
Abstract—The object interactions are generally computed using

physical equations governing them. The current physical

simulators and engines use the simple Newtonian equations to

calculate objects future behavior from their current states,

including its exact values of velocity, mass and friction values.

For humans, similar equation solving systems does not exist

explicitly, however we still observe the surrounding environment

and create meaningful predictions on future states of the objects

within. By using a convolutional recurrent network, we propose

a model capable of similar predictions using the visual intuition.

Experiments show that our model learns naïve physics concepts

such as continuity of objects, their solidity, their speed and

momentum and generates future physical states, and

transferring information for multiple objects to single objects is

possible.

I. INTRODUCTION

We ask the question of how physical computation of

our surroundings is efficient and why we don’t take

exponentially more time to calculate our actions with an

exponentially more cluttered scene. The interactions between

the environment and us are calculated. For this reason, we

provide a possible answer by describing and a training a

physical model which can effectively generate future images

with different number of objects with same amount of memory

and computation.

In this project tried to expand the works of

Fragkiadaki et al., by going to three dimensions instead of two.

In this work, the physical reasoning tasks will be evaluated in

space; to have a difference from work done before. In this way

we expand the input space specifically, so that the original

network structure is cascaded with other networks which take

other input pictures with a different z coordinate. After

connecting those layers with each other’s, we will form our

full structure.

In our final project, there are two main objectives we

focused on. The first objective was training and testing a future

image predictor which could generate the future images given

the previous frames i.e. learning the physical interactions. Our

second objective is to extend this understanding of physics

into the multiple objects. One of the interesting part of this

physics based model is that it is does not have an algorithmic

complexity bounded by the amount of physical bodies. The

multi-object model demonstrates both ability to predict in

multi-object and single object environments.

II. RELATED WORK

To mention related works on this topic, an important work on

this field is “A Compositional Object-Based Approach to

Learning Physical Dynamics” by M. B. Chang and his

colleagues [1]. In this article, an approach which generalizes

over varying object count and different scenarios is followed.

Their neural physics engine mainly uses object-based

representations and function compositions, and performs

prediction, generalization and inference tasks in experiments.

They also made the network able to predict the masses of

objects based on simple elastic collision rules with a high

accuracy (around 90%) alongside those tasks. Existence of

walls and different scene configurations are also taken in

consideration for those experiments for 2-D images as the raw

input data [2].

 The raw 2-D image part draws more inspiration from

the [3] where Fragkiadaki et al, demonstrates neural networks

ability to predict the motions of 2D images.

In the work of Battaglia et al., “Interaction Networks

for Learning about Objects, Relations and Physics” we see a

Relation Discovery-based approach for forming predictors to

find out object movements in various scenarios. Here, explicit

reasoning about objects and relations are aimed and an

unexpected success on physical prediction is acquired as it can

be seen from MSE results. This is a hugely different approach

than [4] and ours since it uses graphs as the inputs of the

system rather than the raw images.

 Another paper on this field is “Dynamic Modeling

Based on Fuzzy Neural Network for a Billiard Robot” by Gao

et al. which directly aims on billiard ball motion prediction.

By forming the ‘Billiard Robot’, they aim to decrease the

angular error rate as much as possible, and for this purpose

they employ Back Propagation Neural Network (BPNN)

method to create a fuzzy neural network which predict the

position of billiard balls [5]. They used Monte-Carlo method

for training with samples of billiard scenes and managed to

reach successful results, as the predicted ball fell close enough

to actual position of the billiard ball. In summary, this is a

specific paper on billiard ball prediction on 2D scenes which

extensively requires physical relations’ learning by neural

structure and prediction of their movements to make

successful simulations by the neural networks.

A Final Report on DeepNewton: Physical

Simulations Using Deep Networks

 Burak Çatalbaş and Yarkın Deniz Çetin
Bilkent University, Dep. of Electrical and Electronics Eng., Dep. of Computer Engineering

The last example of the related works is the

“NeuroAnimator” from Grzeszczuk et al. Which is a fast

neural network emulation and control of physics-based models

as they present. In this paper, computation expensiveness is

target by usage of neural structures while computing the

physical relations [9]. By employing an approximation by

learning algorithm, thier neural network decrases

computational complexity of nonlinear mappings and

equations. Using hierarchical network types and aiming on the

deformable models, the model achieves significant

performance and practicality at the end of training for several

examples.

III. ARCHITECTURE

A. Deep Newton v1 (Progress Report Phase)

We propose a combined system of encoder-decoder and

LSTM to predict and generate future frames according to

physical laws. Our network will predict the future states of the

interacting objects and generate the image representing the

change in speed and direction.

