Last updated: 2018-08-17

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180801)

    The command set.seed(20180801) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 392aed9

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Untracked files:
        Untracked:  analysis/init.read.stats.Rmd
        Untracked:  data/comp_threeprime_filenames.xlsx
        Untracked:  data/map.stats.csv
        Untracked:  data/map.stats.xlsx
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 392aed9 brimittleman 2018-08-17 lift code and add to index
    html 471aec3 brimittleman 2018-08-17 Build site.
    Rmd 356e3d8 brimittleman 2018-08-17 full protocol for HC peaks
    html 50b7e98 brimittleman 2018-08-17 Build site.
    Rmd 89d6424 brimittleman 2018-08-17 start peak calling human


Human Peaks

First I will call peaks in the merged human data like I did in https://brimittleman.github.io/threeprimeseq/peak.cov.pipeline.html

  • Merge BW
#!/bin/bash

#SBATCH --job-name=mergeBW_H
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeBW_H.out
#SBATCH --error=mergeBW_H.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END

module load Anaconda3
source activate comp_threeprime_env

ls -d -1 /project2/gilad/briana/comparitive_threeprime/human/data/bigwig/* | tail -n +2 > /project2/gilad/briana/comparitive_threeprime/human/data/list_bw/list_of_bigwig.txt

bigWigMerge -inList /project2/gilad/briana/comparitive_threeprime/human/data/list_bw/list_of_bigwig.txt /project2/gilad/briana/comparitive_threeprime/human/data/mergedBW/merged_human-threeprimeseq.bg
  • Convert to coverage

Copy the bg_to_cov.py to the code directory then run it with. ERROR HERE!

#!/bin/bash

#SBATCH --job-name=run_bgtocov_H
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_bgtocov_H.out
#SBATCH --error=run_bgtocov_H.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load python  

python bg_to_cov.py /project2/gilad/briana/comparitive_threeprime/human/data/mergedBW/merged_human-threeprimeseq.bg /project2/gilad/briana/comparitive_threeprime/human/data/mergedBW/merged_human-threeprimeseq.coverage.txt
  • sort -k1,1 -k2,2n /project2/gilad/briana/comparitive_threeprime/human/data/mergedBW/merged_human-threeprimeseq.coverage.txt > /project2/gilad/briana/comparitive_threeprime/human/data/mergedBW/merged_human-threeprimeseq.coverage.sort.txt

  • Call Peaks

get_APA_peaks_human.py

def main(inFile, outFile, ctarget):
    fout = open(outFile,'w')
    mincount = 10
    ov = 20
    current_peak = []
    
    currentChrom = None
    prevPos = 0
    for ln in open(inFile):
        chrom, pos, count = ln.split()
        chrom= chrom[3:]
        if chrom != ctarget: continue
        count = float(count)

        if currentChrom == None:
            currentChrom = chrom
            
        if count == 0 or currentChrom != chrom or int(pos) > prevPos + 1:
            if len(current_peak) > 0:
                print (current_peak)
                M = max([x[1] for x in current_peak])
                if M > mincount:
                    all_peaks = refine_peak(current_peak, M, M*0.1,M*0.05)
                    #refined_peaks = [(x[0][0],x[-1][0], np.mean([y[1] for y in x])) for x in all_peaks]  
                    rpeaks = [(int(x[0][0])-ov,int(x[-1][0])+ov, np.mean([y[1] for y in x])) for x in all_peaks]
                    if len(rpeaks) > 1:
                        for clu in cluster_intervals(rpeaks)[0]:
                            M = max([x[2] for x in clu])
                            merging = []
                            for x in clu:
                                if x[2] > M *0.5:
                                    #print x, M
                                    merging.append(x)
                            c, s,e,mean =  chrom, min([x[0] for x in merging])+ov, max([x[1] for x in merging])-ov, np.mean([x[2] for x in merging])
                            #print c,s,e,mean
                            fout.write("chr%s\t%d\t%d\t%d\t+\t.\n"%(c,s,e,mean))
                            fout.flush()
                    elif len(rpeaks) == 1:
                        s,e,mean = rpeaks[0]
                        fout.write("chr%s\t%d\t%d\t%f\t+\t.\n"%(chrom,s+ov,e-ov,mean))
                        print("chr%s"%chrom+"\t%d\t%d\t%f\t+\t.\n"%rpeaks[0])
                    #print refined_peaks
            current_peak = [(pos,count)]
        else:
            current_peak.append((pos,count))
        currentChrom = chrom
        prevPos = int(pos)

def refine_peak(current_peak, M, thresh, noise, minpeaksize=30):
    
    cpeak = []
    opeak = []
    allcpeaks = []
    allopeaks = []

    for pos, count in current_peak:
        if count > thresh:
            cpeak.append((pos,count))
            opeak = []
            continue
        elif count > noise: 
            opeak.append((pos,count))
        else:
            if len(opeak) > minpeaksize:
                allopeaks.append(opeak) 
            opeak = []

        if len(cpeak) > minpeaksize:
            allcpeaks.append(cpeak)
            cpeak = []
        
    if len(cpeak) > minpeaksize:
        allcpeaks.append(cpeak)
    if len(opeak) > minpeaksize:
        allopeaks.append(opeak)

    allpeaks = allcpeaks
    for opeak in allopeaks:
        M = max([x[1] for x in opeak])
        allpeaks += refine_peak(opeak, M, M*0.3, noise)

