Last updated: 2018-06-22

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 0201bd8

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .RData
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
    
    Untracked files:
        Untracked:  Ggsb_logo.r.pdf
        Untracked:  Rplot.pdf
        Untracked:  _workflowr.yml
        Untracked:  analysis/filter_bam.Rmd
        Untracked:  analysis/gencode.v19.annotation.proteincodinggene.saf
        Untracked:  analysis/temp
        Untracked:  analysis/top5_gen_wind200.bed
        Untracked:  data/DaPars_APA_geuvadis.txt
        Untracked:  data/Day7_cardiomyocytes_droNC_seq.bam
        Untracked:  data/Day7_cardiomyocytes_droNC_seq.bam.bai
        Untracked:  data/Day7_cardiomyocytes_drop_seq.bam
        Untracked:  data/Day7_cardiomyocytes_drop_seq.bam.bai
        Untracked:  data/LCL_3utr.txt
        Untracked:  data/LCL_3utrAB.bed
        Untracked:  data/LCL_3utrAB.neg.chr20.bed
        Untracked:  data/LCL_3utrAB_pos.chr1.bed
        Untracked:  data/LCL_3utrAB_pos.chr21.bed
        Untracked:  data/NET3-18486.gene.coverage.bed
        Untracked:  data/NET3-18486.gene.coverage.noSM.bed
        Untracked:  data/NET3-18486.gene.coverage.nosn.nosno.bed
        Untracked:  data/NET3-18486.gene.coverage.notopwind.bed
        Untracked:  data/NET3-18486.tss.coverage.bed
        Untracked:  data/NET3-18486_combined_Netpilot-sort.FC200.cov.bed
        Untracked:  data/NET3-18486_combined_Netpilot-sort.FC200.cov.no0.bed
        Untracked:  data/NET3-18486_combined_Netpilot-sort.exon.cov.txt
        Untracked:  data/NET3-18505.gene.coverage.bed
        Untracked:  data/NET3-18505_combined_Netpilot-sort.FC200.cov.no0.bed
        Untracked:  data/NET3-18508_combined_Netpilot-sort.FC200.cov.no0.bed
        Untracked:  data/NET3-19128_combined_Netpilot-sort.FC200.cov.no0.bed
        Untracked:  data/NET3-19141_combined_Netpilot-sort.FC200.cov.no0.bed
        Untracked:  data/NET3-19193_combined_Netpilot-sort.FC200.cov.no0.bed
        Untracked:  data/NET3-19239_combined_Netpilot-sort.FC200.cov.no0.bed
        Untracked:  data/NET3-19257_combined_Netpilot-sort.FC200.cov.no0.bed
        Untracked:  data/RNAseqGeuvadis_STAR_18486.coverage.bed
        Untracked:  data/RNAseqGeuvadis_STAR_18486.gene.coverage.bed
        Untracked:  data/RefSeqGenes.bed
        Untracked:  data/SRR1575922-sort.bam
        Untracked:  data/SRR1575922-sort.bam.bai
        Untracked:  data/SwitchGear_TSS.bed
        Untracked:  data/UMI_18486_dep_stat.txt
        Untracked:  data/UMI_18486_dep_stat_tab.txt
        Untracked:  data/UMI_18508_dep_stat.txt
        Untracked:  data/UMI_18508_nondep_stat.txt
        Untracked:  data/UMI_19238_dep_stat.txt
        Untracked:  data/UMI_Net3_18486_dedupstat.txt
        Untracked:  data/UMI_Net3_18486_stat.txt
        Untracked:  data/UMI_Net3_18505_dedupstat.txt
        Untracked:  data/UMI_Net3_18505_stat.txt
        Untracked:  data/UMI_Net3_18508_dedupstat.txt
        Untracked:  data/UMI_Net3_18508_stat.txt
        Untracked:  data/UMI_Net3_19128_dedupstat.txt
        Untracked:  data/UMI_Net3_19128_stat.txt
        Untracked:  data/UMI_Net3_19141_dedupstat.txt
        Untracked:  data/UMI_Net3_19141_stat.txt
        Untracked:  data/UMI_Net3_19193_dedupstat.txt
        Untracked:  data/UMI_Net3_19193_stat.txt
        Untracked:  data/UMI_Net3_19239_dedupstat.txt
        Untracked:  data/UMI_Net3_19239_stat.txt
        Untracked:  data/UMI_Net3_19257_dedupstat.txt
        Untracked:  data/UMI_Net3_19257_stat.txt
        Untracked:  data/UMI_mayer_stat.txt
        Untracked:  data/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001-sort.dedup.cov.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.AC093901.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.BTRC.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.RNU5B.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.WDR74.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.chr2.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.insig2.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.ppef2.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.rnu259p.bed
        Untracked:  data/YG-SP-NET3-18486_combined_Netpilot-sort.dedup.cov.insig2.bed
        Untracked:  data/all_RNAmetrics.picard.none.csv
        Untracked:  data/all_files.APA500.coverage.bed
        Untracked:  data/all_files_coverage.bed
        Untracked:  data/all_strand_genecounts_18486.txt
        Untracked:  data/bam_files_chr/
        Untracked:  data/blcl.hg38.sorted.bam
        Untracked:  data/blcl.hg38.sorted.bam.bai
        Untracked:  data/cell_growth_3.21.18.csv
        Untracked:  data/clip_18486_dep.txt
