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Part I

Electrostatics
1 Gravitation and Electromagnetism

Gravitation Electromagnetism
FG = G

m1m2

r2 FE = k
q1q2

r2
G = 6.7× 1011N m2 kg−2 8.99× 109N m2 C−2

2 Coulomb’s Law

Recitation 1 – Exercise 1.
Four identical charges q are placed in the corners of a square of length a. A
fifth charge Q is free to move along the straight line perpendicular to the
square plane and passing through its centre. When the charge Q is in the
same plane as the other charges, all the forces in the system cancel out.

1. Calculate Q for a given q and a.

2. Find the force
−−→
F (z) acting on the charge Q when it is at height z above

the square.

Recitation 1 – Solution 1.

q

q q

q

Q

6



Consider q on the top right corner of the square. The total force acting on
it is 0. Therefore

0 = kq2

a2 cos π4 + kq2

a2 cos π4 + kq2

2a2 + 2kQq
a2

∴ Q = −1 + 2
√

2
4 q

If Q is at a height z from the plane, the distance between each q and Q is

r =

√√√√z2 +
(
a√
2

)2

Therefore the force of each q on Q is kQq
r2 .

Due to symmetry, the components of the forces in the z direction will add
up, and all other components will cancel out.
Let the angle between the z direction and the line joining q and Q be ϕ.
Therefore, the net force is

F = 4kQq
r2 cosϕ

= 4kQq
r2

z

r

= 4 kQq

z2

(
1 + a2

2z2

)3/2

Recitation 1 – Exercise 2.
1. A wire of length 3 metre is charged with 2 C m−1. What is the wire’s

total charge?

Recitation 1 – Solution 2.

λ = Q

L
∴ Q = Lλ

= 6C
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Recitation 1 – Exercise 3.
A wire of length L has the following charge distribution: λ = λ0 cos πx

L
, where

x is the distance from the wire’s edge. What is the wire’s total charge?

Recitation 1 – Solution 3.

λ = dq
dx

∴
dq
dx = λ0 cos πx

L

∴ q =
L̂

0

λ0 cos πx
L

dx

= 0

Recitation 1 – Exercise 4.
A hollow sphere of radius R is uniformly charged with a charge Q. Calculate
the charge distribution on the surface of the sphere.

Recitation 1 – Solution 4.

σ = Q

A

= Q

4πR2

Recitation 1 – Exercise 5.
A straight thin wire is uniformly charged with distribution λ. A charge q is
positioned at distance y1 beneath the wire and r away form it.

1. Find the force acting on the charge q.

2. Show that when the charge is positioned in front of the centre of the
wire the ŷ component of the force is cancelled.

3. Calculate the force an infinite straight wire will exert on the charge q.

8



Recitation 1 – Solution 5.

y

z

y1y
L

q

r
R

Consider an elemental charge dQ of length dy, at distance y as shown. Let
the angle between the line joining dQ and q and the y direction be θ.

Fy = F cos θ
Fz = F sin θ

Let

a = L+ y1

∴ R =
√
r2 + (a− y)2

Therefore,

cos θ = a− y
R

sin θ = r

R

Therefore,

Fy = kq

L̂

0

λ dy
R2

(a− y)
R

= kqλ

L̂

0

dy(a− y)(
(a− y)2 + r2)3/2

= kqλ

(
1√

y12 + r2 −
1√

a2 + r2

)
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Fz = kq

L̂

0

λ dy
R2

r

R

= kqλ

L̂

0

r dy(
(a− y)2 + r2)3/2

= kqλ

r

(
a√

r2 + a2
− y1√

r2 + y12

)

When the charge is positioned above the centre of the wire,

y1 = −L2
∴ a = L

2

Therefore,

Fy = kqλ

(
1√

y12 + r2 −
1√

a2 + r2

)

= kqλ


1√

−L2

2
+ r2

− 1√
L

2

2
+ r2


= 0
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Fz = kqλ

r

(
a√

r2 + a2
− y1√

r2 + y12

)

= kqλ

r


L

2√
r2 + L

2

2
−

−L2√
r2 +−L2

2



= kqλ

r


L√

r2 + L

2

2



= kqλ

r


1√

1
4 +

(
r

L

)2



If the line is infinite, L→∞. Therefore

Fz = kqλ

r


1√

1
4 +

(
r

L

)2


= 2kqλ

r

3 Gauss’ Law

Recitation 2 – Exercise 2.

A ball of radius a is charged with distribution ρ = ρ0
r

a
. Find the electric

field everywhere.
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Recitation 2 – Solution 2.
Consider a spherical Gaussian surface of radius r.
If r ≤ a, the charge in the interior of the Gaussian surface is

q(r) =
rˆ

0

ρ0r

a
· 4πr2 dr

= ρ0

a
πr4

Therefore, by Gauss’ Law,

E · 4πr2 = q(r)
ε0

∴ E = ρ0πr
4

4πar2

= ρ0r
2

4aε0

If r ≥ a, the entire ball of charge is in the interior of the Gaussian surface.
Therefore,

Q = q(a)

= ρ0

a
· πa4

= ρ0πa
3

Therefore, by Gauss’ Law,

E · 4πr2 = Q

ε0

∴ E = Q

4πr2ε0

= ρ0a
3

4r2ε0

Therefore,

E =


ρ0r

2

4aε0
; r ≤ a

ρ0a
3

4r2ε
; r ≥ a

12



Recitation 2 – Exercise 3.
An infinitely long cylinder of radius a is charged with distribution ρ = ρ0

r

a
.

Find the electric field everywhere.

Recitation 2 – Solution 3.
Consider a infinite cylindrical Gaussian surface with radius r.
If r ≤ a, the charge in the interior of the Gaussian surface is

q(r) =
rˆ

0

ρ0r

a
πr2 dr

= 2πρ0Lr
3

3a
Therefore, by Gauss’ Law,

E · 2πrL = 2πρ0Lr
3

3aε0

∴ E = ρ0r
2

3aε0

If r ≥ a, the entire cylinder of charge is in the interior of the Gaussian surface.
Therefore,

Q = q(a)

= 2πρ0La
3

3a

= 2πρ0La
2

3
Therefore, by Gauss’ Law,

E · 2πrL = 2πρ0La
2

3ε0

∴ E = ρ0a
2

3ε0r

Therefore,

E =


ρ0r

2

3aε0
; r ≤ a

ρ0a
2

3ε0r
; r ≥ a
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Recitation 2 – Exercise 4.
Find the electric field due to a thin infinite plane of uniform charge distribu-
tion σ.

