
Lost in Transduction
:clojureD 2017, Christophe Grand @cgrand

What happened?

An iteration story

seqs

chunked seqs

reducers

transducers

• simple model

• persistent

• strict laziness

• GC under pressure

An iteration story

seqs

chunked seqs

reducers

transducers

• less allocs

• more locality

• relax laziness

• branch my impl

➔ little support

An iteration story

seqs

chunked seqs

reducers

transducers

• no alloc

• ~lazy

• not persistent

• fragmentation

• map vs r/map

Meanwhile in core.async

async/map, async/filter, etc.  
 

more fragmentation

against Clojure values

Clojure Rationale

It is better to have 100 functions operate on one data
structure than to have 10 functions operate on 10
data structures.

Alan J. Perlis

clojure.org/about/rationale

https://clojure.org/about/rationale

An iteration story

seqs

chunked seqs

reducers

transducers

• no alloc

• ~lazy

• not persistent

• no fragmentation

➔ need context

• branch my impl

➔ wider support

Transducing contexts

• transduce

• sequence (2-arg)

• into (3-arg)

• eduction

• async/chan

• async/pipeline

chunked vs transducers

• Branch impl

• impl contains iteration
logic

• can’t write only the
chunked branch

• Branch impl

• impl contains
completion logic

• can write only the
transducer

Oh the irony!

=> (class (seq (sequence (map inc) (list 1 2 3))))
clojure.lang.ChunkedCons

Transducers enable
reuse

Bonus: they are more efficient

What’s a transducer?

Formally
A finite-state transducer (FST) is a finite-state
machine with two memory tapes, following the
terminology for Turing machines: an input tape and
an output tape. This contrasts with an ordinary finite-
state automaton, which has a single [input] tape.

Informally

• An automaton is a predicate on sequences

• A transducer is an arbitrary transformation of
sequences to sequences

Clojure transducers

• Take the « output tape » returns the « input tape »

• A « tape » is a reducing function: (f acc x) to
write x

What’s in a
transducer?

The identity transducer

(fn [rf] ; the downstream reducing function
 (fn ; the transformed reducing function
 ([] (rf)) ; init
 ([acc] (rf acc)) ; complete
 ([acc x] (rf acc x)))) ; step

Caution: Bughazard

Boilerplate init

• init (0 arg) may not even be called!  
(e.g. sequence or 4-arg transduce)

• the only sensible thing to do is (rf)

• corollary #1: the accumulator shouldn’t be touched

• corollary #2: mutable state

 Chain completion

• completion (1 arg) MUST call downstream
completion (eg (rf acc))

• step (2 args) MUST NOT call completion

• just signal it… with reduced!

Nobody expects reduced!

reduced
• think twice about each (rf acc x) call, do you

want to:

• propagate?

• stop no matter what? (e.g. take at 0 and
downstream reduced)

• wrap because you have nested reduces

• use reduced?, ensure-reduced and unreduced.

reduced (cont.)

• (rf acc x) may be called from completion
(flushing state)

➔ don’t forget to unreduced before (rf acc)

• Corollary #3: if you get a reduced, make sure to
not call step (2 args) again

The rf is a lie
• A transducer is a stateful process, not a reducing

function

• Root of all transducer quirks!

(defprotocol Tape
 (put! [tape x]
 "writes x and returns false if tape is cut")
 (cut! [tape] "terminates tape"))

Implement with care
I’m pretty sure I messed up…

xforms: The Lost Levels
• my style changed to use

transducers a lot, mainly
(into dst xform src)*

• some were missing: behold
xforms!

• xform denotes a transducer
in clojure.core

• github.com/cgrand/xforms

• clj, cljs and self-hosted cljs

*filterv , mapv are legacy.

https://github.com/cgrand/xforms

xforms transducers
• regular ones: partition (1 arg), reductions, for, take-

last, drop-last, window and window-by-time

• higher-order ones: by-key, multiplex, transjuxt,
partition (2+ args)

• aggregating ones (1-item out): reduce, into,
transjuxt, last, count, avg, sd, min, minimum, max,
maximum, str

x/for

• Either a drop-in replacement
for for but returns an
eduction (non persistent
collection)

• Or a transducer when first coll
is %

(reduce +
 (x/for [x (range 100)
 y (range x)
 :let [x+y (+ x y)]
 :when (even? x+y)]
 x+y))

(transduce
 (x/for [x %
 y (range x)
 :let [x+y (+ x y)]
 :when (even? x+y)]
 x+y)
 + (range 100))

x/partition as usual

=> (sequence (x/partition 3) (range 10))
([0 1 2] [3 4 5] [6 7 8])

=> (sequence (x/partition 3 2) (range 10))
([0 1 2] [2 3 4] [4 5 6] [6 7 8])

=> (sequence (x/partition 3 2 [:pad]) (range 10))
([0 1 2] [2 3 4] [4 5 6] [6 7 8] [8 9 :pad])

x/partition new tricks

=> (sequence (x/partition 3 (x/reduce +))
 (range 10))
(3 12 21)

=> (sequence (x/partition 3 2 [:pad]
 (comp (interpose "-") x/str))
 (range 10))
("0-1-2" "2-3-4" "4-5-6" "6-7-8" "8-9-:pad")

x/partition two faces

• A transducer

• A transducing context

• At the same time

• Allows to perform computations in one pass

x/by-key
• My favorite xform!  

(defn my-group-by [kfn coll] ; beats core/group-by
 (x/into {} (x/by-key kfn (x/into [])) coll))

• Specialized support throughout xforms for handling pairs
without alloc

• x/into drop-in replacement for into but with kv-support

• x/into 1-arg returns a transducer

1-pass rollup (advanced)
(defn rollup [dimensions valfn] ; recursive aggregation (sum)
 (let [[dim & dims] (reverse dimensions)]
 (reduce
 (fn [xform dim]
 (comp
 (x/by-key dim xform)
 (x/transjuxt
 {:detail (x/into {})
 :total (comp x/vals (map :total) (x/reduce +))})))
 (comp (x/by-key dim (map valfn))
 (x/transjuxt
 {:detail (x/into {})
 :total (comp x/vals (x/reduce +))}))
 dims)))

Advanced example

=> (into {} (rollup [:continent :country] :population)
 [{:continent "Europe" :country "France" :population 66}
 {:continent "Europe" :country "Germany" :population 80}
 {:continent "Europe" :country "Belarus" :population 9}
 {:continent "North-America" :country "USA" :population 319}
 {:continent "North-America" :country "Canada" :population 35}])
{:detail
 {"Europe"
 {:detail {"France" 66, "Germany" 80, "Belarus" 9}, :total 155},
 "North-America" {:detail {"USA" 319, "Canada" 35}, :total 354}},
:total 509}

Bringing transducers
to new horizons

Powderkeg

• Transducers on Apache Spark

• As easy as: 
(keg/rdd src-rdd (map inc))

• Develop and test without Spark

• github.com/HCADatalab/powderkeg

https://github.com/HCADatalab/powderkeg

TL;DR

• Transducers unleash reuse  
(Efficiency is icing on the cake)

• Writing your own is full of pitfalls: compose,
compose, compose

• Give xforms a try!  
(and Powderkeg too if Spark is your thing)

Thank you!

@cgrand

github.com/cgrand

https://github.com/cgrand