        Untracked:  data/clusters.bed
        Untracked:  data/clusters.hg38
        Untracked:  data/clusters.hg38.3utr.neg.bed
        Untracked:  data/clusters.hg38.3utr.pos.bed
        Untracked:  data/clusters.hg38.bed
        Untracked:  data/dedup_18486_mapqual.txt
        Untracked:  data/drop7_cardio_3utr.txt
        Untracked:  data/drop7_cardio_3utrAB.neg.chr21.bed
        Untracked:  data/drop7_cardio_3utrAB.pos.chr21.bed
        Untracked:  data/ensembl2refseq.txt
        Untracked:  data/eqtl_fullgene/
        Untracked:  data/eqtl_genes_effectsize.txt
        Untracked:  data/eqtl_output.cis.txt
        Untracked:  data/eqtl_output.txt
        Untracked:  data/eqtl_strand_spec/
        Untracked:  data/exon_cov/
        Untracked:  data/fc_genecov/
        Untracked:  data/gencode.v19.annotation.distfilteredgenes.bed
        Untracked:  data/gencode.v19.annotation.egqtlfilter.bed
        Untracked:  data/gencode.v19.annotation.eqtlfilter.bed
        Untracked:  data/gencov_18486.bed
        Untracked:  data/gene_cov_count/
        Untracked:  data/gene_coverage_18486_dedup_hist.txt
        Untracked:  data/gene_coverage_18486_hist.txt
        Untracked:  data/gene_coverage_18508_dep.txt
        Untracked:  data/gene_coverage_18508_dep_hist.txt
        Untracked:  data/gene_coverage_18508_nondep_hist.txt
        Untracked:  data/gene_coverage_19238_dep_hist.txt
        Untracked:  data/gene_coverage_mayer_SRR1575922_hist.txt
        Untracked:  data/gene_dedup_cov_count/
        Untracked:  data/genotypes.rs7144811.txt
        Untracked:  data/growth_curve_3.16.csv
        Untracked:  data/hES.hg38.sorted.bam
        Untracked:  data/hES.hg38.sorted.bam.bai
        Untracked:  data/hg19.GM72.CTCF
        Untracked:  data/hg19.ref.genes.bed
        Untracked:  data/insig2sec.txt
        Untracked:  data/mapped_18486_dep.txt
        Untracked:  data/mapped_18486_dep_max.txt
        Untracked:  data/mapped_18508_dep.txt
        Untracked:  data/mapped_19238_dep.txt
        Untracked:  data/mapped_mayer.txt
        Untracked:  data/mapped_qual_18486.txt
        Untracked:  data/mapped_qual_18505.txt
        Untracked:  data/mapped_qual_18508.txt
        Untracked:  data/mapped_qual_19128.txt
        Untracked:  data/mapped_qual_19141.txt
        Untracked:  data/mapped_qual_19193.txt
        Untracked:  data/mapped_qual_19239.txt
        Untracked:  data/mapped_qual_19257.txt
        Untracked:  data/matrix_expression.txt
        Untracked:  data/matrix_genotypes.csv
        Untracked:  data/matrix_genotypes.txt
        Untracked:  data/merged_Net1.bam
        Untracked:  data/merged_Net1.bam.bai
        Untracked:  data/meta_info_coverage.bed
        Untracked:  data/names_geno.txt
        Untracked:  data/net-3-readmap/
        Untracked:  data/net1_18486_dep_dedup.bed
        Untracked:  data/net1_18486_dep_dedup_chr.bed
        Untracked:  data/net4_readcounts.xlsx
        Untracked:  data/net_pilot_eqtl_expression.bed
        Untracked:  data/net_pilot_eqtl_genotypes.vcf
        Untracked:  data/opp_strand_genecounts_18486.txt
        Untracked:  data/opp_strand_genecounts_18505.txt
        Untracked:  data/opp_strand_genecounts_filt_18486.txt
        Untracked:  data/perc_alive_3.16.csv
        Untracked:  data/prom_coverage/
        Untracked:  data/qual_18486_dep.txt
        Untracked:  data/qual_18508_dep.txt
        Untracked:  data/qual_19238_dep.txt
        Untracked:  data/qual_mayer.txt
        Untracked:  data/refseq_250up.bed
        Untracked:  data/run_lm_APA.txt
        Untracked:  data/same_strand_genecounts_18486.txt
        Untracked:  data/same_strand_genecounts_18505.txt
        Untracked:  data/same_strand_genecounts_filt_18486.txt
        Untracked:  data/sort_dedup_3prime_chr2_no0.18486.txt
        Untracked:  data/sort_dedup_chr2_no0_18486.txt
        Untracked:  data/test.txt
        Untracked:  data/three_prime_utr.bed
        Untracked:  data/top5_exonlist.txt
        Untracked:  data/top5_exonlist_18486_fiveprime_cov.txt
        Untracked:  data/top5_exonlist_18486_fiveprime_cov2.txt
        Untracked:  data/top5_exonlist_18486_fiveprime_cov2_filter.txt
        Untracked:  data/top5_exonlist_18486_threeprime_cov.txt
        Untracked:  data/top5_exonlist_18486_threeprime_cov2.txt
        Untracked:  data/top5_exonlist_18486_threeprime_cov2_filter.txt
        Untracked:  data/top5_gen_wind200.bed
        Untracked:  data/top5_gen_wind200.tab.bed
        Untracked:  data/uniq_genes/
        Untracked:  data/windows_200/
        Untracked:  docs/temp
        Untracked:  docs/top5_gen_wind200.bed
        Untracked:  output/Rs7144811_apa_usage.pdf
        Untracked:  output/picard.accrossgenebodies.netpilot.csv
    