 This combined system is composed of 2 main

components. An encoder-decoder part which handles the input

frames and extracts descriptive features of the scene and an

LSTM part which calculates the future states of the scene and

tries to construct a physical understanding. We first learn a

which maps 128x128 input frames to 128x128 output frames.

The codec inherently learns two functions amd . We use the

former function to generate LSTM training codes.

In Fig. 1, we give the fundamental architecture of our deep-

learning model.

Fig. 1 Proposed DeepNewton Model

For our architecture, we train the encoder-decoder and LSTM

parts separately, as we believe that the LSTM only needs a

representation of the scene rather than its full contents.

B. Core LSTM

LSTM networks [2] can attend to objects in a sequential

manner as given in Eslami et al. [6]. In our model, we use an

LSTM network as its core predictive module. The LSTM

accepts the visual encodings of the system for steps and tries

to create the visual code of the next step. The model infers the

object interactions and passive forces (such as gravity) from

the training set given.

 For our current model, we use an LSTM and a fully

connected layer to represent the physical state of the scene.

Both LSTM and our FC layer uses 128 neurons which is our

coding size described below.

C. Encoder-Decoder Scheme

For tuning and cross-validating our LSTM, we believe the

dense vectors representing the frames was needed. For this

reason, we use a similar encoding scheme used in [3] however

we do not separate the force-field vector and scene as different

inputs as we expect the whole physical inference will be done

through looking at the images.

The architecture consists of convolutional ReLU's followed by

max-pooling. The last two layers generating the code are fully

connected and scales down the 128x128 images into 128x1

code vectors. In Fig 3 you can see the implementation details

Table I. Proposed Encoder-Decoder Model, while the encoder and

decoder architecture is similar, the weights are not shared

D. Deep Newton v2 (Final Report Phase)

Further experimentation revealed us that using non-

spatial coding made the training problem very hard as the

model had to learn the global positions and interactions

separately for nearly each individual location. To solve this

problem, we come up with a model which is based on

Convolutional LSTMs described in [7]. The model uses a

convolutional code rather than the original vector coding. This

Layer Size Layer Size
Input 128x128x1 Output 128x128x1

Conv1 3x3x4 Conv1 3x3x4

ReLU1 128x128x4 ReLu1 128x128x4

MaxPool1 64x64x4 Upsample1 64x64x4

Conv2 3x3x8 Conv2 3x3x8

ReLU2 64x64x8 ReLu2 64x64x8

MaxPool2 32x32x8 Upsample12 32x32x8

Conv3 3x3x16 Conv3 3x3x16

ReLU3 32x32x16 ReLu3 32x32x16

MaxPool3 16x16x8 Upsample13 16x16x8

Conv4 3x3x16 Conv4 3x3x16

ReLU4 16x16x16 ReLu4 16x16x16

MaxPool4 8x8x16 Upsample14 8x8x16

Conv5 3x3x32 Conv5 3x3x32

ReLU5 8x8x32 ReLu5 8x8x32

FC1(ReLU) 2048 FC1(ReLu) 2048

FC2(ReLU) 128(Code)

model however, does not use LSTMs but custom designed

additive RNN’s for learning the time-dependencies. Our

model gives a good performance and has less calculations than

a full-fledge LSTM.

Another problem we have addressed is the error

metrics for the single-frame prediction mode. In the initial

model since we predicted the fifth frame given the first four

frames, it was easy to for network to reduce the error by just

imitating the last given frame. Because of temporal continuity

the frames 4 and 5 were very similar and we feared this could

be abused by our model. Our new model tries to address this

problem by predicting the 8th frame given the first 4 frames.

Using 8th frame as the training labels, we forced network to

genuinely predict the future frame.

E. Core RNN (Final Report Phase)

The RNN we use is inspired from the Convolutional

LSTM. The RNN uses additive hidden-states as the normal

LSTM networks however, the multiplication of the weights is

substituted with convolutions of fixed size.

Fig. 2 The proposed RNN cell with tanh activations and Conv. layers

The RNN cells use a constant decay of 0.5 to act as a

forget gate. In the output, we convolve the hidden state with a

filter to resolve spatial dependencies of different objects. The

hidden state is the “non-activated” version of the output state

since the hidden state gets activated in the next cell.

The complete RNN-model uses 8 of these basic cells

with minor differences in the input layer.

Fig. 3 Complete RNN-model of the network. The input and outputs

are frame codes

We use the output of the previous cells as input to the

next cells, but we also use a skip-connection layer to increase

gradient flow to the first four items.

