Play Store, loaded on the clear majority of Android phones.

While React Native’s CLI allows for debug builds, for release, the code must be signed. A
signing key is generated with the JDK keytool and the details of this should be added to
the Gradle configand app build config.

React Native provides a gradlew script, and by running gradlew assembleRelease the
project is built for release. Scripts and assets are bundled, and the code is signed. An

app-release.apk file is generated for upload to the Play Store.

Different APKs can be produced for different devices.

4.1.2 Uploading to Google Play

e The APK must be uploaded to Google Play, with a version number and version code.

o Atitle, description, application type and category must be provided.

e Screenshots, a high-resolution icon and feature graphic must be included.

e A rating questionnaire must be completed to determine the audience for the app
and its safety.

e Depending on the app’s usage of permissions, a privacy policy may be necessary.
The APKSs may be released in production, beta and alpha channels for testing.
Three Android releases were rolled out:

1. 1.0 (initial).

2. 1.1: Fix for a bug in the Search section.

3. 1.2: Fix for a bug in the Rooms section.
34 people installed the Android app, mostly on the day before the Open Day, suggesting
the primary audience was other students (staff and visitors weren’t informed about the app

until the Open Day itself).

An Android App release has very little turnaround time between releases being initiated and
going live. Notably, the initial release had only a three-hour turnaround. All students that

had downloaded version 1.1 prior to release were updated to version 1.2 prior to the event.

Mizen — A Location Aware Guidance App for Events 33

4.2 The iOS Release Process & The App Store

The relative ease of the Android deployment contrasts harshly with the myriad of difficulties

faced in the iOS deployment process.

4.2.1 Developer Accounts & Code Signing

Apple Developer Accounts permit users to sign code. Code signing is particularly important
for iOS development, as Apple has always placed strict rules on what can and can’t run on
the iOS platform. The UDID (Unique Device Identifier) numbers of each of the devices the
app is built for must be included in the Apple Developer Account, and in the Provisioning

Profile specific to the app and the signing certificate used to sign it.

XCode provisions to automatically manage signing for debug executables, the (“iOS

Developer”) signature. The phone must also explicitly trust the developer’s signature.
There do exist other forms of code signing for iOS, however:

e Ad-Hoc Distribution
The signed code is archived as an IPA file that the user can distribute to devices.
However, the UDIDs of the devices must be included in the provisioning profile.
This differs from the Debug\iOS Developer build in that it can be installed “over
the air” in browser and does not require trust management.

¢ In-House Distribution
Subscribers to the Apple Developer Enterprise Program can develop self-signed
applications that they can distribute Ad-Hoc but without the requirement to know
UUID:s of target devices.

e App Store Distribution
The app is signed for release on the App Store.

For these, the developer must generate their own signing certificate and create a

corresponding provisioning profile in their Apple Developer Account.

This complicated the process: the student developed the app initially under their own
iCloud account using the build identifier cf.colm.mizen, but had to change the build
identifier to a unique one (in this case net.cahalane.mizen) when building the app for
distribution under UCC’s Apple Developer Account. The automatic code signing for debug

executables refused to work under the new build identifier, so it had to be switched back for

debug builds.

XCode provides an “archive” option for projects, and upon exporting an archived app or

uploading it to iTunes Connect, the developer is provided these options to sign it.

Mizen — A Location Aware Guidance App for Events 34

4.2.2 iTunes Connect

Further to the barriers described above, iTunes Connect accounts used for App Store
deployment are completely separate entities to Apple Developer Accounts, despite the fact
that they both rely on iCloud login IDs. Another barrier exists in the form of the $99-per-
year iTunes Connect account for iOS Developers, in stark contrast to Android’s one-time

$25 membership fee.

For the most part, the information required to release an app on the App Store is like the
Google Play process in the provision of graphics and text content. Some sections are
generally more complex and difficult to fill out. There are also far more requirements for

screenshots with different device types.