Recitation 2 – Solution 4.
Consider a cylindrical Gaussian surface, with ends of area A, as shown.

σ

The charge in the interior of the surface is

dq = Aσ

Therefore, by Gauss’ Law,

E1 · A1 + E2 · A2 = Aσ

ε0

∴ 2EA = Aσ

ε0

∴ E = σ

2ε0

4 Electric Potential

Recitation 3 – Exercise 2.
A system of four charges is constructed as shown.

−q

−q

+q

+q

a

a

14



Calculate the work needed to build this system.a)

What is the potential in the centre of the system?b)

Calculate the potential in each of the corners (calculate as if there is
no charge in the corner you are calculating for).

c)

Recitation 3 – Solution 2.
Let the positions of the charges be A, B, C, D.

−q

−q

+q

+q

a

a

The work done to bring the first charge from infinity to A is

WA = 0

The work done to bring the first charge from infinity to B is

WB = 1
4πε0

q2

a
√

2

Similarly for the other two charges.
Therefore,

W = 0 + q2

4
√

2πε0
+ −2q2

4πε0a
+
(
−2q2

4πε0a
+ q2

4
√

2πε0

)

= q2

2
√

2πε0
− q2

πε0a

a)

15



Vcentre = Vq + Vq + V−q + V−q

= q

4πε0

(
a√
2

) + q

4πε0

(
a√
2

) − q

4πε0

(
a√
2

) − q

4πε0

(
a√
2

)
= 0

b)

VA = 1
4πε0

−q
a

+ 1
4πε0

−q
a

+ 1
4πε0

q√
2a

VB = 1
4πε0

−q
a

+ 1
4πε0

−q
a

+ 1
4πε0

q√
2a

VC = 1
4πε0

q

a
+ 1

4πε0

q

a
+ 1

4πε0

−q√
2a

VD = 1
4πε0

q

a
+ 1

4πε0

q

a
+ 1

4πε0

−q√
2a

c)

Recitation 3 – Exercise 3.
A ring of radius R is charged with total charge Q.

Calculate the electric field in the centre of the ring.a)

Calculate the potential in the centre of the ring by integrating the
contributions of the infinitesimal charge elements of the ring.

b)

Recitation 3 – Solution 3.
Due to the symmetry of the ring, the field due to every elemental
charge dq will be cancelled out by the field due to a elemental charge
diametrically opposite to dq.
Therefore,

−→
E = 0

a)

16



dV = dq
4πε0R

∴ V = Q

4πε0R

b)

Recitation 3 – Exercise 4.

Calculate the potential resulting from a ball charged with constant volume
distribution ρ. Use the expression

ϕ(r2)− ϕ(r1) = −
r2ˆ
r1

E(r) dr

Repeat the calculation twice:

Set ϕ(r = R) = 0a)

Set ϕ(r =∞) = 0b)

Recitation 3 – Solution 4.
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Let ϕ(r =∞) = 0.

If r > R,

E = − dϕ
dr

∴ − dϕ
dr = Q

4πε0r2

∴
ˆ

dϕ =
rˆ
∞

Q

4πε0r2 dr

∴ ϕ(r)− ϕ(∞) = Q

4πε0r
− 0

∴ ϕ(r) = Q

4πε0r

If r < R,

E = q(r)
4πε0r2

=
ρ · 4

3πr
3

4πε0r2

= ρr

3ε0

Therefore

E = − dϕ
dr

∴
ˆ

dϕ =
R̂

r

ρ

3ε0
r dr

∴ ϕ(R)− ϕ(r) = ρ

6ε0

(
r2 −R2

)

∴ ϕ(r) = Q

4πε0R
+
ρ
(
R2 − r2

)
6ε0

= Q

8πε0R

(
3− r2

R2

)

a)

18



Let ϕ(r = R) = 0.

∴ ϕ(R)− ϕ(r) = ρ

6ε0

(
r2 −R2

)
∴ ϕ(r) = ρ

6ε0

(
R2 − r2

)
= Q

8πRε0

(
1− r2

R2

)

b)

Recitation 4 – Exercise 1.
A point charge Q is surrounded by a spherical grounded shell of radius R1.

1. What is the charge accumulated on the shell? Where did it come from?

2. The entire system is covered with another spherical shell of radius R2
and charged with q. What will be the charge accumulated on the
grounded shell?

Recitation 4 – Solution 1.
1. The charge accumulated on the shell comes from the ground.

Let the charge on the shell be Q1.
As the shell is grounded, the net potential on it must be zero.

ϕ = ϕ due to Q+ ϕ due to Q′

∴ 0 = Q

4πε0R1
+ Q1

4πε0R1

∴ Q1 = −Q

2. Let the charge on the grounded shell be Q2.

ϕ = ϕ due to Q+ ϕ due to Q2 + ϕ due to q

∴ 0 = Q

4πε0R1
+ Q2

4πε0R1
+ q

4πε0R2

∴ Q2 = Q− qR1

R2
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Recitation 4 – Exercise 3.
A point charge Q is set in the center (same distance from all corners) of a
perfect tetrahedron. The bottom face of the tetrahedron is uniformly charged
with charge density σ.

Recitation 4 – Solution 3.
1. Consider a spherical Gaussian surface passing through the vertices of the

tetrahedron.
Therefore by Gauss’ Law, the total flux passing through the sphere, due
to Q is

‚ −→
E · dA.

Hence, by symmetry, the flux through every surface of the tetrahedron,
due to Q is

Φ = 1
4

‹ −→
E · dA

= 1
4
Q

ε0

The flux on the bottom face due to the bottom face itself is zero. Therefore
the total flux through the bottom face is the flux due to Q only.

2. As the charge on Q and the bottom face of the tetrahedron are similar in
charge, the force between them is repulsive in nature. Hence, the force on
the bottom face is directed downwards.

3. Let the area of the bottom face

F = (σA)E
= σ(EA)

As Q is exactly above the centre of the bottom face, due to symmetry,‚ −→
E ·
−→dA = EA

∴ F = σ

(‹ −→
E ·
−→dA
)

= F

(
Q

4ε0

)
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Recitation 4 – Exercise 4.
The following electric field is given:

−→
E = αy2î+ α(2xy + z2)ĵ + 2αyzk̂

Calculate the potential at âČŮr = (x, y, z), set the potential at the origin to
be zero.