Table II. Final Encoder-Decoder Model, while the encoder and

decoder architecture is similar, the weights are not shared

F. Encoder-Decoder Scheme (Final Report Phase)

The encoder-decoder model we used in the first

version proved setbacks in physics generalization as

mentioned in the introduction. For our new RNN model with

convolutional layers, we introduced spatial coding for our

model.

Another improvement over the first iteration is that

we used a Gaussian noise in the input of the encoder, forcing

decoder to generate sharp images even with noisy spatial

codes. This, we believe transfers some of the learning load

from RNNs making training easier. It is similar to VAE in this

sense however, we omit many features from VAE such as KL

divergence.

Lastly, we tried to improve the code locality by

introducing a code similarity loss to our AE model. This loss

forced network to create more similar codes for the

consecutive frames and prevented it from code-space

fragmentation.

The finalized configuration of the network layers and

total neural structure can be seen in Table II.

Layer Size Layer Size

Input 128x128x1

Output 128x128x1

Conv1 3x3x4
Conv1 3x3x4

ReLU1 128x128x4

ReLu1 128x128x4

MaxPool1 64x64x4

Upsample1 64x64x4

Conv2 3x3x8
Conv2 3x3x8

ReLU2 64x64x8
ReLu2 64x64x8

MaxPool2 32x32x8

Upsample12 32x32x8

Conv3 3x3x16
Conv3 3x3x16

ReLU3 32x32x16
ReLu3 32x32x16

MaxPool3 16x16x8

Upsample13 16x16x8

Conv4 3x3x16
Conv4 3x3x16

ReLU4 16x16x16
ReLu4 16x16x16

8x8x16 8x8x16

Fig 4 Autoencoder model with Gaussian noise

Fig. 5 The t-SNE plots of the test-frames. The non-augmented t-SNE

shows more breaks in the lines contrasted with the augmented

encoder.

Above you can see the t-SNE plots of non-augmented

and augmented versions of the generated code images. It can

be observed that introducing this loss created a much more

continuous t-SNE “strands”.

Both image-reconstruction and code-similarity errors

are MSE with equal weights in our implementation.

G. Model Training (Final Report Phase)

The first model is trained in two steps. The first step

was the Encoder-Decoder training, which was done by using

shuffled images from the dataset. The network tried to

reconstruct the original image. The training was done by

Adam with a learning rate of 0.0001 and 0.001. The network

trained stochastically using 1 image instead of mini-batch

training. We observed that using 1 image per training "batch"

increased the generalization of the images when generating

codes. We used 1000 epochs for the encoder-decoder.

Fig. 6 Training error over epochs for encoder-decoder

For the LSTM part, we use the same optimizer

parameters. Our loss functions for both encoder-decoder and

LSTM is MSE.

 During LSTM training, we observed an interesting

behavior where while our training error did not decrease,

additional epochs increased our test-time error visually.

For the second model, we saw improvements in

prediction accuracy when trained end-to-end so we utilized a

combined model of encoder-RNN-decoder. We also decided

to adopt rmsProp as our learning algorithms as it seemed to

improve recurrent performance as mentioned in [8]. We first

trained the auto-encoder with 1000 epochs and then performed

an end-to-end training of 2000 epochs.

IV. DATASET GENERATION

For generating dataset, we considered two

techniques, first is utilizing an existing physics engine

implementation, Unity3D for our case, to create and simulate

artificial environments and record the frames as our dataset.

Unity3D has nice features for handling the collision detection

with varying precisions. For our proof-of-concept dataset, we

imagined a 2D square "pool" table, where gravity and friction

is ignored. Only one ball with unit mass is considered. The

walls of the scene were considered static.

 The training, validation and test datasets are captured

for 20, 10 and 10 seconds with 40 fps respectively and

generated 800, 400 and 400 frames each. In Fig. 3 you can see

6 sample images from our training dataset.

For training the borders of the images are cropped and

scaled down to 128x128 pixels only showing the background

and the ball. The desired frame rate within a reasonable

interval. Also, we are able to pass the pictures of 3D volume

with desired elevation angle, azimuth angle and zoom factor

to feel the 3D notion of simulation. This simulator can

produce pictures of the plot with desired frame rate within a

reasonable interval. Also, we are able to pass the pictures of

3D volume with desired elevation angle, azimuth angle and

zoom factor to feel the 3D notion of simulation.

V. EXPERIMENTS

A. Predicting 4-Frame into Future

In the first experiment, we feed our network with 4

frames of with consecutive time-steps and predict the next

frame. Then we measure the output image’s MSE with the

ground truth future image which is the 8th frame.