    Unstaged changes:
        Modified:   analysis/APA_qtl_RNAseq.Rmd
        Modified:   analysis/LCL_growth.Rmd
        Modified:   analysis/Net_3_explore.Rmd
        Modified:   analysis/Reads_per_pas.Rmd
        Modified:   analysis/UTR_coverage.Rmd
        Modified:   analysis/_site.yml
        Modified:   analysis/about.Rmd
        Modified:   analysis/bin_windows.Rmd
        Modified:   analysis/check_bamid.Rmd
        Deleted:    analysis/chunks.R
        Modified:   analysis/conda.environment.Rmd
        Modified:   analysis/config.snake.setup.Rmd
        Modified:   analysis/create_blacklist.Rmd
        Modified:   analysis/data_for_ggplot.Rmd
        Modified:   analysis/eqtl_bystrand.Rmd
        Modified:   analysis/explore_umi_usage.Rmd
        Modified:   analysis/extend_APA_qtl.Rmd
        Modified:   analysis/gviz_plots.Rmd
        Modified:   analysis/initial.data.exploration.Rmd
        Modified:   analysis/license.Rmd
        Modified:   analysis/map_stats_from_bam.Rmd
        Modified:   analysis/reads_in_genes.Rmd
        Modified:   analysis/recreate_mayer_figs.Rmd
        Modified:   analysis/strand_spec.Rmd
        Modified:   analysis/test-analysis.Rmd
        Modified:   analysis/three_prime_UTR.Rmd
        Modified:   analysis/update_snakefile.Rmd
        Modified:   analysis/use_deeptools.Rmd
        Modified:   analysis/visualize_genomefeatures.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 0201bd8 Briana Mittleman 2018-06-22 change filter cuttoff
    html 9787ad5 Briana Mittleman 2018-06-22 Build site.
    Rmd 4e3c679 Briana Mittleman 2018-06-22 add percent coverage and correlatin
    html 363ea13 Briana Mittleman 2018-06-22 Build site.
    Rmd 97a0c53 Briana Mittleman 2018-06-22 wflow_publish(c(“analysis/index.Rmd”, “analysis/net-4-explore.Rmd”))