Upon uploading an application from XCode, giving the application some time to run

through Apple’s processing, the app enters a review phase.

4.2.3 Application Review on iOS

The App Store review process has collected a degree of infamy for its unfriendliness, and this
has been recognised throughout the media and the developer community; efforts to improve

upon this process have been the subject of much report and anticipation [23].

While unofficial averages placed the time of an App Store review at roughly two days at the
time of submission [24], as a submission of a first version, a slightly longer review time was

allowed for.

The student issued a request for expedited review, as Apple provides this service in the case
of applications relating to time-sensitive events. This was denied with no reason provided.
(Refer to Appendix A: Denial of Expedite Request)

PROJECTS NEARBY ROOMS .
What was not expected was that beacon-specific

All Projects issues would hold up the review process. A call for
further information was sent to the student by
Apple two days after release. (Refer to Appendix B:

An Ogham Translation App Request for Information — Beacons)

Eric Bickerdyke (with Humphrey ﬁ
Sorensen)

Finally, the app was rejected from the App Store
(refer to Appendix C: Rejection Notice). In a

Chip In! = A Multiplayer Android « .
Game ¢y message, Apple declared “that [the] app or its

Anna Crotty (with Gavin Russell) . . .
Y metadata includes irrelevant third-party platform
Figure 44: Excerpt from screenshot information” and “Specifically, we have found

provided by Apple Android referenced upon launch of the

application.”, providing a screenshot.

Mizen — A Location Aware Guidance App for Events 35

The screenshot showed the Mizen All Projects screen. Android was mentioned in the name
of one project: “Chip In — A Multiplayer Android Game”. This mention of Android was

deemed enough to block the app from release.

As it should be obvious that this should be permitted in context, it could be assumed the
review process was carried out somewhat automatically, and not by a human. However, it’s
not clear why Apple did not request the information required at the first delay earlier, or

why Android mention didn’t flag sooner.

The app was distributed Ad-Hoc to interested students, staff and industry professionals
using a tool called Diawi (“Development & In-house Apps Wireless Installation”) [25] that
would allow the user to install the app within the browser if their UDID was included in the

provisioning profile for the app.

Mizen — A Location Aware Guidance App for Events 36

S Evaluation

5.1 Automated Testing in React Native

Due to working with a new framework and the time pressure involved in implementingand
releasing Mizen after the pivot to start from scratch in February, the student didn’t have

enough time to implement a proper unit testing workflow.

That said, test-driven development is possible in React Native. Facebook has created the Jest
testing framework for JavaScript that was designed specifically with React and React Native
in mind. [26]

However, it is not possible az this point of the project to expect meaningful results from Jest.
Jest is based on snapshot testing; creating a snapshot of expected results and periodically
running tests against these snapshots. If a test fails, the developer has the option to

confirm/deny that the changes are as expected, thus updating the snapshot.

However, given that development has ceased, running Jest will not give any further

information.

5.2 Peer Testing

The app was distributed to an audience of peers before general release to find and identify

any possible bugs. Two were resolved:

e Under certain conditions, the search bar was not functional at all on some devices.
This was resolved in the 1.1 Android release, and an update to the iOS ad-hoc
distribution.

o The initial fix for the search bar bug caused the individual rooms page to break on
Android; the changes were initially only tested on iOS. The incorrectly-referenced

variable was corrected and this was resolved in the 1.2 Android release.

