Last updated: 2018-10-01
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 9d6ee03
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/genometrack_figs.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/NuclearApaQTLs.txt
Untracked: data/RNAkalisto/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nuc6up/
Untracked: data/other_qtls/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/PeakToGeneAssignment.Rmd
Modified: analysis/callMolQTLS.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/test.max2.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
I will use this script to overlap the molQTLs found in Call molQTL analysis with the APA QTLs I found using the transcript level annotations .
I want to ask if APA QTLs effect other molecular QTLs. The first step is to find the top snp-gene pair. The permuted value is giving me 1 snp for each peak. I need to find the top snp/peak in this file for each gene. I will then test these snps for significance at 10% fdr.
Overlap: Use the permulted molecular QTL pvalues to find the significant QTLs for each molecular phenotype I tested. Find each of these snps in the APA permuted file. Take the most stignficant pair and multiple the pvalue by the number of peaks the snp is associated with for that same gene. As a baseline for this test I will randomly choose the same number of snps from molecular QTL and test these in the APA permuted files. I can run this for the total and nuclear.
I want to do this for each of the molecular QTLs, therefore it would be best to upload the necessary files then create a script that can take any of them and create the QQplot.
Library
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(reshape2)
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.3.1
✔ readr 1.1.1 ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
Permuted Results from APA:
nuclearAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt", stringsAsFactors = F, header = T)
totalAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt", stringsAsFactors = F, header=T)
Permuted results for other QTLs
perm_names=c("pid" ,"nvar","shape1" ,"shape2", "dummy","sid" ,"dist","npval", "slope" , "ppval" ,"bpval")
su30=read.table("../data/other_qtls/fastqtl_qqnorm_4su30.fixed.perm.out", stringsAsFactors = F,col.names = perm_names)
su60=read.table("../data/other_qtls/fastqtl_qqnorm_4su60.fixed.perm.out", stringsAsFactors = F,col.names = perm_names)
rna=read.table("../data/other_qtls/fastqtl_qqnorm_RNAseq_phase2.fixed.perm.out", stringsAsFactors = F,col.names = perm_names)
rib=read.table("../data/other_qtls/fastqtl_qqnorm_ribo_phase2.fixed.perm.out", stringsAsFactors = F,col.names = perm_names)
prot=read.table("../data/other_qtls/fastqtl_qqnorm_prot.fixed.perm.out", stringsAsFactors = F,col.names = perm_names)
I will write this in multiple functions and put them together. The first function will take in the permuted results and return the significant snps at a given FDR.
#returns significant snps given a file and a cutoff
sigsnp=function(file, cutoff){
file$bh=p.adjust(file$bpval, method="fdr")
file_sig=file %>% filter(-log10(bh)> cutoff) %>% select(sid)
return(file_sig)
}
testsigsnp=sigsnp(rna,1 )
Next step is to choose a random subset with the same number of snps as were found significant.
#takes the file and the list of sig snps, returns a df with the same number of random snps
randomsnps=function(file, SigSnpList){
nsnp=nrow(SigSnpList)
randomSnpDF= file %>% sample_n(nsnp) %>% arrange(sid) %>% select(sid)
return(randomSnpDF)
}
testrandomsnps=randomsnps(rna, testsigsnp)
The next step is to filter permuted file by the snp id. To do this I will join on the snpIDs then group by the snp ids. I should then be able to take the lowest Pvalue from each group and count how many are in each group to multiply by the number of tests. I will practice this with a small set then make the general function.
#filter and fix pvals
filt_tot= totalAPA %>% semi_join(testrandomsnps, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval * n)
#take top snp
filt_tot_top= filt_tot %>% group_by(sid) %>% top_n(-1, corrPval)
Make this into a function for the total and nuclear:
#takes a list of snps and filters the top corrected snp for each one, returns df
top_Total=function(snp_list){
filt_tot=totalAPA %>% semi_join(snp_list, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval)
filt_tot_top= filt_tot %>% group_by(sid) %>% top_n(-1, corrPval)
return(filt_tot_top)
}
#same for nuclear:
top_Nuclear=function(snp_list){
filt_nuc=nuclearAPA %>% semi_join(snp_list, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval)
filt_nuc_top= filt_nuc %>% group_by(sid) %>% top_n(-1, corrPval)
return(filt_nuc_top)
}
In the full script I will run this on the real QTLs and the random snps.
The next function will make the plots. I will make one that takes the results of the top_total or top_Nuclear snps.
#function returns a QQplot when given the results of the top_X functions. One will be the test set (real QTLs) and 1 will be the baseline snps.
makeQQ=function(test, baseline, Mol, Fraction){
plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$corrPval), ylab="Observed", xlab="Expected", main=paste("Overlap QTLs:", Mol, "with APA", Fraction, sep=" "))
points(sort(-log10(runif(nrow(test)))), sort(-log10(test$corrPval)), col= alpha("Red"))
abline(0,1)
return(plot)
}
Put these together in a function: I want to give the function the molQTL file and it will make the total and nuclear plots. This means I need to give it the file to write the png files to.