    #print [(x[0],x[-1]) for x in allcpeaks], [(x[0],x[-1]) for x in allopeaks], [(x[0],x[-1]) for x in allpeaks]
    #print '---\n'
    return(allpeaks)

if __name__ == "__main__":
    import numpy as np
    from misc_helper import *
    import sys

    chrom = sys.argv[1]
    inFile = "/project2/gilad/briana/comparitive_threeprime/human/data/mergedBW/merged_human-threeprimeseq.coverage.sort.txt" # "/project2/yangili1/threeprimeseq/gencov/TotalBamFiles.split.genomecov.bed"
    outFile = "/project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks/APApeaks_human_chr%s.bed"%chrom
    main(inFile, outFile, chrom)

run_getpeakYL_human.sh

#!/bin/bash

#SBATCH --job-name=run_getpeakYL_human
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_getpeakYL_human.out
#SBATCH --error=run_getpeakYL_human.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


for i in $(seq 1 22); do 
  python get_APA_peaks_human.py  $i
done
  • Combine the peaks

cat /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks/*.bed > /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/APApeaks_merged_allchrom.bed

  • Bed to saf

bed2saf_h.py

from misc_helper import *

fout = file("/project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/APApeaks_merged_allchrom.SAF",'w')
fout.write("GeneID\tChr\tStart\tEnd\tStrand\n")
for ln in open("/project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/APApeaks_merged_allchrom.bed"):
    chrom, start, end, score, strand, score2 = ln.split()
    chrom=chrom[3:]
    ID = "peak_%s_%s_%s"%(chrom,start, end)
    fout.write("%s\t%s\t%s\t%s\t+\n"%(ID+"_+", chrom.replace("chr",""), start, end))
    fout.write("%s\t%s\t%s\t%s\t-\n"%(ID+"_-", chrom.replace("chr",""), start, end))
fout.close()
  • Peak Feature count
#!/bin/bash

#SBATCH --job-name=peak_fc_h
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=peak_fc_h.out
#SBATCH --error=peak_fc_h.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate activate comp_threeprime_env

featureCounts -a /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/APApeaks_merged_allchrom.SAF -F SAF -o /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/APAquant.fc /project2/gilad/briana/comparitive_threeprime/human/data/sort/*-sort.bam -s 1
  • Filter peaks

filter_peaks_human.py

from misc_helper import *
import numpy as np

fout = file("/project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed",'w')

#cutoffs
c = 0.9
caveread = 2

# counters
fc, fcaveread = 0, 0
N, Npass = 0, 0

for dic in stream_table(open("/project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/APAquant.fc"),'\t'):
    #/project2/gilad/briana/threeprimeseq/data/sort/YL-SP-19239-T-combined-sort.bam
    #/project2/gilad/briana/comparitive_threeprime/human/data/sort/human_combined_18498_N-sort.bam
    tot, nuc = [], []
    for k in dic:
        if "human" not in k: continue
        T = k.split("_")[-1].split("-")[0]
        if T == "T":
            tot.append(int(dic[k]))
        else:
            nuc.append(int(dic[k]))
    totP = tot.count(0)/float(len(tot))
    nucP = nuc.count(0)/float(len(nuc))
    N += 1
    if totP > c and nucP > c:
        fc += 1
        continue
    if max([np.mean(tot),np.mean(nuc)]) <= caveread:
        fcaveread += 1
        continue
    
    fout.write("\t".join(["chr"+dic['Chr'], dic["Start"], dic["End"],str(max([np.mean(tot),np.mean(nuc)])),dic["Strand"],"."])+'\n')
    Npass += 1
fout.close()
    

print("%d (%.2f%%) did not pass proportion of nonzero cutoff, %d (%.2f%%) did not pass average read cutoff. Total peaks: %d (%.3f%%) of %d peaks remaining"%(fc,float(fc)/N*100, fcaveread, float(fcaveread)/N*100, Npass, 100*Npass/float(N),N))

run_filter_peaks_human.sh

#!/bin/bash

#SBATCH --job-name=filter_peak
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=filet_peak_h.out
#SBATCH --error=filter_peak_h.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load python  


python filter_peaks_human.py
  • Name the peaks
x = wc -l /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed 

seq 1 x > peak.num.txt

paste /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed  /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/peak.num.txt | column -s $'\t' -t > temp
awk '{print $1 "\t" $2 "\t" $3 "\t" $7  "\t"  $4 "\t"  $5 "\t" $6}' temp >   /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_named_human.bed 

