Last updated: 2018-06-27
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 5e81c8e
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: data/18486.genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/gene_cov/
Untracked: data/leafcutter/
Untracked: data/nuc6up/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/ssFC200.cov.bed
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/explore.filters.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
In this analysis I want to test macs2 as a potential peak caller in the 3’ seq data. This is a widely used peak caller for chip seq data.
I have to create a specific environment to install macs2 because you need to use python 2.7. I call it macs-env. To access this environment I use source activate macs-env.
First, I will merge all of my files into 1 bam file. Using samtools merge. I will do all of my work for this in data/macs2
#!/bin/bash
#SBATCH --job-name=merge
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END
module load samtools
samtools merge macs2/allBamFiles.bam bam/*.bam
I will create a script in the code directory to call the peaks:
#!/bin/bash
#SBATCH --job-name=macs2nomod
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomod.out
#SBATCH --error=macs2nomod.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END
module load Anaconda3
source activate macs-env
macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/allBamFiles.bam -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n threeprimebatch1 --slocal 1000 --nomodel
This method called 102988 peaks. This is likely more than the true PAS.
Update the -m (MFOLD) term to change the fold enrichment. They must be lower than the upper limmit and higher than the lower limit. The default is 5 50. I will try to make this 20 100.
#!/bin/bash
#SBATCH --job-name=macs2nomod20.100
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomod.20.100.out
#SBATCH --error=macs2nomod.20.100.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END
module load Anaconda3
source activate macs-env
macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/allBamFiles.bam -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n threeprimebatch1.20.100 --slocal 1000 --nomodel -m 20 100
This did not change anything. I am going to try a higher cutoff.
#!/bin/bash
#SBATCH --job-name=macs2nomod40.400
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomod.40.200.out
#SBATCH --error=macs2nomod.40.200.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END
module load Anaconda3
source activate macs-env
macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/allBamFiles.bam -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n threeprimebatch1.40.200 --slocal 1000 --nomodel -m 40 200
I also want to run this using seperate files for the total and nuclear fractions.
I wil first merge the total and nuclear bam files seperatly.
#!/bin/bash
#SBATCH --job-name=mergeTN
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END
module load samtools
samtools merge macs2/TotalBamFiles.bam bam/*T*.bam
samtools merge macs2/NuclearBamFiles.bam bam/*N*.bam
Now I can run the original call peaks on each seperatly with macs2_nomod_TN.sh.
#!/bin/bash
#SBATCH --job-name=macs2nomodTN
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomodTN.out
#SBATCH --error=macs2nomodTN.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END
module load Anaconda3
source activate macs-env
macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/TotalBamFiles.bam -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n Totalthreeprimebatch1 --slocal 1000 --nomodel
macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/NuclearBamFiles.bam -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n Nuclearthreeprimebatch1 --slocal 1000 --nomodel
sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.0.1 Rcpp_0.12.17 digest_0.6.15
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2
[7] git2r_0.21.0 magrittr_1.5 evaluate_0.10.1
[10] stringi_1.2.2 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.6.0 rmarkdown_1.8.5 tools_3.4.2
[16] stringr_1.3.1 yaml_2.1.19 compiler_3.4.2
[19] htmltools_0.3.6 knitr_1.18
This reproducible R Markdown analysis was created with workflowr 1.0.1