5.3 Additional Bugs

e After the beacons were deployed in UCC, a field test was conducted. It was noted
that although the Android version reliably detected the current/nearest room
without fail, the iOS version was incredibly inaccurate. After ruling out hardware
failure, it was found that the sorting function used to sort the beacons on Android
(by a numeric distance) was incompatible with the iOS implementation of the
beacons library, which implemented a proximiry field with an enum value. An

update to the sorting algorithm to account for the implementation on iOS proved

Mizen — A Location Aware Guidance App for Events 37

successful. It is still not known why no exception was thrown when the array of
beacons was being sorted by a non-existent attribute.

e On devices with very large screens such as the iPhone 7 Plus, Project Row Items
don’t reach the edge of the screen. Conversely, on devices with far below standard
display size (such as an iPad emulating an older iPhone) the “mark done” button
may exist over the edge. This was a result of failing to reach a proper balance when
mixing flexbox and absolute layouts, and not being able to emulate more demanding
devices like the iPhone 7 Plus on the slower development machine.

e On Android, some testers remarked their saved projects had become missing. A logic
error caused saved projects to be unrecovered when the app is reloaded; the relevant
code was mistakenly put in an iOS section. This was fixed in the code repository on
GitHub but as this issue was discovered after the day there was no corresponding

Play Store release.

5.4 Issue on open day

During some early demos on the deployment day for staff members and students, the
Android version of the application began crashing. On a debug unit, the error message was
unclear, referring to malformed JSON. One student present remarked that the app
successfully loaded on Android if started while Bluetooth was disabled.

The room where the student was located (Room 1.11) did not have an Estimote Beacon, as
five beacons were provided to the student to handle six rooms. The student had downloaded
an application called mactsAsBeacon to simulate the final beacon with his MacBook Pro. For

unknown reasons, this was outputting malformed data that caused the Android app to crash

if detected in the initial setup phase.
The 6™ beacon was instead implemented on an Android phone running Beacon Toy.

No further issues were reported on the day itself.

5.5 Overall accuracy of beacons

It was found that the application performed very well at identifying the current room,
although there was a small chance of flicker between two nearby beacon-equipped rooms

(such as 1.11 and 1.19) depending on the beacon’s position in the room.

At greater distances, the accuracy of the detection of nearby rooms proved unreliable. Some
rooms such as the VR Lab appeared to have a much greater chance of appearing regardless

of actual proximity.

Having spoken to Prof. Ken Brown about this at the open day, the student learned that this

fall-off is common in beacon projects. True accuracy for beacons at greater distances would

Mizen — A Location Aware Guidance App for Events 38

involve a certain level of fingerprinting on the environment to determine and account for

these anomalies.

5.6 App Performance and Usability

Though the student did not collect metrics on this matter, review from peers such as other
students and staff was generally positive; the app felt like and behaved like a native

application; no complaints relating to speed were heard.

However, omitting the room number from individual project pages was identified as a
serious error where usability is concerned; it should’ve been possible for a user to identify
what room a project is in from a search. This was noticeably absent from the application and

should’ve been identified at the requirements analysis phase.

5.7 Revisiting the requirements analysis

5.7.1 Functional Requirements

1. The user MUST be able to see at a glance what projects are in the room they are in.

Success. The Nearby view works, and the beacons appear to be accurate and reliable on both
platforms as discussed above. It displayed this information at a glance and further

information was available on each project.

2. The user MUST be able to search and filter through a list of all projects — all fields

of the project SHOULD be searchable.
a. Title, Description, Student Name, Supervisor Name and Second Reader Name MUST be

searchable.

Success. react-native-searchbar was used to filter through the list of projects on all
fields. This meant that even elements of the project that weren’t displayed in the final version

of the app (such as a misc field containing keywords) were searchable.

3. The user MUST be able to bookmark projects to view later, and to mark them as

done/seen.

Success. “Saved” and “done” states were added to projects. However, a plan was originally
implemented so that saved projects appeared at the top of Project Lists to improve upon this
feature. It ended up being scrapped as peer testers felt like projects moving around in the list
as they worked with it was unexpected behaviour. It was not found to be possible to both

prevent this behaviour and keep state synchronised between tabs.

Mizen — A Location Aware Guidance App for Events 39

4. The user MAY be able to separately “like” a project.

Unimplemented. This, and a separate option to take notes on a project, were scrapped from
Mizen based on time constraints and this feature’s status as an optional requirement.
Implementing it would be trivial (using the same logic as Saved and Done) but it would only

complicate the UT for little gain.