This will be the bed file I use for the liftover

Chimp Peaks

  • Merge BW
#!/bin/bash

#SBATCH --job-name=mergeBW_C
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeBW_C.out
#SBATCH --error=mergeBW_C.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END

module load Anaconda3
source activate comp_threeprime_env

ls -d -1 /project2/gilad/briana/comparitive_threeprime/chimp/data/bigwig/* | tail -n +2 > /project2/gilad/briana/comparitive_threeprime/chimp/data/list_bw/list_of_bigwig.txt

bigWigMerge -inList /project2/gilad/briana/comparitive_threeprime/chimp/data/list_bw/list_of_bigwig.txt /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedBW/merged_chimp-threeprimeseq.bg
  • Convert to coverage
#!/bin/bash

#SBATCH --job-name=run_bgtocov_C
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_bgtocov_C.out
#SBATCH --error=run_bgtocov_C.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load python  

python bg_to_cov.py /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedBW/merged_chimp-threeprimeseq.bg /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedBW/merged_chimp-threeprimeseq.coverage.txt
  • sort -k1,1 -k2,2n /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedBW/merged_chimp-threeprimeseq.coverage.txt> /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedBW/merged_chimp-threeprimeseq.coverage.sort.txt

  • Call Peaks

get_APA_peaks_chimp.py

def main(inFile, outFile, ctarget):
    fout = open(outFile,'w')
    mincount = 10
    ov = 20
    current_peak = []
    
    currentChrom = None
    prevPos = 0
    for ln in open(inFile):
        chrom, pos, count = ln.split()
        chrom= chrom[3:]
        if chrom != ctarget: continue
        count = float(count)

        if currentChrom == None:
            currentChrom = chrom
            
        if count == 0 or currentChrom != chrom or int(pos) > prevPos + 1:
            if len(current_peak) > 0:
                print (current_peak)
                M = max([x[1] for x in current_peak])
                if M > mincount:
                    all_peaks = refine_peak(current_peak, M, M*0.1,M*0.05)
                    #refined_peaks = [(x[0][0],x[-1][0], np.mean([y[1] for y in x])) for x in all_peaks]  
                    rpeaks = [(int(x[0][0])-ov,int(x[-1][0])+ov, np.mean([y[1] for y in x])) for x in all_peaks]
                    if len(rpeaks) > 1:
                        for clu in cluster_intervals(rpeaks)[0]:
                            M = max([x[2] for x in clu])
                            merging = []
                            for x in clu:
                                if x[2] > M *0.5:
                                    #print x, M
                                    merging.append(x)
                            c, s,e,mean =  chrom, min([x[0] for x in merging])+ov, max([x[1] for x in merging])-ov, np.mean([x[2] for x in merging])
                            #print c,s,e,mean
                            fout.write("chr%s\t%d\t%d\t%d\t+\t.\n"%(c,s,e,mean))
                            fout.flush()
                    elif len(rpeaks) == 1:
                        s,e,mean = rpeaks[0]
                        fout.write("chr%s\t%d\t%d\t%f\t+\t.\n"%(chrom,s+ov,e-ov,mean))
                        print("chr%s"%chrom+"\t%d\t%d\t%f\t+\t.\n"%rpeaks[0])
                    #print refined_peaks
            current_peak = [(pos,count)]
        else:
            current_peak.append((pos,count))
        currentChrom = chrom
        prevPos = int(pos)

def refine_peak(current_peak, M, thresh, noise, minpeaksize=30):
    
    cpeak = []
    opeak = []
    allcpeaks = []
    allopeaks = []

    for pos, count in current_peak:
        if count > thresh:
            cpeak.append((pos,count))
            opeak = []
            continue
        elif count > noise: 
            opeak.append((pos,count))
        else:
            if len(opeak) > minpeaksize:
                allopeaks.append(opeak) 
            opeak = []

        if len(cpeak) > minpeaksize:
            allcpeaks.append(cpeak)
            cpeak = []
        
    if len(cpeak) > minpeaksize:
        allcpeaks.append(cpeak)
    if len(opeak) > minpeaksize:
        allopeaks.append(opeak)

    allpeaks = allcpeaks
    for opeak in allopeaks:
        M = max([x[1] for x in opeak])
        allpeaks += refine_peak(opeak, M, M*0.3, noise)