Recitation 4 – Solution 4.
Let ϕ(0, 0, 0) = 0.
Therefore,

Ex = − dϕ
dx

= αy2

∴ ϕ = −αxy2 + f1(y, z)

Ey = − dϕ
dy

= α(2xy + z2)
∴ ϕ = −αxy2 − αz2y + f1(x, z)

Ez = − dϕ
dz

= 2αyz
∴ ϕ = −αyz2 + f2(x, y)

Comparing the three expressions of ϕ,

ϕ = −αxy2 − αyz2 + c

As ϕ(0, 0, 0) = 0, c = 0.
Therefore,

ϕ = −αxy2 − αyz2

Recitation 4 – Exercise 5.
A thin rod of length L is charged with a uniform charge density λ is laid
along the x-axis.

1. Calculate the electric potential along the x-axis (where x > L)

2. Calculate the electric field along the x-axis (where x > L)
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3. A second identical thin rod is placed along the x-axis at distance L from
the edge of the first rod. Calculate the force due to left rod, acting on
the right one.

Recitation 4 – Solution 5.

1. Consider an elemental charge dq with length dx at a distance x from the
origin.
Therefore, the potential at a distance d from the origin is

dϕ = dq
4πε0(L+ d− x

∴
ˆ

dϕ =
L̂

0

λ dx
4πε0(L+ d− x)

∴ ϕ = λ

4πε0
ln
(
L+ d

d

)

2.

dE = dϕ
dr

∴ dE = dq
4πε0(L+ d− x)2

∴ E = λ

4πε0

dˆ

L+d

du
u2

= λ

4πε0

(
L

(L+ d)(d)

)

3. Consider an elemental charge dqwith length dx, on the second rod, at a
distance x from the end of the first rod.
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dF = λ

4πε0

(
L

(L+ x)(x)

)
dq

= λ

4πε0

(
L

(L+ x)(x)

)
λ dx

∴ F =
2Lˆ

L

λ2

4πε0

(
L

(L+ x)(x)

)
dx

= λ2

4πε0
ln x

L+ x

∣∣∣∣∣
2L

L

= λ2

4πε0

(
ln 2

3 − ln 1
2

)

= λ2

4πε0

(
ln 4

3

)

Recitation 5 – Exercise 1.
An electric dipole is comprised of two opposite charges q and −q positioned
at distance a from each other as shown.

x

y

+q

−q

a

1. Calculate the electric field along the y-axis.

2. What is the electric field when y >> a?

3. Repeat the previous sub-questions for points along the x-axis.
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Recitation 5 – Solution 1.
1.

−→
Ey = q

4πε0
(
y − a

2

)2 ĵ −
q

4πε0
(
y + a

2

)2 ĵ

= q

4πε0y2

(1− d

2y

)−2

−
(

1− d

2y

)−2
 ĵ

2. By the Binomial theorem, if x << 1, (1± x)n ≈ 1± nx).
Therefore, as y << d,(

1± d

2y

)2

=
(

1± 2d
2y

)

Therefore,

−→
Ey = q

4πε0y2

(
1 + d

y
− 1 + d

y

)
ĵ

=
2
(
qĵd

)
4πε0y2 · y

= 2−→p
4πε0y3

3. Let the distance between a point (x, 0) and each of the charges be r. Let
the angle between the x-axis and the line joining a point (x, 0) and +q or
−q be θ.
Therefore,

sin(θ) = d

2r

−→
Ex = −2 q

4πε0r2 sin(θ)ĵ

= − qd

4πε0r3 ĵ

= −
−→p

4πε0r3

If x >> d, r = d. Therefore,

−→
Ex = −

−→p
4πε0r3
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Recitation 5 – Exercise 2.
Calculate the following expressions using both spherical and Cartesian coor-
dinates

1. −→∇r = r̂

2. −→∇ 1
r

= − r̂
r2

Recitation 5 – Solution 2.
1. Using Cartesian coordinates,

−→r = xî+ yĵ + zk̂

∴ r =
√
x2 + y2 + z2

Therefore,
−→
∇(r) = î

∂r

∂x
+ ĵ

∂r

∂y
+ k̂

∂r

∂z

= î
∂
√
x2 + y2 + z2

∂x
+ ĵ

∂
√
x2 + y2 + z2

∂y
+ k̂

∂
√
x2 + y2 + z2

∂z

= î
x√

x2 + y2 + z2 + ĵ
y√

x2 + y2 + z2 + k̂
z√

x2 + y2 + z2

=
−→r
r

= r̂

Using spherical coordinates,

−→
∇(r) = r̂

�
�
���
1

∂r

∂r
+ θ̂

1
r �
�
���
0

∂r

∂θ
+ ϕ̂

1
r sin θ �

�
���
0

∂r

∂ϕ

= r̂

2. Using Cartesian coordinates,
−→
∇
(

1
r

)
= î

∂

∂x

(
1√

x2 + y2 + z2

)
+ ĵ

∂

∂y

(
1√

x2 + y2 + z2

)
+ k̂

∂

∂z

(
1√

x2 + y2 + z2

)

= −
î x

(x2 + y2 + z2)
3
2

+ ĵ
y

(x2 + y2 + z2)
3
2

+ k̂
z

(x2 + y2 + z2)
3
2


= −
−→r
r3

= − r̂

r2
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Using spherical coordinates,

−→
∇
(

1
r

)
= r̂

∂

∂r

(
1
r

)
+ θ̂

1
r�
�
�
��>

0
∂

∂θ

(
1
r

)
+ ϕ̂

1
r sin θ

�
�
�
�
�>

0
∂

∂ϕ

(
1
r

)

= r̂
−1
r2

= − r̂

r2

5 Differential Form of Gauss’ Law
Recitation 5 – Exercise 3.
The following potential is given in cylindrical coordinates

ϕ(r) =

−
ρ0r2

8ε0
− ρ0rR

4ε0
; r < R

−ρ0R2

2ε0
ln
(
r
R

)
+ c ; r > R

1. Find the constant c.

2. Calculate the electric field −→E everywhere.

3. Calculate the total charge, Q, inside a section with height H.

4. Calculate the charge density ρ using the differential Gauss’ Law.

5. Show that an integral on the density you found , i.e. ρ, gives the total
charge you calculated above.

Recitation 5 – Solution 3.
1. In cylindrical coordinates,

x = r cosϕ
y = r sinϕ
z = z

where ϕ is the angle between −→r and the x-axis.
Let

−ρ0r
2

8ε0
− ρ0rR

4ε0
= ϕ1(r)

−ρ0R
2

2ε0
ln
(
r

R

)
+ c = ϕ2(r)

26



Therefore,

ϕ(r) =

ϕ1(r) ; r < R

ϕ2(r) ; r > R

At the surface the values of ϕ1 and ϕ2 must be equal. Therefore,

ϕ1(R) = ϕ2(R)

∴ −ρ0R
2

8ε0
− ρ0R ·R

4ε0
= −ρ0R

2

2ε0
ln
(
R

R

)
+ c

∴ c = −3ρ0R
2

8ε0

2.