5. The user MAY be provided suggested projects based on the projects they have

previously shown an interest in.

Unimplemented. This was considered highest priority among the secondary objectives of
the project at first, as the student was curious about the implementation of recommender
systems in this and other applications. However, the sheer amount of additional complexity
that this would add to the project, including requiring a far more detailed web backend,
comprehensive user tracking, and possibly some form of account system, was deemed too

much given the project’s time constraints. It remains a suitable area for future work
6. The user MUST be able to see at a glance what other rooms are nearby.

Reasonably successful. This was implemented, and even showed the saved/seen status of
projects in these rooms, but a fall-off in quality of suggestions was noted as distance between

rooms increased.

7. The user MUST be able to see additional information about the project such as its

full abstract, student and supervising lecturer.
Success. Each project has its own individual project page containing this information.

8. The user SHOULD be able to follow links to additional content such as the

student’s online presence or related documents to the project.

Success. This was implemented in the application, and the service to add this information
was advertised to students, but nobody except the developer of the project added these fields.
If the student could update FPM directly rather than their clone at colmfyp.netsoc.co, this

functionality would be complete.

5.7.2 Non-Functional Requirements

The non-functional requirements of the project were fulfilled in the creation of the updated

FPM backend and allowing using the Fetch API to communicate with it.

Mizen — A Location Aware Guidance App for Events 40

6 Conclusions

As is clear from the evaluation section, the project was a technical success and achieved most

of its goals, except for an iOS App Store deployment.

In this section, the non-technical accomplishments and results of the project will be
considered; the place of beacons and React Native in the industry, and possible future

developments.

6.1 On React Native for cross-platform development

“‘React Native is the fuz‘me.)

- STANISLAV VISHNEVSKIY, CTO, DISCORD [27]

The switch to React Native was the best decision made during the development of the
application — without it, the application would either remain unfinished or it would be
released as a substandard Cordova application. RN successfully delivered on its promise of a

rapid development framework that could be used on both iOS and Android with ease.

In this sense, it’s easy to see React Native find its niche. It allows businesses or individuals to
develop applications that reach the widest possible audience with much less specialist
knowledge required, reducing development time and cost. When Electron — a framework for
developing desktop apps with HTML and JavaScript, like a Cordova for the desktop —
arrived, it became massively popular among start-ups; suddenly, web-focused full-stack
developers could bring their skillset to the desktop for the first time. Cordova failed to fill

this gap on mobile, yet React Native shows far more promise.

A flaw remains: as an application becomes increasingly complex, so too increases the chance
of needing to use native code to provide a final app. While the community continues to
provide solutions in the form of open-source applications, it’s harder to tell at an early stage
if this problem will apply to any given project. The question of ‘4T need to write native code

anyway, why not start that way?” hovers over small teams.

However, the fact that native code can be wrapped around a React Native app suggests a
possibility of it standing out as a language for rapid agile development and prototyping. It
also suggests a home for it on the opposite end: larger teams that now only need a smaller

number of mobile specialists.

Looking at some of the teams that use React Native for their applications is a beacon of hope
for the future of the technology. Facebook, who initially pioneered the technology, are the
obvious highlight; the Facebook [28] and Instagram [29] apps which were built with React

Mizen — A Location Aware Guidance App for Events 41

Native [30] are the only third-party Android apps with over a billion downloads. Other
notable teams are on this list, however; the communications start-up Discord [27] published
a particularly valuable document, including claims of 98% code reuse between mobile and

desktop in the state-handling core of the app.

There’s a definite space for React Native in the future, but it’s far from perfect within the
present. The fact there isn’t a fast, simple, bundled implementation of Navigator is one such
cause for concern; the tendency for updates to have breaking effects is another. React Native
has no final API and is still on a zero-point version; meaning that no support is guaranteed
between updates. In the face of breaking changes, community contributions are often left
abandoned; stalling progress. The package react-native-ibeacon is one such example;
support was abandoned after a breaking change in react-native 0.40.0 even thougha
community solution was available. Eventually, a community fork was made available (the
react-native-beacons-manager referred to throughout the report), but this tendency

to change makes React Native inaccessible to some at this point in its lifetime.

