
Abstract—The object interactions are generally computed using 

physical equations governing them. The current physical 

simulators and engines use the simple Newtonian equations to 

calculate objects future behavior from their current states, 

including its exact values of velocity, mass and friction values. 

For humans, similar equation solving systems does not exist 

explicitly, however we still observe the surrounding environment 

and create meaningful predictions on future states of the objects 

within.  By using a convolutional recurrent network, we propose 

a model capable of similar predictions using the visual intuition. 

Experiments show that our model learns naïve physics concepts 

such as continuity of objects, their solidity, their speed and 

momentum and generates future physical states, and 

transferring information for multiple objects to single objects is 

possible. 

 

I. INTRODUCTION 

We ask the question of how physical computation of 

our surroundings is efficient and why we don’t take 

exponentially more time to calculate our actions with an 

exponentially more cluttered scene. The interactions between 

the environment and us are calculated. For this reason, we 

provide a possible answer by describing and a training a 

physical model which can effectively generate future images 

with different number of objects with same amount of memory 

and computation. 

In this project tried to expand the works of 

Fragkiadaki et al., by going to three dimensions instead of two. 

In this work, the physical reasoning tasks will be evaluated in 

space; to have a difference from work done before. In this way 

we expand the input space specifically, so that the original 

network structure is cascaded with other networks which take 

other input pictures with a different z coordinate. After 

connecting those layers with each other’s, we will form our 

full structure.  

In our final project, there are two main objectives we 

focused on. The first objective was training and testing a future 

image predictor which could generate the future images given 

the previous frames i.e. learning the physical interactions. Our 

second objective is to extend this understanding of physics 

into the multiple objects. One of the interesting part of this 

physics based model is that it is does not have an algorithmic 

complexity bounded by the amount of physical bodies. The 

multi-object model demonstrates both ability to predict in 

multi-object and single object environments.  

II. RELATED WORK 

To mention related works on this topic, an important work on 

this field is “A Compositional Object-Based Approach to 

Learning Physical Dynamics” by M. B. Chang and his 

colleagues [1]. In this article, an approach which generalizes 

over varying object count and different scenarios is followed. 

Their neural physics engine mainly uses object-based 

representations and function compositions, and performs 

prediction, generalization and inference tasks in experiments. 

They also made the network able to predict the masses of 

objects based on simple elastic collision rules with a high 

accuracy (around 90%) alongside those tasks. Existence of 

walls and different scene configurations are also taken in 

consideration for those experiments for 2-D images as the raw 

input data [2]. 

 The raw 2-D image part draws more inspiration from 

the [3] where Fragkiadaki et al, demonstrates neural networks 

ability to predict the motions of 2D images.  

In the work of Battaglia et al., “Interaction Networks 

for Learning about Objects, Relations and Physics” we see a 

Relation Discovery-based approach for forming predictors to 

find out object movements in various scenarios. Here, explicit 

reasoning about objects and relations are aimed and an 

unexpected success on physical prediction is acquired as it can 

be seen from MSE results. This is a hugely different approach 

than [4] and ours since it uses graphs as the inputs of the 

system rather than the raw images. 

 Another paper on this field is “Dynamic Modeling 

Based on Fuzzy Neural Network for a Billiard Robot” by Gao 

et al. which directly aims on billiard ball motion prediction. 

By forming the ‘Billiard Robot’, they aim to decrease the 

angular error rate as much as possible, and for this purpose 

they employ Back Propagation Neural Network (BPNN) 

method to create a fuzzy neural network which predict the 

position of billiard balls [5]. They used Monte-Carlo method 

for training with samples of billiard scenes and managed to 

reach successful results, as the predicted ball fell close enough 

to actual position of the billiard ball. In summary, this is a 

specific paper on billiard ball prediction on 2D scenes which 

extensively requires physical relations’ learning by neural 

structure and prediction of their movements to make 

successful simulations by the neural networks. 
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The last example of the related works is the 

“NeuroAnimator” from Grzeszczuk et al. Which is a fast 

neural network emulation and control of physics-based models 

as they present. In this paper, computation expensiveness is 

target by usage of neural structures while computing the 

physical relations [9]. By employing an approximation by 

learning algorithm, thier neural network decrases 

computational complexity of nonlinear mappings and 

equations. Using hierarchical network types and aiming on the 

deformable models, the model achieves significant 

performance and practicality at the end of training for several 

examples. 

