Last updated: 2018-08-28
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180801)
The command set.seed(20180801)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 1ae2e49
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/figure/
Untracked files:
Untracked: com_threeprime.Rproj
Untracked: data/PeakPerExon/
Untracked: data/PeakPerGene/
Untracked: data/comp.pheno.data.csv
Untracked: data/dist_TES/
Untracked: data/dist_upexon/
Untracked: data/liftover/
Untracked: data/map.stats.csv
Untracked: data/map.stats.xlsx
Untracked: data/orthoPeak_quant/
Unstaged changes:
Deleted: comparitive_threeprime.Rproj
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 1ae2e49 | brimittleman | 2018-08-28 | fix format |
html | 1f8f5b1 | brimittleman | 2018-08-28 | Build site. |
Rmd | 8f61cee | brimittleman | 2018-08-28 | add plot recreating wang et al 2018 |
html | a237865 | brimittleman | 2018-08-24 | Build site. |
Rmd | 364f330 | brimittleman | 2018-08-24 | TES distance |
html | d11c2cf | brimittleman | 2018-08-22 | Build site. |
Rmd | 3a19b07 | brimittleman | 2018-08-22 | add hg19 dist |
html | d0d4599 | brimittleman | 2018-08-21 | Build site. |
I will use this analysis for QC on the orthologous peaks called in the liftover pipeline analysis.
First
I want to make sure the distances of the orthologous peaks to the nearest exon called in Bryans ortho exon files follow a similar distribution.
The orthologus exon files are in /project2/gilad/briana/genome_anotation_data/ortho_exon and the small version have just chr start end and exon name.
The ortho peak files are in /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/
I want the closest exon upstream, i will use bedtools closest:
distUpstreamexon.sh
#!/bin/bash
#SBATCH --job-name=disUpstreamexon
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=disUpstreamexon.out
#SBATCH --error=disUpstreamexon.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate comp_threeprime_env
bedtools closest -id -D a -a /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/chimpOrthoPeaks.sort.bed -b /project2/gilad/briana/genome_anotation_data/ortho_exon/2017_July_ortho_chimp.small.sort.bed > /project2/gilad/briana/comparitive_threeprime/data/dist_upexon/Chimp.distUpstreamexon.txt
bedtools closest -id -D a -a /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/humanOrthoPeaks.sort.bed -b /project2/gilad/briana/genome_anotation_data/ortho_exon/2017_July_ortho_human.small.sort.bed > /project2/gilad/briana/comparitive_threeprime/data/dist_upexon/Human.distUpstreamexon.txt
Import the files and plot the distances.
library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.3.1
✔ readr 1.1.1 ✔ forcats 0.3.0
── Conflicts ────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(cowplot)
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
getwd()
[1] "/Users/bmittleman1/Documents/Gilad_lab/comparitive_threeprime/com_threeprime/analysis"
file.exists("../data/dist_upexon/Chimp.distUpstreamexon.txt")
[1] TRUE
chimp_dist=read.table("../data/dist_upexon/Chimp.distUpstreamexon.txt", col.names = c("peak_chr", "peak_start", "peak_end", "peak_name", "exon_chr", "exon_start", "exon_end", "exon_name", "dist"), stringsAsFactors = F) %>% mutate(logdis=log10(abs(dist) +1 ))
human_dist=read.table("../data/dist_upexon/Human.distUpstreamexon.txt", col.names = c("peak_chr", "peak_start", "peak_end", "peak_name", "exon_chr", "exon_start", "exon_end", "exon_name", "dist"),stringsAsFactors = F, skip=1) %>% mutate(logdis=log10(abs(dist) +1 ))
ch=ggplot(chimp_dist, aes(x=logdis)) + geom_density() + labs(x="log10 abs.value \n distance +1 ", title="Chimp distance to ortho exon")
hu=ggplot(human_dist, aes(x=logdis)) + geom_density()+ labs(x="log10 abs.value \n distance +1 ", title="Human distance to ortho exon")
plot_grid(ch, hu)
Version | Author | Date |
---|---|---|
d0d4599 | brimittleman | 2018-08-21 |
This is a good sanity check. The distributions are similar. I want to check this with the peaks from the human APAqtl study. I have the gencode exons and I will run bedtools cloests with this.