6.2 On beacon-driven location

Field testing for Mizen showed that displaying the current room worked as expected, but
more distant beacons were much harder to differentiate. In the early stages of development,
the student was unable to get reliable differences between two beacons in a small space. A
common question from staff and students during the day was whether it would be possible
to determine using beacons what individual project the user was viewing, and for the purposes
of the open day, that would’ve been reasonably impossible, given how projects were located
only a few metres apart — unless work was done over time to measure and fingerprint the

room and allow for any variance.

Room-level context is far from useless: Mizen is proof of that. Also, there’s nothing
particularly wrong with an app that can determine a few nearby beacons to the device even
if it can’t determine which of the them is the nearest — it seems that most beacon-driven
applications will show nearby items but not try to guess which of those is the current focus
of the user’s attention. However, the technology is limited: strong signals can still move
through walls; for some sizes and shapes of rooms, managing this may prove difficult. Beacon

technology is useful; but its use should be constrained.

6.3 Modern JavaScript

A minor, but important, detail of the application is its use of modern JavaScript. React
Native’s implementation of ES7 (and even some features from ES2017!) revealed a reliable,
versatile and modern language, with excellent features such as strong object orientation and

reliable handling of asynchronous tasks. Several issues with older versions of JavaScript such

Mizen — A Location Aware Guidance App for Events 42

as finicky binding of the “this” keyword, unclear variable scoping, or monolithic singular
JS files, were tackled by new changes to the language. Even minor changes, such as the
Array.prototype.includes(v) method make the language friendlier to work with.
With more improvements to syntax such as array comprehensions planned for future

releases, modern JavaScript is looking promising.

6.4 Reimplementing Mizen next year

It shouldn’t be too difficult to implement Mizen at future final year project open days. If

FPM is still in use, these are the necessary steps:

e Implement the new version of FPM that has been submitted along with this project.
o Copy over the source code.
o Usephp artisan migrate to update the database.

e Obtain a SSL certificate for project.ucc.ie, and ensure that it can serve over https.

Otherwise, the iOS build will not work.

e Replace references to colmfyp.netsoc.co in the Mizen source code with project.ucc.ie

e Attach beacons to a UUID and use this UUID in the place of the one given in-app.

e Build and deploy new releases of Mizen!

Ideally, this rollout should take place in early February, to give over time for unexpected

outcomes in obtaining/securing an iOS release.

If FPM is replaced by a new system, make sure this new system can serve the projects as JSON
over HTTPS, can manage rooms and assign them to beacons. Mizen will have to be

rewritten to handle the new exported format, but most of its layouts will remain the same.

Contact me@colm.cf for support at any point for help and advice in reimplementing Mizen.

6.5 Future options for the technology behind Mizen

A primary concern when developing Mizen was to imagine a future for the application could

be implemented in new contexts beyond the final year project open day.

While the app in its current form is tethered to the open day by being hardcoded to it — it
downloads information specifically from the FPM clone, and while the fields displayed
throughout the app are specific to this data, the core logic is the same; at a trade show, careers
fair etc., switching “project” for “exhibit” and changing the app to fit details from a new data
source would be trivial — this could be provided as a service to clients wishing to implement

beacon-driven navigation at their event.

However, it’s more exciting to imagine the logic behind Mizen as a cross-platform location-

aware application implemented in ways that allow users to interact with their surroundings

Mizen — A Location Aware Guidance App for Events 43

mailto:me@colm.cf

rather than just be made aware of it. Consider the possible use case of the smart home, where
a device knows what room its user is in and displays relevant controls - lighting, heat, media
controls etc. — by using this source of context. There hasn’t been an elegant solution for this
problem yet within the smart home, and this room-level context by beacons could lead the

way.