The goal of this analysis is to explore the second batch of pilot netseq data (net4) with the 3 lanes of the original line. This data has been run on 3 lanes.

Net4 lines * 19238
* 19223
* 18497
* 19209
* 18500
* 18870
* 19225
* 18853

Feature counts on protein coding genes

I want to use feature counts to summarize how many counds we have in each protien coding gene. There are 20,347 genes in the annotation file.

Make an SAF file instead: Gene id, Chr, Start, End, Strand from the gencode.v19.annotation.proteincodinggene.bed


awk 'BEGIN {print "GeneID" "\t" "Chr" "\t" "Start" "\t" "End" "\t" "Strand"} {print $4 "\t" $1 "\t" $2 "\t" $3 "\t" $6}' gencode.v19.annotation.proteincodinggene.bed  >gencode.v19.annotation.proteincodinggene.saf

fc_gene.sh

#!/bin/bash

#SBATCH --job-name=FC_genes
#SBATCH --time=8:00:00
#SBATCH --partition=gilad
#SBATCH --output=fc_gene.out
#SBATCH --error=fc_gene.err
#SBATCH --mem=20G
#SBATCH --mail-type=END

module load Anaconda3  

source activate net-seq 

#input is a bam file 
sample=$1


describer=$(echo ${sample} | sed -e 's/.*\YG-SP-//' | sed -e "s/_combined_Netpilot-sort.bam$//")


featureCounts -T 5 -a /project2/gilad/briana/genome_anotation_data/gencode.v19.annotation.proteincodinggene.saf -F 'SAF' -g 'GeneID' -o /project2/gilad/briana/Net-seq-pilot/data/fc_genecov/genecov.${describer}.txt $1

test on: /project2/gilad/briana/Net-seq-pilot/data/sort/YG-SP-NET3-19257_combined_Netpilot-sort.bam

Create a wrapper:

#!/bin/bash

#SBATCH --job-name=w_fcgenes
#SBATCH --time=8:00:00
#SBATCH --output=w_fcgenes.out
#SBATCH --error=w_fcgenes.err
#SBATCH --partition=gilad
#SBATCH --mem=8G
#SBATCH --mail-type=END


for i in $(ls /project2/gilad/briana/Net-seq-pilot/data/sort/*combined_Netpilot-sort.bam); do
            sbatch fc_gene.sh  $i 
        done

Genes with coverage per line

At this point 8 samples have over 100mil mapped reads. They are 18497, 18508, 18853, 18870, 19128, 19193, 19209 and 19239. We are waiting for more reads for 19225 and 18500. Unfortunately maping is low for 19223, but I have not diagnosed the problem yet.