III. ARCHITECTURE 

A. Deep Newton v1 (Progress Report Phase) 

We propose a combined system of encoder-decoder and 

LSTM to predict and generate future frames according to 

physical laws. Our network will predict the future states of the 

interacting objects and generate the image representing the 

change in speed and direction.  

 

 This combined system is composed of 2 main 

components. An encoder-decoder part which handles the input 

frames and extracts descriptive features of the scene and an 

LSTM part which calculates the future states of the scene and 

tries to construct a physical understanding. We first learn a  

which maps 128x128 input frames to 128x128 output frames. 

The codec inherently learns two functions  amd . We use the 

former function to generate LSTM training codes. 

 

In Fig. 1, we give the fundamental architecture of our deep-

learning model. 

 

 
Fig. 1 Proposed DeepNewton Model 

For our architecture, we train the encoder-decoder and LSTM 

parts separately, as we believe that the LSTM only needs a 

representation of the scene rather than its full contents. 

B. Core LSTM 

 

LSTM networks [2] can attend to objects in a sequential 

manner as given in Eslami et al. [6]. In our model, we use an 

LSTM network as its core predictive module. The LSTM 

accepts the visual encodings of the system for  steps and tries 

to create the visual code of the next step. The model infers the 

object interactions and passive forces (such as gravity) from 

the training set given.  

 For our current model, we use an LSTM and a fully 

connected layer to represent the physical state of the scene. 

Both LSTM and our FC layer uses 128 neurons which is our 

coding size described below. 

C. Encoder-Decoder Scheme 

For tuning and cross-validating our LSTM, we believe the 

dense vectors representing the frames was needed. For this 

reason, we use a similar encoding scheme used in [3] however 

we do not separate the force-field vector and scene as different 

inputs as we expect the whole physical inference will be done 

through looking at the images. 

 

The architecture consists of convolutional ReLU's followed by 

max-pooling. The last two layers generating the code are fully 

connected and scales down the 128x128 images into 128x1 

code vectors. In Fig 3 you can see the implementation details 

 

 

 
 

Table I.  Proposed Encoder-Decoder Model, while the encoder and 

decoder architecture is similar, the weights are not shared 

D. Deep Newton v2 (Final Report Phase) 

Further experimentation revealed us that using non-

spatial coding made the training problem very hard as the 

model had to learn the global positions and interactions 

separately for nearly each individual location. To solve this 

problem, we come up with a model which is based on 

Convolutional LSTMs described in [7]. The model uses a 

convolutional code rather than the original vector coding. This 

Layer Size Layer Size 
Input 128x128x1 Output 128x128x1 

Conv1 3x3x4 Conv1 3x3x4 

ReLU1 128x128x4 ReLu1 128x128x4 

MaxPool1 64x64x4 Upsample1 64x64x4 

Conv2 3x3x8 Conv2 3x3x8 

ReLU2 64x64x8 ReLu2 64x64x8 

MaxPool2 32x32x8 Upsample12 32x32x8 

Conv3 3x3x16 Conv3 3x3x16 

ReLU3 32x32x16 ReLu3 32x32x16 

MaxPool3 16x16x8 Upsample13 16x16x8 

Conv4 3x3x16 Conv4 3x3x16 

ReLU4 16x16x16 ReLu4 16x16x16 

MaxPool4 8x8x16 Upsample14 8x8x16 

Conv5 3x3x32 Conv5 3x3x32 

ReLU5 8x8x32 ReLu5 8x8x32 

FC1(ReLU) 2048 FC1(ReLu) 2048 

FC2(ReLU) 128(Code) 



model however, does not use LSTMs but custom designed 

additive RNN’s for learning the time-dependencies. Our 

model gives a good performance and has less calculations than 

a full-fledge LSTM.  

Another problem we have addressed is the error 

metrics for the single-frame prediction mode. In the initial 

model since we predicted the fifth frame given the first four 

frames, it was easy to for network to reduce the error by just 

imitating the last given frame. Because of temporal continuity 

the frames 4 and 5 were very similar and we feared this could 

be abused by our model. Our new model tries to address this 

problem by predicting the 8th frame given the first 4 frames. 

Using 8th frame as the training labels, we forced network to 

genuinely predict the future frame. 

E. Core RNN (Final Report Phase) 

The RNN we use is inspired from the Convolutional 

LSTM. The RNN uses additive hidden-states as the normal 

LSTM networks however, the multiplication of the weights is 

substituted with convolutions of fixed size.  