E1 = − dϕ1

dr

= ρ0(r +R)
4ε0

E2 = − dϕ2

dr

= ρ0R
2

2ε0r

3. Consider a cylindrical Gaussian surface with radius just larger than R and
height H.
Therefore by Gauss’ Law,

‹ −→
E d−→S = Q

ε0

∴
ρ0R

2

2ε0R
· 2πR2H = Q

ε0

∴ Q = ρ0πR
2H

ε0
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4. By the differential form of Gauss’ Law,
−→
∇ ·
−→
E = ρ

ε0
−→
∇ ·
−→
E = 1

r

∂

∂r
(rEr) + 1

r

∂

∂ϕ
(Eϕ) + ∂

∂z
(Ez)

∴
−→
∇ ·
−→
E1 = 1

r

∂

∂r

(
r
ρ0

4ε0
(r +R)

)
+ 1
r

∂

∂ϕ�
��*

0
(Eϕ) + ∂

∂z �
��*

0
(Ez)

∴
ρ

ε0
= ρ0

4ε0r
(2r +R)

∴ ρ = ρ0

4

(
2 + R

h

)

5.

Q =
R̂

0

ρ(r) · 2πrH dr

= 2ρ0πH

4

(
(2r)2

2 +Rr

)∣∣∣∣∣∣
R

0

= πR2Hρ0

Recitation 5 – Exercise 4.
1. Calculate the potential resulting from a solid ball of radius R charged

uniformly with constant distribution ρ.

2. Calculate the potential along the z-axis resulting from a solid cylinder
of radius a and height L charged uniformly with constant distribution
−ρ.

Recitation 5 – Solution 4.
1.

q(r) =

ρ0 · 4
3πr

3 ; r < R

ρ0 · 4
3πR

3 ; r > R
∴ ϕ(r) =


Q

4πε0r
; r > R

Q
8πε0R3 (3R2 − r2 ; r < R

2. Consider an elemental disk of charge d2 q at height z from the centre of
the cylinder.
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Therefore, the potential along the z-axis is

V (z′) =
r=aˆ

r=0

z=+L
2ˆ

z=−L2

d2 q

4πε0(z′ − z)

6 Capacitors
Recitation 6 – Exercise 1.
A plate capacitor which is made of square plates of sides a fell and a little
angle θ formed between its plates as shown. The smallest distance between
the plates is d. Calculate the new capacitance.

Recitation 6 – Solution 1.
The tilted capacitor plate can be considered to be approximately equivalent
to a parallel plate at height d+ a tan θ

2 , i.e. the tilted plate can be considered
to be made parallel to the other plate by pivoting it at the axis through its
midpoint.

The capacitance of the original capacitor is

C = Q

V

= ε0A

d
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Therefore, the capacitance of the tilted capacitor is

C ′ = ε0a
2(

d+ a tan θ
2

)
As θ << 1, tan θ ≈ θ.

∴ C ′ = ε0A

d

(
1 + aθ

2d

)−1

Alternatively, the tilted capacitor can be considered to be a capacitor with
capacitance varying with x.
Considering the origin to be at the left end of the lower plate, the equation
of the tilted plate is

y = d+mx

= d+ tan θx

As θ << 1,

y = d+ θx

Thererefore,

C =

Ĺ

0

ε0A
y

Ĺ

0
dx

=

Ĺ

0

ε0adx
d+θx

L

=
ε0A
θ

Ĺ

0

du
u

L

= ε0A

aθ
ln
(
d+ aθ

d

)

= ε0A

d

(aθ
d

)
− 1

2

(
aθ

d

)2

+ . . .


= ε0A

d
− εA

2
aθ

d2 + . . .
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Recitation 6 – Exercise 2.
A cylindrical capacitor is comprised of two concentric cylinders of length L
and radii a and b (where L >> a, b and a < b). The inner cylinder (radius a)
carries total charge Q and the outer cylinder (radius b) is grounded. Assume
vacuum inside the system and all bodies to be conducting.

1. Calculate the electric field everywhere.

2. Calculate the capacitance per unit length.

3. Calculate the energy density everywhere.

Recitation 6 – Solution 2.
1. As the bodies are condicting, the field inside the inner cylinder is 0.

Consider a cylindrical Gaussian surface with radius a < r < b. Therefore,
by Gauss’ Law,‹ −→

E ·
−→dS = Q

ε0

∴ E = Q

2πε0Lr

As the outer cylinder is grounded, and due to the charge on the inner
cylinder, the charge on its inner surface is −Q.
Therefore, by Gauss’s Law, the field outside must be 0.

2.

E = Q

2πε0Lr

∴ V =
bˆ

a

Q

2πε0Lr
dr

= Q

2πε0L
ln
(
b

a

)

∴ C = 2πε0L

ln
(
b
a

)
3.

U = CV 2

2

= 1
2

2πε0L

ln
(
b
a

)
 Q

2πε0L
ln
(
b

a

)2
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Therefore,

u = U

πL(b2 − a2)

7 Dielectric Materials

Recitation 6 – Exercise 3.
The capacitance of an empty plate capacitor (vacuum between the plates) is
C0. Half of the capacitor volume is filled with a dielectric material of constant
κ in two different ways as shown.

Calculate the new capacitance in the two cases.

Recitation 6 – Solution 3.
The arrangements are equivalent to connection of capacitors in series and
parallel respectively.
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≡

C1 C2

In this case,

C1 = ε0A
d
2

C2 = κε0A
d
2

Therefore,

Cequivalent = C1C2

C1 + C2

≡
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C1

C2

In this case,

C1 =
ε0

A
2
d

C2 =
κε0

A
2

d

Therefore,

Cequivalent = C1 + C2

Recitation 7 – Exercise 1.
A plate capacitor of area A and distance d is connected to a potential dif-
ference V . A dielectric material of constant ε = κeε0 is inserted into the
capacitor (while connected to the voltage source).

1. Calculate the new capacitance.

2. How did the free charge on the capacitor plates change in the process?

3. How did the energy stored in the capacitor change?

Now, all the dielectric material is removed. Afterward, the capacitor is dis-
connected from the voltage source. A dielectric material of constant ε = κeε0
is inserted into the capacitor (while disconnected from the voltage source).