Load libraries:

library(workflowr)
Loading required package: rmarkdown
This is workflowr version 1.0.1
Run ?workflowr for help getting started
library(dplyr)
Warning: package 'dplyr' was built under R version 3.4.4

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
library(ggplot2)
library(tidyr)
library(reshape2)
Warning: package 'reshape2' was built under R version 3.4.3

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
library(edgeR)
Warning: package 'edgeR' was built under R version 3.4.3
Loading required package: limma
Warning: package 'limma' was built under R version 3.4.3

Load data:

cov_18486=read.table("../data/fc_genecov/genecov.NET3-18486.txt", header=TRUE)
cov_18497=read.table("../data/fc_genecov/genecov.NET3-18497.txt", header=TRUE)
cov_18500=read.table("../data/fc_genecov/genecov.NET3-18500.txt", header=TRUE)
cov_18505=read.table("../data/fc_genecov/genecov.NET3-18505.txt", header=TRUE)
cov_18508=read.table("../data/fc_genecov/genecov.NET3-18508.txt", header=TRUE)
cov_18853=read.table("../data/fc_genecov/genecov.NET3-18853.txt", header=TRUE)
cov_18870=read.table("../data/fc_genecov/genecov.NET3-18870.txt", header=TRUE)
cov_19128=read.table("../data/fc_genecov/genecov.NET3-19128.txt", header=TRUE)
cov_19141=read.table("../data/fc_genecov/genecov.NET3-19141.txt", header=TRUE)
cov_19193=read.table("../data/fc_genecov/genecov.NET3-19193.txt", header=TRUE)
cov_19209=read.table("../data/fc_genecov/genecov.NET3-19209.txt", header=TRUE)
cov_19223=read.table("../data/fc_genecov/genecov.NET3-19223.txt", header=TRUE)
cov_19225=read.table("../data/fc_genecov/genecov.NET3-19225.txt", header=TRUE)
cov_19238=read.table("../data/fc_genecov/genecov.NET3-19238.txt", header=TRUE)
cov_19239=read.table("../data/fc_genecov/genecov.NET3-19239.txt", header=TRUE)
cov_19257=read.table("../data/fc_genecov/genecov.NET3-19257.txt", header=TRUE)

Process data

gene_length=cov_18486$End- cov_18486$Start

Standardize by gene length

cov_18486=cov_18486 %>% mutate(st_18486=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18486_combined_Netpilot.sort.bam/gene_length)
Warning: package 'bindrcpp' was built under R version 3.4.4
cov_18497=cov_18497 %>% mutate(st_18497=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18497_combined_Netpilot.sort.bam/gene_length)
cov_18500=cov_18500 %>% mutate(st_18500=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18500_combined_Netpilot.sort.bam/gene_length)
cov_18505=cov_18505 %>% mutate(st_18505=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18505_combined_Netpilot.sort.bam/gene_length)
cov_18508=cov_18508 %>% mutate(st_18508=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18508_combined_Netpilot.sort.bam/gene_length)
cov_18853=cov_18853 %>% mutate(st_18853=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18853_combined_Netpilot.sort.bam/gene_length)
cov_18870=cov_18870 %>% mutate(st_18870=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18870_combined_Netpilot.sort.bam/gene_length)
cov_19128=cov_19128 %>% mutate(st_19128=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19128_combined_Netpilot.sort.bam/gene_length)
cov_19141=cov_19141 %>% mutate(st_19141=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19141_combined_Netpilot.sort.bam/gene_length)
cov_19193=cov_19193 %>% mutate(st_19193=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19193_combined_Netpilot.sort.bam/gene_length)
cov_19209=cov_19209 %>% mutate(st_19209=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19209_combined_Netpilot.sort.bam/gene_length)
cov_19223=cov_19223 %>% mutate(st_19223=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19223_combined_Netpilot.sort.bam/gene_length)
cov_19225=cov_19225 %>% mutate(st_19225=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19225_combined_Netpilot.sort.bam/gene_length)
cov_19238=cov_19238 %>% mutate(st_19238=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19238_combined_Netpilot.sort.bam/gene_length)
cov_19239=cov_19239 %>% mutate(st_19239=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19239_combined_Netpilot.sort.bam/gene_length)
cov_19257=cov_19257 %>% mutate(st_19257=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19257_combined_Netpilot.sort.bam/gene_length)