 
Fig. 2 The proposed RNN cell with tanh activations and Conv. layers 

The RNN cells use a constant decay of 0.5 to act as a 

forget gate. In the output, we convolve the hidden state with a 

filter to resolve spatial dependencies of different objects. The 

hidden state is the “non-activated” version of the output state 

since the hidden state gets activated in the next cell. 

The complete RNN-model uses 8 of these basic cells 

with minor differences in the input layer.

 
 

Fig. 3 Complete RNN-model of the network. The input and outputs 

are frame codes 

We use the output of the previous cells as input to the 

next cells, but we also use a skip-connection layer to increase 

gradient flow to the first four items. 
 

 

 

 
Table II.  Final Encoder-Decoder Model, while the encoder and 

decoder architecture is similar, the weights are not shared 

 

F. Encoder-Decoder Scheme (Final Report Phase) 

The encoder-decoder model we used in the first 

version proved setbacks in physics generalization as 

mentioned in the introduction. For our new RNN model with 

convolutional layers, we introduced spatial coding for our 

model. 

Another improvement over the first iteration is that 

we used a Gaussian noise in the input of the encoder, forcing 

decoder to generate sharp images even with noisy spatial 

codes. This, we believe transfers some of the learning load 

from RNNs making training easier. It is similar to VAE in this 

sense however, we omit many features from VAE such as KL 

divergence.  

 

Lastly, we tried to improve the code locality by 

introducing a code similarity loss to our AE model. This loss 

forced network to create more similar codes for the 

consecutive frames and prevented it from code-space 

fragmentation. 

 

The finalized configuration of the network layers and 

total neural structure can be seen in Table II. 

 

Layer Size Layer Size 

Input 128x128x1 

Output 128x128x1 

Conv1 3x3x4 
Conv1 3x3x4 

ReLU1 128x128x4 

ReLu1 128x128x4 

MaxPool1 64x64x4 

Upsample1 64x64x4 

Conv2 3x3x8 
Conv2 3x3x8 

ReLU2 64x64x8 
ReLu2 64x64x8 

MaxPool2 32x32x8 

Upsample12 32x32x8 

Conv3 3x3x16 
Conv3 3x3x16 

ReLU3 32x32x16 
ReLu3 32x32x16 

MaxPool3 16x16x8 

Upsample13 16x16x8 

Conv4 3x3x16 
Conv4 3x3x16 

ReLU4 16x16x16 
ReLu4 16x16x16 

8x8x16 8x8x16 



 
Fig 4 Autoencoder model with Gaussian noise 

 

 
Fig. 5 The t-SNE plots of the test-frames. The non-augmented t-SNE 

shows more breaks in the lines contrasted with the augmented 

encoder. 

Above you can see the t-SNE plots of non-augmented 

and augmented versions of the generated code images. It can 

be observed that introducing this loss created a much more 

continuous t-SNE “strands”. 

 

Both image-reconstruction and code-similarity errors 

are MSE with equal weights in our implementation. 

G. Model Training (Final Report Phase) 

The first model is trained in two steps. The first step 

was the Encoder-Decoder training, which was done by using 

shuffled images from the dataset. The network tried to 

reconstruct the original image. The training was done by 

Adam with a learning rate of 0.0001 and 0.001. The network 

trained stochastically using 1 image instead of mini-batch 

training. We observed that using 1 image per training "batch" 

increased the generalization of the images when generating 

codes. We used 1000 epochs for the encoder-decoder.  

 

 

 
Fig. 6 Training error over epochs for encoder-decoder 

For the LSTM part, we use the same optimizer 

parameters. Our loss functions for both encoder-decoder and 

LSTM is MSE.  

 

 During LSTM training, we observed an interesting 

behavior where while our training error did not decrease, 

additional epochs increased our test-time error visually. 

 

For the second model, we saw improvements in 

prediction accuracy when trained end-to-end so we utilized a 

combined model of encoder-RNN-decoder. We also decided 

to adopt rmsProp as our learning algorithms as it seemed to 

improve recurrent performance as mentioned in [8]. We first 

trained the auto-encoder with 1000 epochs and then performed 

an end-to-end training of 2000 epochs. 

 

 

 

 

 



IV. DATASET GENERATION 

For generating dataset, we considered two 

techniques, first is utilizing an existing physics engine 

implementation, Unity3D for our case, to create and simulate 

artificial environments and record the frames as our dataset. 

Unity3D has nice features for handling the collision detection 

with varying precisions. For our proof-of-concept dataset, we 

imagined a 2D square "pool" table, where gravity and friction 

is ignored. Only one ball with unit mass is considered. The 

walls of the scene were considered static.  