4. Calculate the new capacitance.

5. How did the potential difference between the plates change?

6. How did the energy stored in the capacitor change?

For both cases, was the dielectric material attracted or repelled by the ca-
pacitor?
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Recitation 7 – Solution 1.
If there is no dielectric in the capacitor, the capacitance is

C0 = Q0

V0

= Q0

E0d

= σ0A
σ0
ε0
d

= ε0A

d

1. After the dielectric material is inserted,

C1 = Q1

V1

As the battery is connected, the voltage will remain constant. Therefore,
V0 = V1.

∴ C1 = Q1

V0

= σ1A
σ1
κeε0

d

= κeε0A

d
= κeC0

2.

C1 = Q1

V1

∴ κeC0 = Q1

V0

∴ Q1 = κeC0V0

= κeQ0

3.

U1 = 1
2C1V1

2

= 1
2κeC0V0

2

= κeU0
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4.

C2 = Q2

V2

As the battery is disconnected, the charge cannot flow out and must re-
main constant. Therefore, Q0 = Q1.

∴ C2 = Q0

V2

= σ2A
σ2
κeε0

d

= κeε0A

d
= κeC0

5.

C2 = Q2

V2

∴ κeC0 = Q0

V2

∴ V2 = Q0

κeC0

= V0

κe

6.

U2 = 1
2C2V2

2

= 1
2κeC0

V0
2

κe2

= U0

κe

As U1 > U0, the process of inserting the dielectric increases the potential.
Therefore, the dielectric is repelled by the plates.
As U2 < U0, the process of inserting the dielectric decreases the potential.
Therefore, the dielectric is attracted by the plates.

36



Part II

Electrodynamics
Recitation 7 – Exercise 2.
The current and current density are related by the relations

−→
j = ρ−→v
−→
k = σ−→v
I = λv

1. Calculate the current in a cylinder of radius R carrying uniform charge
density ρ moving in velocity v along the cylinder axis.

2. Calculate the current on a segment of length L in an infinite thin plane
carrying uniform charge density σ moving in velocity v along the plane
surface.

3. Calculate the current in a thin ring of radius R carrying uniform charge
distribution λ rotating around its axis with period T .

Recitation 7 – Solution 2.
1.

I =
¨
−→
j ·
−→dA

= ρvA

2.

I =
ˆ −→

k ·
−→dl

= σvl

3.

I = λv

= λωR

= λ · 2π
T
·R

= 2πλR
T
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Recitation 7 – Exercise 3.
A cylinder of length L and cross-section A is made of metallic material with
conductivity σ = σ0

L
x
. The bases of the cylinder are connected to potential

difference V .

1. Calculate the resistivity.

2. Calculate the current density in the cylinder.

3. Calculate the electric field inside the metal.

Recitation 7 – Solution 3.
1.

σ = σ0
L

x

∴ ρ = 1
σ

= x

σ0L

2. The cylinder can be considered to be a resistor made up of elemental disk
resistors in series.
Consider an elemental disk of thickness dx at a distance x from the origin.
Therefore, the resistance of the disk is

dR = ρ dx
A

= x dx
σ0LA

∴ R =
L̂

0

x dx
σ0LA

= L2

2σ0LA

= L

2σ0A
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Therefore,

V = IR

= I
L

2σ0A

∴ I = 2σ0AV

L

∴
I

A
= 2σ0V

L

∴ j = 2σ0V

L

3.

j = σE

∴
2σ0V

L
= σE

∴ E = 2V x
L2

Recitation 7 – Exercise 5.
A cylinder of length L and radius a (L >> a) is made of metallic mate-
rial with resistivity ρ = ρ0

r
a
. The bases of the cylinder are made of ideal

conductor and are connected to potential difference V .

1. Calculate the resistance.

2. Calculate the current in the cylinder.

3. Calculate the electric field, −→E , inside the metal.

4. Calculate the current density, −→j , and make sure that
´ −→
j ·
−→ds = I.

Recitation 7 – Solution 5.
1. The cylinder can be considered to be a resistor made up of elemental

cylindrical shell disk resistors in parallel.
Consider an elemental cylindrical shell of radius r thickness dr.
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Therefore, the resistance of the shell is

dR = ρL

2πr dr
= ρ0rL

2πar dr
= ρ0L

2πa dr
∴

1
R

=
ˆ 1

dR

=
aˆ

0

2πa dr
ρ0L

= 2πa2

ρ0L

∴ R = ρ0L

2πa2

2.

V = IR

∴ V = I
ρ0L

2πa2

∴ I = 2πa2V

ρ0L

3.

V = EL

∴ E = V

L

4.

j = I

A

=
2πa2V
ρ0L

πa2

= 2V
ρ0L
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Therefore,
ˆ
−→
j ·
−→ds =

aˆ

0

2V
ρ0L
· 2πr dr

= 2πa2V

ρ0L

= I

Therefore,
´ −→
j ·
−→ds = I.

Recitation 8 – Exercise 2.
A circuit is comprised of a voltage source (ε), three identical resistors (R1 =
R2 = R3 = R), a switch (S), and an empty capacitor (C). At t = 0 the
switch is closed and current starts to flow.

ε

R1

R2

R3

C

1. Calculate the current flowing in each of the resistors after a very short
time (t→ 0+).

2. Calculate the current flowing in each of the resistors after a very long
time (t→∞).

3. What is short/long time in this case?

Recitation 8 – Solution 2.

ε

R1 I1 + I2

R2

I1

R3

I2

C
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By KVL on the left loop,

ε− (I1 + I2)R− I1R = 0

By KVL on the larger loop,

ε− (I1 + I2)R− I2R−
Q

C
= 0

Therefore, solving,

3I2R + 2Q
C

= ε

∴ 3R dQ
dt + 2Q

C
= ε

∴
dQ
dt =

(
1

3R

)(
ε− 2Q

C

)

∴
dQ

Q− Cε
2

= − 1
3RC

2
dt

Let τ = 3RC
2 . Therefore,

∴
dQ

Q− Cε
2

= −1
τ

dt

∴

Q−Cε2ˆ

−Cε2

dQ
Q− Cε

2
=

tˆ

0

−1
τ

dt

∴ Q = Cε

2
(
1− e− t

τ

)
Therefore,

I2(t) = dQ
dt

= Cε

2

(
1
τ

)
e−

t
τ

= ε

3Re
− t
τ

Therefore,

I1 = ε− I2R

2R
= ε

2R −
I2

2
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1. If t→ 0+,

I2 = lim
t→0+

ε

3Re
− t
τ

= ε

3Re
0

= ε

3R

Therefore,

I1 = ε

2R −
I2

2
= ε

2R −
ε

3R
2

= ε

2R −
ε

6R
= ε

3R

Therefore,

I0 = I1 + I2

= ε

3R + ε

3R
= 2ε

3R

2. If t→∞,

I2 = lim
t→∞

ε

3Re
− t
τ

= ε

3R · 0

= 0

Therefore,

I1 = ε

2R −
I2

2
= ε

2R − 0

= ε

2R
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Therefore,

I0 = I1 + I2

= ε

2R + 0

= ε

2R

3. These short and long times are in comparison to the time constant of the
circuit, i.e. τ = 3RC

2 .
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Part III

Magnetism
1 Lorentz Force

Recitation 8 – Exercise 4.
A particle of mass m, charge q and velocity −→v is entering a region of a
constant uniform magnetic field −→B . The angle between the particle’s velocity
and the magnetic field is θ.