    #print [(x[0],x[-1]) for x in allcpeaks], [(x[0],x[-1]) for x in allopeaks], [(x[0],x[-1]) for x in allpeaks]
    #print '---\n'
    return(allpeaks)

if __name__ == "__main__":
    import numpy as np
    from misc_helper import *
    import sys

    chrom = sys.argv[1]
    inFile = "/project2/gilad/briana/comparitive_threeprime/chimp/data/mergedBW/merged_chimp-threeprimeseq.coverage.sort.txt" # "/project2/yangili1/threeprimeseq/gencov/TotalBamFiles.split.genomecov.bed"
    outFile = "/project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks/APApeaks_chimp_chr%s.bed"%chrom
    main(inFile, outFile, chrom)

run_getpeakYL_chimp.sh

#!/bin/bash

#SBATCH --job-name=run_getpeakYL_C
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_getpeakYL_C.out
#SBATCH --error=run_getpeakYL_C.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate comp_threeprime_env


for i in $(seq 1 22); do 
  python get_APA_peaks_chimp.py  $i
done
  • Combine the peaks

cat /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks/*.bed > /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/APApeaks_merged_allchrom.bed

  • Bed to saf

bed2saf_c.py

from misc_helper import *

fout = file("/project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/APApeaks_merged_allchrom.SAF",'w')
fout.write("GeneID\tChr\tStart\tEnd\tStrand\n")
for ln in open("/project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/APApeaks_merged_allchrom.bed"):
    chrom, start, end, score, strand, score2 = ln.split()
    chrom=chrom[3:]
    ID = "peak_%s_%s_%s"%(chrom,start, end)
    fout.write("%s\t%s\t%s\t%s\t+\n"%(ID+"_+", chrom.replace("chr",""), start, end))
    fout.write("%s\t%s\t%s\t%s\t-\n"%(ID+"_-", chrom.replace("chr",""), start, end))
fout.close()
  • Peak Feature count
    peak_fc_c.sh
#!/bin/bash

#SBATCH --job-name=peak_fc_c
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=peak_fc_c.out
#SBATCH --error=peak_fc_c.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate activate comp_threeprime_env

featureCounts -a /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/APApeaks_merged_allchrom.SAF -F SAF -o /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/APAquant.fc /project2/gilad/briana/comparitive_threeprime/chimp/data/sort/*-sort.bam -s 1
  • Filter peaks

filter_peaks_chimp.py

from misc_helper import *
import numpy as np

fout = file("/project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed",'w')

#cutoffs
c = 0.9
caveread = 2

# counters
fc, fcaveread = 0, 0
N, Npass = 0, 0

for dic in stream_table(open("/project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/APAquant.fc"),'\t'):
    tot, nuc = [], []
    for k in dic:
        if "chimp" not in k: continue
        T = k.split("_")[-1].split("-")[0]
        if T == "T":
            tot.append(int(dic[k]))
        else:
            nuc.append(int(dic[k]))
    totP = tot.count(0)/float(len(tot))
    nucP = nuc.count(0)/float(len(nuc))
    N += 1
    if totP > c and nucP > c:
        fc += 1
        continue
    if max([np.mean(tot),np.mean(nuc)]) <= caveread:
        fcaveread += 1
        continue
    
    fout.write("\t".join(["chr"+dic['Chr'], dic["Start"], dic["End"],str(max([np.mean(tot),np.mean(nuc)])),dic["Strand"],"."])+'\n')
    Npass += 1
fout.close()
    

print("%d (%.2f%%) did not pass proportion of nonzero cutoff, %d (%.2f%%) did not pass average read cutoff. Total peaks: %d (%.3f%%) of %d peaks remaining"%(fc,float(fc)/N*100, fcaveread, float(fcaveread)/N*100, Npass, 100*Npass/float(N),N))

run_filter_peaks_chimp.sh

#!/bin/bash

#SBATCH --job-name=filter_peak_C
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=filet_peak_C.out
#SBATCH --error=filter_peak_C.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load python  


python filter_peaks_chimp.py
  • Name the peaks
x = wc -l /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed 

seq 1 x > peak.num.txt

paste /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom.bed  /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/peak.num.txt | column -s $'\t' -t > temp
awk '{print $1 "\t" $2 "\t" $3 "\t" $7  "\t"  $4 "\t"  $5 "\t" $6}' temp >   /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_named_chimp.bed 

The final files are:

  • /project2/gilad/briana/comparitive_threeprime/human/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_named_human.bed

  • /project2/gilad/briana/comparitive_threeprime/chimp/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_named_chimp.bed

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.1.1   Rcpp_0.12.18      digest_0.6.15    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.23.0      magrittr_1.5      evaluate_0.11    
[10] stringi_1.2.4     whisker_0.3-2     R.oo_1.22.0      
[13] R.utils_2.6.0     rmarkdown_1.10    tools_3.5.1      
[16] stringr_1.3.1     yaml_2.1.19       compiler_3.5.1   
[19] htmltools_0.3.6   knitr_1.20       

This reproducible R Markdown analysis was created with workflowr 1.1.1