#!/bin/bash
#SBATCH --job-name=disUpstreamexon_hum
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=disUpstreamexon_hum.out
#SBATCH --error=disUpstreamexon_hum.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate comp_threeprime_env
bedtools closest -id -D a -a /project2/gilad/briana/comparitive_threeprime/data/extra_anno/human_hg19_filteredPeaks.bed -b /project2/gilad/briana/comparitive_threeprime/data/extra_anno/gencode.hg19.v19.exons.bed > /project2/gilad/briana/comparitive_threeprime/data/dist_upexon/hg19.humanpeaks.distUpstreamexon.txt
update these files to remove the tab at the end.
hg19_dist=read.table("../data/dist_upexon/hg19.humanpeaks.distUpstreamexon.txt", col.names = c("peak_chr", "peak_start", "peak_end", "peak_cov","peak_strand", "peak_score", "exon_chr", "exon_start", "exon_end", "exon_name", "exon_score", "exon_strand", "dist"),stringsAsFactors = F, skip=1) %>% mutate(logdis=log10(abs(dist) +1 ))
ggplot(hg19_dist, aes(x=logdis)) + geom_density()+ labs(x="log10 abs.value \n distance +1 ", title="Hg19 peaks dist to upstream exon")
Version | Author | Date |
---|---|---|
d11c2cf | brimittleman | 2018-08-22 |
This is the code from the human apa qtl study. I used this to count how many peaks map to each gene. I will do this for the human and chimp here.
#!/bin/bash
#SBATCH --job-name=mapgene2peak2
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mapgene2peak2.out
#SBATCH --error=mapgene2peak2.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
bedtools map -c 4 -o count_distinct -a /project2/gilad/briana/genome_anotation_data/gencode.v19.annotation.proteincodinggene.bed -b /project2/gilad/briana/threeprimeseq/data/clean.peaks_comb/APApeaks_combined_clean_fixed.bed > /project2/gilad/briana/threeprimeseq/data/clean.peaks_comb/APApeaks_combined_clean_countdistgenes.txt
I need to create bed files for the protein coding genes. For the human file the mRNAs are labeled with NM. The gene id is column 2, chr is column 3, strand is 4, start is 5, end is 6.
First I keep only the NM ones with:
grep "NM" humanGene_ncbiRefSeq.txt > humanGene_ncbiRefSeq_mRNA.txt
awk '{print $3 "\t" $5 "\t" $6 "\t" $2 "\t" "." "\t" $4 }' humanGene_ncbiRefSeq_mRNA.txt > humanGene_ncbiRefSeq_mRNA.bed
grep "NM" chimpGene_refGene.txt > chimpGene_refGene_mRNA.txt
awk '{print $3 "\t" $5 "\t" $6 "\t" $2 "\t" "." "\t" $4 }' chimpGene_refGene_mRNA.txt > chimpGene_refGene_mRNA.bed
#!/bin/bash
#SBATCH --job-name=PeakPerGene
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=PeakPerGene.out
#SBATCH --error=PeakPerGene.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate comp_threeprime_env
bedtools map -c 4 -o count_distinct -a /project2/gilad/briana/genome_anotation_data/comp_genomes/gene_annos/humanGene_ncbiRefSeq_mRNA_sort.bed -b /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/humanOrthoPeaks.sort.bed > /project2/gilad/briana/comparitive_threeprime/data/PeakPerGene/humanOrthoPeakPerGene.bed
bedtools map -c 4 -o count_distinct -a /project2/gilad/briana/genome_anotation_data/comp_genomes/gene_annos/chimpGene_refGene_mRNA_sort.bed -b /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/chimpOrthoPeaks.sort.bed > /project2/gilad/briana/comparitive_threeprime/data/PeakPerGene/chimpOrthoPeakPerGene.bed
human_peakpergene= read.table("../data/PeakPerGene/humanOrthoPeakPerGene.bed", header=F, stringsAsFactors = F,col.names = c("chr", "start", "end", "gene", "score", "strand", "numPeaks")) %>% mutate(spec= "H")
summary(human_peakpergene$numPeaks)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 0.000 3.924 3.000 206.000
chimp_peakpergene= read.table("../data/PeakPerGene/chimpOrthoPeakPerGene.bed", stringsAsFactors = F, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "numPeaks")) %>% mutate(spec="C")
summary(chimp_peakpergene$numPeaks)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 0.000 2.684 3.000 95.000
humanPPG=ggplot(human_peakpergene, aes(x=log10(numPeaks))) + geom_density(fill="Red") + labs(title="Peaks per Gene \n Human mRNA")
chimpPPG=ggplot(chimp_peakpergene, aes(x=log10(numPeaks))) + geom_density(fill="Blue") + labs(title="Peaks per Gene \n Chimp mRNA")
plot_grid(humanPPG, chimpPPG)
Warning: Removed 27137 rows containing non-finite values (stat_density).