Ideally, Mizen should reach a state where any event manager can manage this manually -
buying their own stack of beacons, tagging them to rooms or objects of relevance, and using

an app to bind them to information.
An even brighter vision for Mizen might lie in the React Native community.

While developing the application, the student made occasional use of a tool called Expo [31]
to test out new libraries. Based on the concepts of React Native, Expo went further on its

core concepts:

e by providing a JavaScript SDK linking providing platform-agnostic access to parts
of native functionality, such as
e by then dropping the requirement to build an app at all, allowing users to scan QR

codes that download and run the JavaScript behind the application

Expo could be considered as an alternative implementation of the idea of the progressive web
application, where ephemeral web applications with access to native mobile functionality

could be a way forward.

Expo wasn’t useful for building Mizen itself — not being able to import libraries that relied
on native code ruled out implementing beacon functionality. However, Expo could act as a
blueprint for a next-generation version of Mizen, where instead of displaying simple
information or set controls, experiences with native functionality can be written for
individual beacons, and the application can seek out and download these local experiences

based on nearby beacons.

Finally, there’s room to create more of a fleshed-out backend for Mizen that notes interest

in projects and suggests other projects based on overall similarity.

6.6 A final personal statement

[took on developing this project to learn more about mobile development, a field that I'd
previously no experience in. I initially underestimated the sheer scale of this undertaking -

the deceptively simple scale of the app led me to come at the project from the wrong side.

Opportunity arose from difficulty in the pivot to React Native — I credit it as being the key

to not only completing the application on both platforms but improving the quality and

Mizen — A Location Aware Guidance App for Events 44

standards of the final product by giving me more time to focus. A three-line function to fezch
from the API in React Native was a sharp contrast to learning the Retrofit model for

Android — and Retrofit was a major community improvement over the pure-Java status quo.

While I ended up failing to achieve some of my personal goals in the project — to learn the
Swift programming language, or gain specialist knowledge in beacons and native application
state handling on Android and iOS, I've been lucky to gain the knowledge to fill this report,
finding new, exciting ways to use the skills I'd already learned to develop for the web, while

expanding on those skills. I'm confident in my knowledge of React Native today.

I'm proud of the final application that has been developed, and of the work that has gone
into it. With the permission of Prof. Sreenan, I've made the project open-source and will

continue to use it as a portfolio piece for years to come.

Mizen — A Location Aware Guidance App for Events 45

Appendices

Appendix A: Denial of Expedite Request
Hello Colm,

Thank you for contacting the App Store Review team. We are unable to accommodate your
request for an expedited review at this time. While we do our best to accommodate requests
for expedited reviews and take individual circumstances into consideration, we are unable to
grant every request due to our volume. Helping you get your app, IAPs, or bundle to the App
Store is very important to us, and we are working hard to process all submissions as quickly

as possible.

Best regards,

App Store Review

Appendix B: Request for Information — Beacons

Guideline 2.1 - Information Needed

We have started the review of your app, but we are not able to continue because we need

additional information about your app.
Next Steps

To help us proceed with the review of your app, please review the following questions and

provide as much detailed information as you can.

- Does this app detect startMonitoringForRegion:, startRangingBeaconsInRegion:, or both?
- What is the user experience when the app detects the presence of a beacon?

- What features in this app use background location?

- If this app uses 3rd party SDKs for iBeacons, please provide links to their documentation

showing that background location is required for it to function.

Please reply to this message in Resolution Center with the requested information.
Appendix C: Rejection Notice

Guideline 2.3.10 - Performance

We noticed that your app or its metadata includes irrelevant third-party platform

information. Specifically, we have found Android referenced upon launch of the application.

Mizen — A Location Aware Guidance App for Events 46

Referencing third-party platforms in your app or its metadata is not permitted on the App

Store unless there is specific interactive functionality.

Please see attached screenshots for details.