 

 The training, validation and test datasets are captured 

for 20, 10 and 10 seconds with 40 fps respectively and 

generated 800, 400 and 400 frames each. In Fig. 3 you can see 

6 sample images from our training dataset. 

 

For training the borders of the images are cropped and 

scaled down to 128x128 pixels only showing the background 

and the ball. The desired frame rate within a reasonable 

interval. Also, we are able to pass the pictures of 3D volume 

with desired elevation angle, azimuth angle and zoom factor 

to feel the 3D notion of simulation. This  simulator can 

produce pictures of the plot with desired frame rate within a 

reasonable interval. Also, we are able to pass the pictures of 

3D volume with desired elevation angle, azimuth angle and 

zoom factor to feel the 3D notion of simulation.  

V. EXPERIMENTS 

A. Predicting 4-Frame into Future 

 

In the first experiment, we feed our network with 4 

frames of with consecutive time-steps and predict the next 

frame. Then we measure the output image’s MSE with the 

ground truth future image which is the 8th frame. 

 

The MSE of this experiment is 9e-5 for this 

experiment. However, we note that all frames share a lot of 

features in the first place so we expect low MSEs for even 

random image pairs. To address this, we use a version of 

normalized MSE where we measure the base MSE, from two 

frames with no ball intersection and scale our error according 

to this value. 

Fig. 7a Sample Images from our model(left) and the ground 

truth(right) 



 

The MSE of non-intersecting balls in a 128x128 

image is 9.6e-4. So, our scaled version of MSE is still 

significantly close to ground truth. 

 

Our model predicts the 8th frame with accuracy for 

one object case, we also trained our model using the multiple 

objects dataset we have generated. Results have lost quality as 

you see however we still have a sense of continuity in the 

frames, meaning our model actually learns multiple object 

interaction.  

 

 
 

 

Fig. 8 Sample images from our model trained on multiple 

objects, predicting multiple objects(top) predicting a single 

object (bottom) 

B. Predicting Many Frames into Future 

To test our true capabilities of our model, we 

designed an experiment where we give “seed” frames and use 

model to predict all consecutive frames in the dataset. 

However, our model in our current state, fails for future 

prediction. We observe that when our LSTM fed with 

generated codes, artifacts start to appear on the generated 

frames and the ball eventually vanished. We do observe some 

understanding of the physics where the artifacts appearing 

bounces from the walls. The test is conducted by giving 4 seed 

frames  

and generating an output frame. This frame then added to our 

input code vector and the last code from the code vector is 

discarded, signifying a step forward in the time. 

This sort of into-the-future type of experiments failed with our 

model. The new codes generated from the output image is not 

error-free enough for our model to compensate. 

VI. DISCUSSION AND FUTURE WORK 

 In this final report, we designed our physical model 

as proof of concept and showed that, it can generate future 

frames for artificial 2D environment. The network while 

demonstrating prediction over the frames, we sadly note that 

the model is constrained into an artificially created very simple 

environment.  Even though it shows ability to transfer 

knowledge beyond its trained dataset, it does so only this 

environment. This might imply that our model will fail to 

transfer its knowledge over the real-life image sequences 

depicting physical interaction. The model still cannot create 

multi-frame predicted images, as it does not generate images 

with enough accuracy. Hence, the error over frames propagate 

over the network and result in images full of artifacts and 

eventual collapse of the physical state into nothingness.

  While we believe that this problem can be alleviated 

by creating deeper convolutional layers for encoding-

decoding network, the ability to generate real-life images from 

nearly real-world scene configurations seems slim. 

 

 
Fig 9 Sample failure cases for the multi-frame prediction 

 

Additionally, our network could not incorporate the 

aforementioned physical features such as gravity, friction and 

bounciness of objects. There were no stationary objects except 

for the balls themselves.  

Another interesting question we ask is whether we 

needed a recurrence predicting the future frames, as we know 

from our world, there is generally spatial continuity between 

frames which share temporal continuity i.e. consecutive 

frames have too many redundant information which can be 

used to identify them (which also substitutes for the hidden 

state). For this reason, using a feed-forward only convolutional 

network fed with temporally concatenated frames might 

perform better in terms of training. 

Fig 7b Multi-object image samples from the dataset 



Future directions of this project thus, include the use 

of non-recurrence as a future scene generation method, also 

testing the method on the real-scenery. 
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