1. Describe the trajectory of the particle.

2. Calculate the cyclotron radius R.

3. Calculate the cyclotron frequency ω and period T .

4. Calculate the longitudinal distance the particle traverses in one time
period.

Recitation 8 – Solution 4.
1. The magnetic force acting on the particle is

−→
F = q−→v ×

−→
B

Therefore, the force is always perpendicular to the velocity.
Therefore, it changes the direction of the component of the velocity
perpendicular to the magnetic field, but not its magnitude.
However the component of the velocity in the direction of −→B is unaf-
fected by the force.
Therefore, the particle goes in a circle, due to the component of the ve-
locity perpendicular to −→B and in a straight line due to the component
of the velocity parallel to −→B . Hence, it goes in a helical path.

2. Let the direction of −→B be k̂.
−→
F = q−→v ×

−→
B

∴
−→
F = qv

(
ĵ sin θ + k̂ cos θ

)
× k̂B

= qvB sin θî
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Therefore,

mv2 sin2 θ

R
= qvB sin θ

∴ R = mv sin θ
qB

3.

ω = v sin θ
R

= v sin θ
mv sin θ
qB

= qB

m

Therefore,

T = 2π
ω

= 2π
qB
m

= 2πm
qB

4. The component of the velocity in the direction of −→B is responsible for
the longitudinal movement of the particle.
Therefore, the distance traversed by the particle in one time period is,

d = v cos θ · T

= v cos θ2πm
qB

= 2πmv cos θ
qB

2 Biot-Savart Law

46



Recitation 8 – Exercise 6.
Given an arc of radius R and angle α, the arc carries current I. Calculate
the magnetic field along the arc’s axis.

Recitation 8 – Solution 6.

dl = R dα

Let −→r be the vector joining dl and a point at a distance z on the axis.
Therefore,

−→dB = µ0

4π
I
−→dl × r̂
r2

Therefore, −→B must be perpendicular to both r̂ and −→dl .

dBz = µ0

4π
I dl
r2 cos θ

∴ Bz = µ0I

4π

αˆ

0

R dα
r2 cos θ

= µ0

4π
IR2 · α

(z2 +R2)
3
2

Recitation 9 – Exercise 1.
The electric potential is given in cylindrical coordinates by

V (r) =


A(a2 − r2) ; r < a

−Aa2 ln r
a

+ C ; a < r < b

−(Aa2 +B) ln r
b

+D ; b < r

where r is the distance from the z axis. The constants A 6= 0 and B 6= 0 are
also given.

1. Calculate the electric field everywhere.

2. Find the charge distributions that create this field.

3. Find the surface charge density at r = a and at r = 2b.

4. Write an expression for C and D as functions of the given parameters
a, b, A and B.
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Recitation 9 – Solution 1.
1. If r < a,

E = − ∂V
∂r

r̂

= − ∂

∂r

(
A(a2 − r2)

)
r̂

= 2Arr̂

If a < r < b,

E = − ∂V
∂r

r̂

= − ∂

∂r

(
−Aa2 ln r

a
+ C

)
r̂

= Aa2

r
r̂

If b < r,

E = − ∂V
∂r

r̂

= − ∂

∂r

(
−− (Aa2 +B) ln r

b
+D

)
r̂

= Aa2 +B

r
r̂

2.
−→
∇ ·
−→
E = ρ

ε0

∴
1
r

∂

∂r
(rEr) + 1

r

∂Eθ
∂θ

+ ∂Ez
∂z

= ρ

ε0

Therefore, if r < a,

−→
∇ ·
−→
E = 1

r

∂

∂r
(rE)

= 1
r

∂

∂r
(r · 2Ar)

∴
ρ

ε0
= 4A

∴ ρ = 4Aε0
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Therefore, if a < r < b,
−→
∇ ·
−→
E = 1

r

∂

∂r
(rE)

= 1
r

∂

∂r

(
r · Aa

2

r

)

∴
ρ

ε0
= 0

∴ ρ = 0

Therefore, if b < r,
−→
∇ ·
−→
E = 1

r

∂

∂r
(rE)

= 1
r

∂

∂r

(
r · Aa

2 +B

r

)

∴
ρ

ε0
= 0

∴ ρ = 0

3. Consider a cylindrical Gaussian surface with radius r and height H.
Therefore, by Gauss’ Law,ˆ −→

E ·
−→dS = Q

ε0

=
ˆ

(2Ar) dS

= (2Ar)(2πrH)

Therefore,

σ(r = a) = Q

2πaH
σ(r = b) = Q

2πbH

4. The potential must be continuous at r = a and r = b.
Therefore, comparing the expressions of the potential,

C = 0

D = Aa2 ln a
b
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3 Magnetic Dipole Moment
Recitation 9 – Exercise 3.
A thin disk of radius R carries surface charge density σ. The disk is rotating
around its axis at angular frequency ω in the x-y plane.

1. Calculate the disk’s magnetic dipole moment.

2. Calculate the magnetic field in the center of the disk.

Recitation 9 – Solution 3.
1. Consider an elemental ring of radius r and thickness dr. Therefore, the

current due to the rotating elemental ring is

dI = dq
2π · ω

= ω

2π dq

∴ I =
ˆ

ω

2π dq

= Qω

2π
The magnetic dipole moment of the disk is

−→µ = I
−→
A

∴ µ = Qω

2π A

= Qω

2π · πR
2

= QωR2

2
The magnetic dipole moment is directed perpendicular to the disk.

2. The magnetic field due to the moving elemental ring is

dB = µ0 dI
2r

∴ B = µ0ωσ

2

R̂

0

dr

= µ0ωσR

2
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4 Ampere’s Law
Recitation 9 – Exercise 4.
A hollow cylinder of inner radius a and outer radius b carries uniform current
density âČŮ−→j parallel to the cylinder’s axis. Calculate the magnetic field−→
B everywhere.