Join these on the gene name:

names=c("GeneID", "st_18486", "st_18497", "st_18500", "st_18505", "st_18508", "st_18853", "st_18870", "st_19128", "st_19141", "st_19193", "st_19209", "st_19223", "st_19225", "st_19238", "st_19239", "st_19257")
cov_all_df=data.frame(cov_18486$Geneid,cov_18486$st_18486, cov_18497$st_18497, cov_18500$st_18500, cov_18505$st_18505, cov_18508$st_18508, cov_18853$st_18853, cov_18870$st_18870, cov_19128$st_19128, cov_19141$st_19141, cov_19193$st_19193, cov_19209$st_19209, cov_19223$st_19223, cov_19225$st_19225, cov_19238$st_19238, cov_19239$st_19239, cov_19257$st_19257)

colnames(cov_all_df)= names

Genes with coverage

genes_detected=function(col, num){
  #takes incov_all_dfl col which corresponds to one library
  tot_genes=nrow(cov_all_df)
  exp_genes=sum(col >num)
  return(exp_genes/tot_genes)
}


detected_genes0=c(genes_detected(cov_all_df$st_18486, 0), genes_detected(cov_all_df$st_18497,0), genes_detected(cov_all_df$st_18500,0), genes_detected(cov_all_df$st_18505,0), genes_detected(cov_all_df$st_18508,0), genes_detected(cov_all_df$st_18853,0), genes_detected(cov_all_df$st_18870,0), genes_detected(cov_all_df$st_19128,0), genes_detected(cov_all_df$st_19141,0), genes_detected(cov_all_df$st_19193,0), genes_detected(cov_all_df$st_19209,0), genes_detected(cov_all_df$st_19223,0), genes_detected(cov_all_df$st_19225,0), genes_detected(cov_all_df$st_19238,0), genes_detected(cov_all_df$st_19239,0), genes_detected(cov_all_df$st_19257,0))

names(detected_genes0)=c("18486", "18497", "18500", "18505", "18508", "18853", "18870", "19128", "19141", "19193", "19209", "19223", "19225", "19238", "19239", "19257")

barplot(detected_genes0, ylim = c(0,1), main="Net-seq Genes detected greater than 0 standardized reads", ylab="Proportion non zero genes", xlab="Library", col = 'Blue')

abline(h=mean(detected_genes0))

Expand here to see past versions of unnamed-chunk-9-1.png:
Version Author Date
9787ad5 Briana Mittleman 2018-06-22

0 is not the most informative detection rate because it could be due to noise. I need to look at the distribution to pick a better cuttoff.

plot(log10(sort(cov_all_df$st_18486, decreasing = T)))

Expand here to see past versions of unnamed-chunk-10-1.png:
Version Author Date
9787ad5 Briana Mittleman 2018-06-22

I should use .001 or \(10^{-3}\) as a cuttoff.