Warning: Removed 1218 rows containing non-finite values (stat_density).
Version | Author | Date |
---|---|---|
a237865 | brimittleman | 2018-08-24 |
I will follow a similar strategy to Wang et al. 2018 to make a plot similar to plot 1d. I want the percent of genes in both species with conserved PAS.
chimp_peakpergene= chimp_peakpergene %>% mutate(oneConservedPeak=ifelse(numPeaks==1, 1, 0 )) %>% mutate(multConservedPeak= ifelse(numPeaks > 1, 1, 0))
Cgenes1peak=sum(chimp_peakpergene$oneConservedPeak)/nrow(chimp_peakpergene)
CgenesMultpeak=sum(chimp_peakpergene$multConservedPeak)/nrow(chimp_peakpergene)
Cgenes0peak=1- CgenesMultpeak - Cgenes1peak
human_peakpergene = human_peakpergene %>% mutate(oneConservedPeak=ifelse(numPeaks==1, 1,0)) %>% mutate(multConservedPeak=ifelse(numPeaks >1,1,0))
Hgenes1peak=sum(human_peakpergene$oneConservedPeak) / nrow(human_peakpergene)
HgenesMultpeak=sum(human_peakpergene$multConservedPeak)/ nrow(human_peakpergene)
Hgenes0peak=1- HgenesMultpeak - Hgenes1peak
I want to create a data frame with these numbers to plot it.
Hgene_peak=c(Hgenes0peak,Hgenes1peak,HgenesMultpeak)
Cgene_peak=c(Cgenes0peak, Cgenes1peak, CgenesMultpeak)
both_gene_peak=as.data.frame(rbind(Hgene_peak, Cgene_peak))
colnames(both_gene_peak)= c("ZeroConserved", "OneConserved", "MultConserved")
rownames(both_gene_peak)=c("Human", "Chimp")
both_gene_peak= both_gene_peak %>% rownames_to_column(var="Species")
both_gene_peak_melt=melt(both_gene_peak, id.vars ="Species")
#add average number of conserved peak per gene
avgH=round(mean(human_peakpergene$numPeaks),digits = 3)
avgC=round(mean(chimp_peakpergene$numPeaks),digits = 3)
Plot this:
genepeakplot= ggplot(both_gene_peak_melt, aes(x=Species, fill=variable, y=value)) + geom_bar(stat="identity", position = "fill") + labs(y="Prop of Protein Coding Genes", title="Conserved peaks \n in protein coding genes") + scale_fill_discrete(name = "Number of \nConserved Peaks", labels=c("Zero","One", "Multiple")) + annotate("text", x=1, y=.8, label= paste("avg peaks\n per gene \n", avgH, sep=" ")) + annotate("text", x = 2, y=.8, label = paste("avg peaks\n per gene \n", avgC, sep=" "))
genepeakplot
I can run similar code on the conserved exons. We expect similar distribution but most of the exons will have 0. This is the primary reason to use conserved peaks in three prime bias data.