Searching... ¥ 7 % 96% M 4

PROJECTS NEARBY ROOMS

All Projects

An Ogham Translation App
Eric Bickerdyke (with Humphrey
Sorensen)

Chip In! - A Multiplayer Android
Game
Anna Crotty (with Gavin Russell)

Record Based Animation of Irish
Rainfall
Alan Lehane (with James Bowen)

Google Wear Investigation

Next Steps

To resolve this issue, please remove all instances of this information from your app and its

metadata, including the app description, What's New info, previews, and screenshots.

Since your iTunes Connect status is Rejected, a new binary will be required. Make the

desired metadata changes when you upload the new binary.

NOTE: Please be sure to make any metadata changes to all app localizations by selecting

each specific localization and making appropriate changes.

Mizen — A Location Aware Guidance App for Events 47

Appendix D: The Application Layout

This is an extended version of a figure shown catlier in the application that approximates the application layout.

It is not valid JSX. It does aim to show how components are linked in a React tree, but it’s not particularly

useful - simply included for completeness.

<Mizen>
<SplashScreen/>
<Tabs>
<Al1ProjectsNav>
<AllProjectsScreen>
<Provider store={store}>
<AllProjectsList navigation={ap_nav}>
<ListView>
<ProjectRowItem/>...
</ListView>
<SearchBar/>
</Al1ProjectsList>
</Provider>
</All1ProjectsScreen>
<IndividualProjectScreen/>
</Al1ProjectsNav>
<NearbyNav>
<NearbyScreen>
<Provider store={store}>
<NearbyRoomInfo navigation={nb_nav}>
<ProjectList projects={nearbyProjects}>
<ListView>
<ProjectRowItem/>...
</ListView>
</ProjectList>
<NearbyInfo rooms={nearbyRooms}/>
</NearbyRoomInfo>
</Provider>
</NearbyScreen>
<IndividualProjectScreen/>
</NearbyNav>
<Al1RoomsNav>
<RoomListScreen>
<Provider store={storel}>
<RoomList navigation={rm_nav}>
<ListView>
<RoomRowItem/>...
</ListView>
</RoomList>
</Provider>
</RoomListScreen>
<IndividualRoomScreen>
<ProjectList projects={room_projects}>
<ListView>
<ProjectRowItem/>...
</ListView>
</ProjectList>
</IndividualRoomScreen>
<IndividualProjectScreen/>
</Al1lRoomsNav>
</Tabs>
</Mizen>

Mizen — A Location Aware Guidance App for Events 48

References

[1] C. Sreenan, “A guidance app for Final Year Project Open Day,” 20 September 2016.
[Online]. Available: http://project.ucc.ie/projects/218. [Accessed 17 April 2017].

[2] Pointr Labs, “Beacons - Everything You Need To Know,” July 2016. [Online].
Available: http://www.pointrlabs.com/blog/beacons-everything-you-need-to-
know/.

[3] Apple, Inc., “Getting Started With iBeacon (version 1.0),” 2 June 2014. [Online].
Available: https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf.
[Accessed 4 April 2017].

[4] Google, “The Physical Web,” [Online]. [Accessed 8 April 2017].
[5] Estimote, “Beacon Tech Overview,” 2014. [Online]. [Accessed 8 April 2017].

[6] Ionic, “The Last Word on Cordova and PhoneGap,” 6 March 2014. [Online].
Available: http://blog.ionic.io/what-is-cordova-phonegap/. [Accessed 9 April 2017].

[7] Facebook, “React - JSX In Depth,” 31 January 2017. [Online]. Available:
https://facebook.github.io/react/docs/jsx-in-depth.heml. [Accessed 9 April 2017].

[8] Facebook, “React Native Documentation (v 0.42),” 1 March 2017. [Online].
Available: http://devdocs.io/react_native/. [Accessed 9 March 2017].

[9] “ModuleCounts,” 4 April 2017. [Online]. Available:
htep://www.modulecounts.com/. [Accessed 4 April 2017].