detected_genes_cut=c(genes_detected(cov_all_df$st_18486, .001), genes_detected(cov_all_df$st_18497,.001), genes_detected(cov_all_df$st_18500,.001), genes_detected(cov_all_df$st_18505,.001), genes_detected(cov_all_df$st_18508,.001), genes_detected(cov_all_df$st_18853,.001), genes_detected(cov_all_df$st_18870,.001), genes_detected(cov_all_df$st_19128,0.001), genes_detected(cov_all_df$st_19141,0.001), genes_detected(cov_all_df$st_19193,0.001), genes_detected(cov_all_df$st_19209,0.001), genes_detected(cov_all_df$st_19223,0.001), genes_detected(cov_all_df$st_19225,0.001), genes_detected(cov_all_df$st_19238,0.001), genes_detected(cov_all_df$st_19239,0.001), genes_detected(cov_all_df$st_19257,0.001))

names(detected_genes_cut)=c("18486", "18497", "18500", "18505", "18508", "18853", "18870", "19128", "19141", "19193", "19209", "19223", "19225", "19238", "19239", "19257")

barplot(detected_genes_cut, ylim = c(0,1), main="Net-seq Genes detected greater than .001 standardized reads", ylab="Proportion genes passing filter", xlab="Library", col = 'Blue')

abline(h=mean(detected_genes_cut))

Correlation between libraries:

cor_function=function(data){
  corr_matrix= matrix(0,ncol(data),ncol(data))
  for (i in seq(1,ncol(data))){
    for (j in seq(1,ncol(data))){
      x=cor.test(data[,i], data[,j], method='pearson')
      cor_ij=as.numeric(x$estimate)
      corr_matrix[i,j]=cor_ij
    }
  }
  return(corr_matrix)
}

covall_matrix=as.matrix(cov_all_df[,2:17])

covall_cor= cor_function(covall_matrix)
rownames(covall_cor)=c("NA18486", "NA18497", "NA18500", "NA18505", "NA18508", "NA18853", "NA18870", "NA19128", "NA19141", "NA19193", "NA19209", "NA19223", "NA19225", "NA19238", "NA19239", "NA19257")
colnames(covall_cor)=c("NA18486", "NA18497", "NA18500", "NA18505", "NA18508", "NA18853", "NA18870", "NA19128", "NA19141", "NA19193", "NA19209", "NA19223", "NA19225", "NA19238", "NA19239", "NA19257")


covall_cor_melt=melt(covall_cor)

ggheatmap=ggplot(data = covall_cor_melt, aes(x=Var1, y=Var2, fill=value)) +
  geom_tile() +
  labs(title="Net-seq Correlation Heatplot")
ggheatmap

Line 19223 is the line with mapping problems. I expected this one to have low correlations.

Session information

sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] bindrcpp_0.2.2  edgeR_3.20.9    limma_3.34.9    reshape2_1.4.3 
[5] tidyr_0.7.2     ggplot2_2.2.1   dplyr_0.7.5     workflowr_1.0.1
[9] rmarkdown_1.8.5

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17      compiler_3.4.2    pillar_1.1.0     
 [4] git2r_0.21.0      plyr_1.8.4        bindr_0.1.1      
 [7] R.methodsS3_1.7.1 R.utils_2.6.0     tools_3.4.2      
[10] digest_0.6.15     lattice_0.20-35   evaluate_0.10.1  
[13] tibble_1.4.2      gtable_0.2.0      pkgconfig_2.0.1  
[16] rlang_0.2.1       yaml_2.1.19       stringr_1.3.1    
[19] knitr_1.18        locfit_1.5-9.1    rprojroot_1.3-2  
[22] grid_3.4.2        tidyselect_0.2.4  glue_1.2.0       
[25] R6_2.2.2          purrr_0.2.5       magrittr_1.5     
[28] whisker_0.3-2     backports_1.1.2   scales_0.5.0     
[31] htmltools_0.3.6   assertthat_0.2.0  colorspace_1.3-2 
[34] labeling_0.3      stringi_1.2.2     lazyeval_0.2.1   
[37] munsell_0.4.3     R.oo_1.22.0      



This reproducible R Markdown analysis was created with workflowr 1.0.1