Recitation 9 – Solution 4.
Consider a closed, virtual Ampere loop of radius r.
Therefore, by Ampere’s law,ˆ −→

B ·
−→dl = µ0Ienclosed

If b < r,ˆ −→
B ·
−→dl = µ0Ienclosed

∴ B · 2πr = µ0jπ(b2 − a2)

∴ B = µ0j(b2 − a2)π
2πr

= µ0j(b2 − a2)
2r

If a < r < b,ˆ −→
B ·
−→dl = µ0Ienclosed

∴ B · 2πr = µ0jπ(r2 − a2)

∴ B = µ0j(r2 − a2)π
2πr

= µ0j(r2 − a2)
2r

If r < a,ˆ −→
B ·
−→dl = µ0Ienclosed

∴ B · 2πr = 0
∴ B = 0
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Recitation 9 – Exercise 6.
A uniform surface charge density σ is spread on the entire x-y plane. This
charge density is moving at constant velocity −→v = vx̂. Calculate the mag-
netic field everywhere.

Recitation 9 – Solution 6.
Consider a square virtual Ampere loop, directed anti-clockwise, as shown.

y

z

� � � � � � � � � � �

Let
−→
k = σ−→v

∴ I = kl

Therefore by Ampere’s Law,˛ −→
B ·
−→dl = µ0Ienclosed

∴ 2|B|l = µ0kl

∴ |B| = µ0k

2
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Therefore,

−→
B =

−
µ0k

2 ŷ ; z > 0
µ0k

2 ŷ ; z < 0

=

−
µ0σv

2 ŷ ; z > 0
µ0σv

2 ŷ ; z < 0

Recitation 10 – Exercise 3.
A parallel plate capacitor is made of two circular disks of radius a with
distance d between them. The capacitor carries charge ±Q0 on its plates. At
t = 0, the capacitor is connected to a resistor R.

1. Find the time dependent current I(t), in the circuit.

2. Find the surface current density −→k (r, t), on the plates of the capacitor.

The capacitor is charged again, with charge ±Q0 on its plates. At t = 0, the
capacitor is filled with a material of resistivity ρ0.

3. Find the time dependent current I(t), in the circuit.

4. Find the surface current density −→k (r, t), on the plates of the capacitor.

Recitation 10 – Solution 3.
1. As the capacitor is being discharged,

I = Q0

RC
e−

t
RC

2. The area of the plates of the capacitor is

A = πa2

The charge on an annular area with inner radius r and outer radius a is

q =
(
Q

πa2

)(
πa2 − πr2

)
= Q

(
1− r2

a2

)
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Therefore, the current through that annular area is

I = dq
dt

∴ k · 2πr = dq
dt

∴ 2πrk = dQ
dt

(
1− r2

a2

)

∴ k = I

2πr

(
1− r2

a2

)

3. The capacitor filled with the resisting material is equivalent to the capac-
itor connected to an equivalent resistor.
The resistance due to the resisting material is

R = ρ0
d

A

= ρ0d

πa2

Therefore,

I = Q0

RC
e−

t
RC

= Q0
ρ0d
πa2C

e
− t
ρ0d
πa2 C

= Q0πa
2

ρ0dC
e
πa2t
ρ0dC

4.

k = I

2πr

(
1− r2

a2

)

Recitation 10 – Exercise 4.
A square loop of sides a and mass m, carrying current I, is hung on the z
axis with frictionless hinges as shown.

54



x

y

�

⊗

B B B B B B B

The gravitational force is in the −ŷ direction. Calculate the magnetic
field −→B = Byŷ needed in order to maintain the square loop at angle θ with
the y-z plane.

Recitation 10 – Solution 4.

x

y

�

⊗
Fg

B B B B B B B

−→τg = −→r ×−→Fg

=
(
a

2

) (̂
i sin θ − ĵ cos θ

)
× (mg)

(
−ĵ
)

= a

2 ·mg sin θ
(
−k̂

)

55



−→τB = −→r ×−→FB
= a

(̂
i sin θ − ĵ cos θ

) (
IaB0î

)
= Ia2B cos θk̂

For the rod to be at equilibrium,

τg = τB

∴ B = mg

2Ia tan θ

Recitation 11 – Exercise 1.
A hollow cylinder of inner radius a and outer radius b is given. The following
magnetic field is measured

B =


0θ̂ ; r < a

C
(
r − a2

r

)
θ̂ ; a < r < b

A
r
θ̂ ; b < r

where r is the distance from the z axis. The constants A and C are also
given.
Calculate the current density −→j everywhere.

Recitation 11 – Solution 1.
By the differential form of Ampere’s Law,

−→
∇ ×

−→
B = µ0

−→
j

In cylindrical coordinates,

−→
∇ ×

−→
B =

(
1
r

∂Bz

∂θ
− ∂Bθ

∂z

)
r̂

+
(
∂Br

∂z
− ∂Bz

∂r

)
θ̂

+ 1
r

(
∂

∂r
(rBθ)−

∂Br

∂θ

)
ẑ

Therefore,
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If r < a,
−→
∇ ×

−→
B = 0

∴ µ0
−→
j = 0

∴
−→
j = 0

If a < r < b,

−→
∇ ×

−→
B = 1

r

∂

∂r
(rBθ)ẑ

∴ µ0ĵ = c

r

∂

∂r

(
r2 − a2

)
ẑ

= 2Cr
r
ẑ

= 2Cẑ

∴
−→
j = 2C

µ0

If b < r,

−→
∇ ×

−→
B = 1

r

∂

∂r
(rBθ)ẑ

∴ µ0ĵ = 1
r

∂

∂r

(
r
A

r

)
ẑ

= 0
∴ ĵ = 0

5 Faraday’s Law
Recitation 11 – Exercise 3.
A long rectangular wire loop of side b is made of thin ideal conductor. The far
end of the rectangular loop is not connected. A rod of mass m and resistance
R is placed on the loop, and can slide on it without friction. A uniform,
constant magnetic field −→B = B0ẑ, perpendicular to the plane of the loop, is
given. The velocity of the rod when it is placed at x = 0, the left end of the
loop, is −→v = v0x̂.
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Calculate the emf ε, the current I induced in the rectangular wire, the ve-
locity −→v , and the force −→F acting on the rod as a function of x.