overlapQTLplot=function(mol_file, cut, mol_type, totQQfile, nucQQfile){
#helper functions
sigsnp=function(file, cutoff){
file$bh=p.adjust(file$bpval, method="fdr")
file_sig=file %>% filter(-log10(bh)> cutoff) %>% select(sid)
print(paste("Sig snps=", nrow(file_sig), sep=" "))
return(file_sig)
}
randomsnps=function(file, SigSnpList){
nsnp=nrow(SigSnpList)
randomSnpDF= file %>% sample_n(nsnp) %>% arrange(sid) %>% select(sid)
return(randomSnpDF)
}
top_Total=function(snp_list){
filt_tot=totalAPA %>% semi_join(snp_list, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval)
filt_tot_top= filt_tot %>% group_by(sid) %>% top_n(-1, corrPval)
print(paste("Total overlap=", nrow(filt_tot_top), sep=" "))
return(filt_tot_top)
}
top_Nuclear=function(snp_list){
filt_nuc=nuclearAPA %>% semi_join(snp_list, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval)
filt_nuc_top= filt_nuc %>% group_by(sid) %>% top_n(-1, corrPval)
print(paste("Nuclear overlap=", nrow(filt_nuc_top), sep=" "))
return(filt_nuc_top)
}
makeQQ=function(test, baseline, Mol, Fraction){
plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$corrPval), ylab="Observed", xlab="Expected", main=paste("Overlap QTLs:", Mol, "with APA", Fraction, sep=" "))
points(sort(-log10(runif(nrow(test)))), sort(-log10(test$corrPval)), col= alpha("Red"))
abline(0,1)
return(plot)
}
TL=sigsnp(mol_file, cut)
BL=randomsnps(mol_file, TL)
#top snps test and base total
topT_T=top_Total(TL)
topT_B=top_Total(BL)
#top snps test and base total
topN_T=top_Nuclear(TL)
topN_B=top_Nuclear(BL)
#plot Total
png(totQQfile)
totalPlot=makeQQ(topT_T,topT_B, mol_type, "Total")
dev.off()
#plot Nuc
png(nucQQfile)
totalPlot=makeQQ(topN_T,topN_B, mol_type, "Nuclear")
}
overlapQTLplot(su30, 1, "4su 30", "../output/plots/APAoverlap4su30_Total.png","../output/plots/APAoverlap4su30_Nuclear.png")
[1] "Sig snps= 711"
[1] "Total overlap= 85"
[1] "Total overlap= 112"
[1] "Nuclear overlap= 87"
[1] "Nuclear overlap= 100"
overlapQTLplot(su60, 1, "4su 60", "../output/plots/APAoverlap4su60_Total.png","../output/plots/APAoverlap4su60_Nuclear.png")
[1] "Sig snps= 666"
[1] "Total overlap= 91"
[1] "Total overlap= 90"
[1] "Nuclear overlap= 76"
[1] "Nuclear overlap= 104"
overlapQTLplot(rna, 1, "RNAseq", "../output/plots/APAoverlapRNA_Total.png","../output/plots/APAoverlapRNA_Nuclear.png")
[1] "Sig snps= 847"
[1] "Total overlap= 107"
[1] "Total overlap= 116"
[1] "Nuclear overlap= 109"
[1] "Nuclear overlap= 142"
overlapQTLplot(rib, 1, "RiboSeq", "../output/plots/APAoverlapRibo_Total.png","../output/plots/APAoverlapRibo_Nuclear.png")
[1] "Sig snps= 483"
[1] "Total overlap= 57"
[1] "Total overlap= 72"
[1] "Nuclear overlap= 61"
[1] "Nuclear overlap= 79"
overlapQTLplot(rib, 1, "Protein", "../output/plots/APAoverlapProtein_Total.png","../output/plots/APAoverlapProtein_Nuclear.png")
[1] "Sig snps= 483"
[1] "Total overlap= 57"
[1] "Total overlap= 67"
[1] "Nuclear overlap= 61"
[1] "Nuclear overlap= 77"
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.6
[5] purrr_0.2.5 readr_1.1.1 tidyr_0.8.1 tibble_1.4.2
[9] ggplot2_3.0.0 tidyverse_1.2.1 reshape2_1.4.3 workflowr_1.1.1
loaded via a namespace (and not attached):
[1] tidyselect_0.2.4 haven_1.1.2 lattice_0.20-35
[4] colorspace_1.3-2 htmltools_0.3.6 yaml_2.2.0
[7] rlang_0.2.2 R.oo_1.22.0 pillar_1.3.0
[10] glue_1.3.0 withr_2.1.2 R.utils_2.7.0
[13] modelr_0.1.2 readxl_1.1.0 bindr_0.1.1
[16] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0
[19] cellranger_1.1.0 rvest_0.3.2 R.methodsS3_1.7.1
[22] evaluate_0.11 knitr_1.20 broom_0.5.0
[25] Rcpp_0.12.18 backports_1.1.2 scales_1.0.0
[28] jsonlite_1.5 hms_0.4.2 digest_0.6.16
[31] stringi_1.2.4 grid_3.5.1 rprojroot_1.3-2
[34] cli_1.0.0 tools_3.5.1 magrittr_1.5
[37] lazyeval_0.2.1 crayon_1.3.4 whisker_0.3-2
[40] pkgconfig_2.0.2 xml2_1.2.0 lubridate_1.7.4
[43] assertthat_0.2.0 rmarkdown_1.10 httr_1.3.1
[46] rstudioapi_0.7 R6_2.2.2 nlme_3.1-137
[49] git2r_0.23.0 compiler_3.5.1
This reproducible R Markdown analysis was created with workflowr 1.1.1