#!/bin/bash
#SBATCH --job-name=PeakPerExon
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=PeakPerExon.out
#SBATCH --error=PeakPerExon.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate comp_threeprime_env
bedtools map -c 4 -o count_distinct -a /project2/gilad/briana/genome_anotation_data/ortho_exon/2017_July_ortho_human.small.sort.bed -b /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/humanOrthoPeaks.sort.bed > /project2/gilad/briana/comparitive_threeprime/data/PeakPerGene/humanOrthoPeakPerExon.bed
bedtools map -c 4 -o count_distinct -a /project2/gilad/briana/genome_anotation_data/ortho_exon/2017_July_ortho_chimp.small.sort.bed -b /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/chimpOrthoPeaks.sort.bed > /project2/gilad/briana/comparitive_threeprime/data/PeakPerGene/chimpOrthoPeakPerExon.bed
file.exists("../data/PeakPerExon/humanOrthoPeakPerExon.bed")
[1] TRUE
human_peakperexon= read.table("../data/PeakPerExon/humanOrthoPeakPerExon.bed", header=F, stringsAsFactors = F,col.names = c("chr", "start", "end", "exon", "numPeaks")) %>% mutate(spec= "H")
summary(human_peakperexon$numPeaks)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.06772 0.00000 13.00000
chimp_peakperexon= read.table("../data/PeakPerExon/chimpOrthoPeakPerExon.bed", stringsAsFactors = F, header = F, col.names = c("chr", "start", "end", "exon", "numPeaks")) %>% mutate(spec="C")
summary(chimp_peakperexon$numPeaks)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.06766 0.00000 13.00000
humanPPE=ggplot(human_peakperexon, aes(x=numPeaks)) + geom_density(fill="Red") + labs(title="Peaks per Exon \n Human")
chimpPPE=ggplot(chimp_peakperexon, aes(x=numPeaks)) + geom_density(fill="Blue") + labs(title="Peaks per Exon \n Chimp ")
plot_grid(humanPPE, chimpPPE)
Version | Author | Date |
---|---|---|
1f8f5b1 | brimittleman | 2018-08-28 |
Most of the exons have 0 peaks. This is expected. I want to look at how many 0s, 1s ect we have in each data set.
human_exoncounts=human_peakperexon %>% count(numPeaks)
chimp_exoncounts=chimp_peakperexon %>% count(numPeaks)
both_exon=human_exoncounts %>% left_join(chimp_exoncounts, by="numPeaks")
colnames(both_exon)=c("PeakNum", "Human", "Chimp")
both_exon_melt=melt(both_exon, measure.vars =c("Human", "Chimp"))
ggplot(both_exon_melt, aes(x=PeakNum, y=value, col=variable)) + geom_point( size=3) + facet_grid(~variable) + labs(y="Exons", title="Number of peaks per conserved exons")
I want to look at the peaks distance to annotated gene TES in each species. I can make TES files by using the gene file. I need to take into account the strand. For the pos strand I use the end but for the neg strand I need to use the start. The easiest way to do this is in python. The scripts are called human_tes.py and chimp_tes.py
#!/bin/bash
#SBATCH --job-name=disTES
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=disTES.out
#SBATCH --error=disTES.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate comp_threeprime_env
bedtools closest -id -D a -a /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/humanOrthoPeaks.sort.bed -b /project2/gilad/briana/genome_anotation_data/comp_genomes/gene_annos/humanGene_ncbiRefSeq_TES_sort.bed > /project2/gilad/briana/comparitive_threeprime/data/dist_TES/Human.distTES.txt
bedtools closest -id -D a -a /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/chimpOrthoPeaks.sort.bed -b /project2/gilad/briana/genome_anotation_data/comp_genomes/gene_annos/chimpGene_refGene_TES_sort.bed > /project2/gilad/briana/comparitive_threeprime/data/dist_TES/Chimp.distTES.txt
tes_names=c("peakchr", "peakstart", "peakend", "peakname", "genechr", "geneTES_S", "geneTES_E", "gene", "score", "strand", "dist")
human_TESdis=read.table("../data/dist_TES/Human.distTES.txt", stringsAsFactors = F,col.names = tes_names ) %>% mutate(logdis=log10(abs(dist)+1))
chimp_TESdist= read.table("../data/dist_TES/Chimp.distTES.txt", stringsAsFactors = F, col.names = tes_names) %>% mutate(logdis=log10(abs(dist) + 1))
chTES=ggplot(chimp_TESdist, aes(x=logdis)) + geom_density(fill="blue") + labs(title="Distance to TES \n Chimp",x="Log10 distance + 1")
huTES=ggplot(human_TESdis, aes(x=logdis)) + geom_density(fill="red") + labs(title="Distance to TES \n Human",x="Log10 distance + 1")
plot_grid(huTES, chTES)
Version | Author | Date |
---|---|---|
1f8f5b1 | brimittleman | 2018-08-28 |
a237865 | brimittleman | 2018-08-24 |
Flip this and do distance from teh TES to the peak.