Recitation 11 – Solution 3.

x

y

b

ΦB =
ˆ −→
V ·
−→dA

= BA

= Bbl

Therefore,

dΦB

dt = Bb
dl
dt

= B0bv

Therefore, by Faraday’s Law,

ε = − dΦB

dt
= −B0bv

Therefore,

ε = IR

∴ I = B0bv

R
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As the magnetic flux is increasing in the ẑ direction, i.e. inwards, by Lenz’s
Law, the current is directed clockwise.

−→
F = −Ibĵ ×B0k̂

= −IbB0î

∴ m
dv
dt = −IbB0

∴
dv
dt = −IbB0

m

= −B0
2b2v

mR

∴
dv
v

= −B0
2b2

mR

∴

vˆ
v0

dv
v

=
tˆ

0

−B0
2b2

mR

∴ ln
(
v

v0

)
= −B0

2b2

mR
t

∴ v = v0e
−B0

2b2
mR

t

Recitation 11 – Exercise 4.
A metallic rod of length R is rotating in the x-y plane, around one of its
ends, at angular velocity ω in an area with constant magnetic field −→B = B0x̂.
Calculate the integral

´ −→
E ·
−→dl between the edges of the reod in two ways.

1. Using integration over the Lorentz force acting on the charges in the
rod.

2. Using Faraday’s Law.

Recitation 11 – Solution 4.
1.

q−→v ×
−→
B = q

−→
E

∴ qvB = qE

∴ B0qωr = qE

∴ E = B0ωr
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Therefore,
aˆ

0

−→
E ·
−→dr =

aˆ

0

B0ωr dr

= B0ωa
2

2

2. The area swept by the rod is,

dA =
aˆ

0

rθ dr

= a2θ

2

By Faraday’s Law,

ε = − dΦB

dt
= − d

dt

(−→
B ·
−→
A
)

= −B0
dA
dt

= −B0ω
a2

2

Therefore,ˆ −→
E ·
−→dl = B0ωa

2

2

Recitation 12 – Exercise 2.
The magetic field inside an infinite long solenoid of radius a is −→B = Bz(t)ẑ.

1. Calculate the electric field everywhere.

2. Show that the differential and the integral forms of Faraday’s Law give
the same result.
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Recitation 12 – Solution 2.

B = Bz(t)
= µ0nI(t)

Consider a virtual Amperian loop of radius r, coaxial to the solenoid.
Therefore, the magnetic flux through it is,

ΦB =

µ0πr
2nI(t) ; r < a

µ0πa
2nI(t) ; r > a

Therefore,

dΦB

dt =

µ0πr
2nİ(t) ; r < a

µ0πa
2nİ(t) ; r > a

Therefore, by the integral form of Faraday’s Law,˛ −→
E ·
−→dl = − dΦB

dt

∴ E · 2πr =

−µ0πr
2nİ(t) ; r < a

−µ0πa
2nİ(t) ; r > a

∴ E =

−
µ0rn

2 İ(t) ; r < a

−µ0a2n
2r İ(t) ; r > a

By the differential form of Faraday’s Law,
−→
∇ ×

−→
E = − ∂

−→
B

∂t

∴

1
r

d
dr (rEθ)k̂ −

�
�
���

0
∂Er
∂θ

 k̂ = −µ0n
dI
dt k̂

∴
1
r

∂

∂r
(rEθ) = −µ0nİ(t)

∴ ∂(rEθ) = −µ0nİ(t)r∂r

Therefore,

rEθ =

−µ0nİ
r2

2 ; r < a

−µ0nİ
a2

2 ; r > a

∴ E =

−
µ0rn

2 İ(t) ; r < a

−µ0a2n
2r İ(t) ; r > a
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Recitation 12 – Exercise 5.
A short solenoid (length l and radius a, with n1 turns per unit length) lies
on the axis of a very long solenoid (radius b > a, n2 turns per unit length).
A current I1 flows in the short solenoid. What is the flux through the long
solenoid?

Recitation 12 – Solution 5.
If the current in the larger solenoid is I2 and the current in the smaller
solenoid is 0,

B = µ0n2I2

Therefore, the magnetic flux through the short solenoid is,

ΦB1 = n1lBA

= n1l · µ0n2I2 · πa2

As M = ΦB1
I2

= ΦB2
I1

,

ΦB2

I1
= ΦB1

I2

∴
ΦB2

I1
= n1l · µ0n2I2 · πa2

I2

= µ0πn1n2la
2

∴ ΦB2 = µ0πn1n2la
2I1

Therefore, the flux through the long solenoid is µ0πn1n2la
2I1.

Recitation 13 – Exercise 1.
A coaxial cable of length L is made out of two parallel, conductive, thin tubes
of radii a, b << L, each carrying current I in the opposite direction.

1. Calculate the magnetic field everywhere.

2. Calculate the cable’s inductance.

3. Calculate the magnetic energy density.

4. Using the energy density, calculate the cable’s inductance.
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Recitation 13 – Solution 1.
1. Consider a virtual Amperian loop of radius r, coaxial to the cable.

Therefore, by Ampere’s Law,

B =


0 ; r < a
µ0I
2πr ; a < r < b

0 ; b < r

2.

ΦB =
ˆ −→
B · d−→S

=
bˆ

a

µ0I

2πr ϕ̂ · l drϕ̂

= µ0Il

2π ln b

a

Therefore,

L = ε
dI
dt

=
dΦB

dt
dI
dt

= ΦB

I

= µ0l

2π ln b

a

∴
L

l
= µ0

2π ln b

a

3.

uB =
bˆ

a

B2

2µ0
· 2πr dr

4.

uB = 1
2LI

2

∴ L = µ0l

2π ln b

a
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Recitation 13 – Exercise 4.
A parallel plate capacitor with round plates is charged. The area of the
plates is A and the distance between them is d.

1. Show that during the charging of the capacitor the displacement current
ID(t) is equal to the charge current.

2. The capacitor is disconnected from the power source. The plates are
being pulled apart at constant velocity v. Calculate the displacement
current.

Recitation 13 – Solution 4.
1.

E = σ

ε0

= Q

ε0A

∴ ID = ε0AĖ = Q̇

= Iwire

= dQ
dt

2. Let the distance between the plates be x.

u = Q2

2C

= Q2x

2ε0A

Therefore,

F = du
dx

= Q2

2ε0A

= σ2A

2ε0

By Ampere’s Law,

ID = ε0µ0
d
dt

¨ −→
E · d−→S

= ε0µ0
dΦ
dt
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