The MSE of this experiment is 9e-5 for this

experiment. However, we note that all frames share a lot of

features in the first place so we expect low MSEs for even

random image pairs. To address this, we use a version of

normalized MSE where we measure the base MSE, from two

frames with no ball intersection and scale our error according

to this value.

Fig. 7a Sample Images from our model(left) and the ground

truth(right)

The MSE of non-intersecting balls in a 128x128

image is 9.6e-4. So, our scaled version of MSE is still

significantly close to ground truth.

Our model predicts the 8th frame with accuracy for

one object case, we also trained our model using the multiple

objects dataset we have generated. Results have lost quality as

you see however we still have a sense of continuity in the

frames, meaning our model actually learns multiple object

interaction.

Fig. 8 Sample images from our model trained on multiple

objects, predicting multiple objects(top) predicting a single

object (bottom)

B. Predicting Many Frames into Future

To test our true capabilities of our model, we

designed an experiment where we give “seed” frames and use

model to predict all consecutive frames in the dataset.

However, our model in our current state, fails for future

prediction. We observe that when our LSTM fed with

generated codes, artifacts start to appear on the generated

frames and the ball eventually vanished. We do observe some

understanding of the physics where the artifacts appearing

bounces from the walls. The test is conducted by giving 4 seed

frames

and generating an output frame. This frame then added to our

input code vector and the last code from the code vector is

discarded, signifying a step forward in the time.

This sort of into-the-future type of experiments failed with our

model. The new codes generated from the output image is not

error-free enough for our model to compensate.

VI. DISCUSSION AND FUTURE WORK

 In this final report, we designed our physical model

as proof of concept and showed that, it can generate future

frames for artificial 2D environment. The network while

demonstrating prediction over the frames, we sadly note that

the model is constrained into an artificially created very simple

environment. Even though it shows ability to transfer

knowledge beyond its trained dataset, it does so only this

environment. This might imply that our model will fail to

transfer its knowledge over the real-life image sequences

depicting physical interaction. The model still cannot create

multi-frame predicted images, as it does not generate images

with enough accuracy. Hence, the error over frames propagate

over the network and result in images full of artifacts and

eventual collapse of the physical state into nothingness.

 While we believe that this problem can be alleviated

by creating deeper convolutional layers for encoding-

decoding network, the ability to generate real-life images from

nearly real-world scene configurations seems slim.

Fig 9 Sample failure cases for the multi-frame prediction

Additionally, our network could not incorporate the

aforementioned physical features such as gravity, friction and

bounciness of objects. There were no stationary objects except

for the balls themselves.

Another interesting question we ask is whether we

needed a recurrence predicting the future frames, as we know

from our world, there is generally spatial continuity between

frames which share temporal continuity i.e. consecutive

frames have too many redundant information which can be

used to identify them (which also substitutes for the hidden

state). For this reason, using a feed-forward only convolutional

network fed with temporally concatenated frames might

perform better in terms of training.

Fig 7b Multi-object image samples from the dataset

Future directions of this project thus, include the use

of non-recurrence as a future scene generation method, also

testing the method on the real-scenery.

VII. REFERENCES

[1] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A

Compositional Object-Based Approach To Learning Physical

Dynamics. arXiv preprint arXiv: 1612.00341, 2017

[2] S. Hochrieter, and J. Schmidhuber. Long Short-Term Memory.

Neural Computation 9(8):1735-1780, 1997.

[3] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning

visual predictive models of physics for playing billiards. arXiv

preprint arXiv:1511.07404, 2015b.

[4] Battaglia et al. Interaction Networks for Learning about Objects,

Relations and Physics arXiv:1612.00222, 2016

[5] Gao, Jiaying et al. "Dynamic Modeling Based On Fuzzy Neural

Network For A Billiard Robot". 2016 IEEE 13th International

Conference on Networking, Sensing, and Control (ICNSC) (2016):

[6] S. Eslami, N. Heess, T. Weber, Y. Tassa, K. Kavukcuoglu, and

G. E. Hinton. Attend, infer, repeat: Fast scene understanding with

generative models. arXiv preprint arXiv:1603.08575, 2016.

[7] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, W Woo,

Convolutional LSTM Network: A Machine Learning Approach for

Precipitation Nowcasting

[8] Lecture on Deep Learning,

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slid

es_lec6.pdf
[9] Grzeszczuk, Radek, Demetri Terzopoulos, and Geoffrey Hinton.

"Neuroanimator". Proceedings of the 25th annual conference on

Computer graphics and interactive techniques - SIGGRAPH '98

(1998): n. pag. Web. 24 May 2017.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