[10] Kontakt.io, “Boosting Mobile Experiences at Events With Proximity,” 2016.
[Online]. Available: https://kontakt.io/resources/. [Accessed 9 April 2017].

[11] Kontakt.io, “Making Audio Guides Relevant in the 21st Century with the Power of
Proximity,” 2017. [Online]. Available: https://kontakt.io/resources/. [Accessed 9
April 2017].

[12] Pulsate, “Pulsate - Customers,” 10 April 2017. [Online]. Available:
https://www.pulsatehq.com/why-pulsate.

[13] S. Bradner, “RFC2119: Key words for use in RFCs to Indicate Requirement Levels,”
[ETF, Cambridge, MA, 1997.

[14] Microsoft, “react-native-windows on GitHub,” [Online]. Available:
https://github.com/Microsoft/react-native-windows.

[15] Apple, Inc., “Get Xcode,” [Online]. Available:
hteps://developer.apple.com/download/. [Accessed 16 April 2017].

[16] S. C. &. B. Straub, Pro Git (2nd Edition), Apress, 2014.

[17] Moxzilla, “Fetch API,” 9 April 2017. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API. [Accessed 12
April 2017].

(18] D. Abramov, “Redux.js Documentation,” 31 March 2017. [Online]. Available:
http://redux.js.org/. [Accessed 12 April 2017].

Mizen — A Location Aware Guidance App for Events 49

[19] React Navigation, “React Navigation,” 22 February 2017. [Online]. Available:
http://reactnavigation.org. [Accessed 16 April 2017].

[20] W3C, “CSS Flexible Box Layout Module Level 1,” 26 May 2016. [Online].
Available: hetps://www.w3.org/TR/css-flexbox-1/. [Accessed 15 April 2017].

[21] “Lighthouse,” in Encyclopaedia Britannica.

[22] FlatIcon, “Flaticon Basic Licence,” [Online]. Available:
http://file000.flaticon.com/downloads/license/license.pdf. [Accessed 14 April
2017).

(23] A. Ghoshal, “Apple is fixing App Store reviews at last,” The Next Web, 2017 January.

[24] Shiny Development, “App Review Times: Annual Trend Graph,” 16 April 2017.
[Online]. Available: http://appreviewtimes.com/ios/annual-trend-graph. [Accessed
16 April 2017].

[25] Diawi, “Diawi,” [Online]. Available: http://diawi.com. [Accessed 17 April 2017].

[26] Facebook, “Jest - Javascript Testing Framework,” [Online]. Available:
https://facebook.github.io/jest/docs/tutorial-react-native.html. [Accessed 7 April
2017).

[27] F. Chen, “Using React Native: One Year Later - Discord Engineering,” 7 June 2017.
g g &
[Online]. Available: https://blog.discordapp.com/using-react-native-one-year-later-
p g pp g Yy
91£d5e949933. [Accessed 17 April 2017].

(28] AppBrain, “Facebook - Android App Statistics,” [Online]. Available:
http://www.appbrain.com/app/facebook/com.facebook.katana. [Accessed 17 April
2017).

[29] AppBrain, “Instagram - Android App Staistics,” [Online]. Available:
http://www.appbrain.com/app/instagram/com.instagram.android. [Accessed 17
April 2017].

[30] P. De Baets, A. Lang, F. Sagnes and T. Zagallo, “Dive into React Native
performance,” 28 March 2016. [Online]. Available:
https://code.facebook.com/posts/895897210527114/dive-into-react-native-
performance/. [Accessed 17 April 2017].

[31] Expo, “Expo Documentation, version 15,” April 2017. [Online]. Available:
https://docs.expo.io/versions/v15.0.0/index.html. [Accessed 17 April 2017].

[32] K. Soltani, “Building Mobile Apps with Cordova, AngularJS and Ionic,” LinkedIn,
2014.

Mizen — A Location Aware Guidance App for Events 50