#!/bin/bash
#SBATCH --job-name=disTES2Peak
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=disTES2Peak.out
#SBATCH --error=disTES2Peak.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate comp_threeprime_env
bedtools closest -iu -D a -b /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/humanOrthoPeaks.sort.bed -a /project2/gilad/briana/genome_anotation_data/comp_genomes/gene_annos/humanGene_ncbiRefSeq_TES_sort.bed > /project2/gilad/briana/comparitive_threeprime/data/dist_TES/Human.distTES2Peak.txt
bedtools closest -iu -D a -b /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/chimpOrthoPeaks.sort.bed -a /project2/gilad/briana/genome_anotation_data/comp_genomes/gene_annos/chimpGene_refGene_TES_sort.bed > /project2/gilad/briana/comparitive_threeprime/data/dist_TES/Chimp.distTES2Peak.txt
tes2_names=c("genechr", "geneTES_S", "geneTES_E", "gene", "score", "strand", "peakchr", "peakstart", "peakend", "peakname", "dist")
human_TES2dis=read.table("../data/dist_TES/Human.distTES2Peak.txt", stringsAsFactors = F,col.names = tes2_names ) %>% mutate(logdis=log10(abs(dist)+1))
chimp_TES2dist= read.table("../data/dist_TES/Chimp.distTES2Peak.txt", stringsAsFactors = F, col.names = tes2_names) %>% mutate(logdis=log10(abs(dist) + 1))
chTES2=ggplot(chimp_TES2dist, aes(x=logdis)) + geom_density(fill="blue") + labs(title="Distance TES to Peak \n Chimp",x="Log10 distance + 1")
huTES2=ggplot(human_TES2dis, aes(x=logdis)) + geom_density(fill="red") + labs(title="Distance TES to Peak \n Human",x="Log10 distance + 1")
plot_grid(huTES2, chTES2)
Version | Author | Date |
---|---|---|
1f8f5b1 | brimittleman | 2018-08-28 |
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 reshape2_1.4.3 cowplot_0.9.3 workflowr_1.1.1
[5] forcats_0.3.0 stringr_1.3.1 dplyr_0.7.6 purrr_0.2.5
[9] readr_1.1.1 tidyr_0.8.1 tibble_1.4.2 ggplot2_3.0.0
[13] tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] tidyselect_0.2.4 haven_1.1.2 lattice_0.20-35
[4] colorspace_1.3-2 htmltools_0.3.6 yaml_2.2.0
[7] rlang_0.2.2 R.oo_1.22.0 pillar_1.3.0
[10] glue_1.3.0 withr_2.1.2 R.utils_2.7.0
[13] modelr_0.1.2 readxl_1.1.0 bindr_0.1.1
[16] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0
[19] cellranger_1.1.0 rvest_0.3.2 R.methodsS3_1.7.1
[22] evaluate_0.11 labeling_0.3 knitr_1.20
[25] broom_0.5.0 Rcpp_0.12.18 scales_1.0.0
[28] backports_1.1.2 jsonlite_1.5 hms_0.4.2
[31] digest_0.6.16 stringi_1.2.4 grid_3.5.1
[34] rprojroot_1.3-2 cli_1.0.0 tools_3.5.1
[37] magrittr_1.5 lazyeval_0.2.1 crayon_1.3.4
[40] whisker_0.3-2 pkgconfig_2.0.2 xml2_1.2.0
[43] lubridate_1.7.4 assertthat_0.2.0 rmarkdown_1.10
[46] httr_1.3.1 rstudioapi_0.7 R6_2.2.2
[49] nlme_3.1-137 git2r_0.23.0 compiler_3.5.1
This reproducible R Markdown analysis was created with workflowr 1.1.1