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Part 1
Electrostatics

1 Gravitation and Electromagnetism

Gravitation Electromagnetism
Fo = Gmlgnz Q1(2]2

r r

G =6.7x10"Nm?kg? 8.99 x 10°Nm? C~2

2 Coulomb’s Law

Recitation 1 — Exercise 1.

Four identical charges ¢ are placed in the corners of a square of length a. A
fifth charge () is free to move along the straight line perpendicular to the
square plane and passing through its centre. When the charge () is in the
same plane as the other charges, all the forces in the system cancel out.

1. Calculate @ for a given ¢ and a.

2. Find the force F (z) acting on the charge () when it is at height z above

the square.

Recitation 1 — Solution 1.




Consider ¢ on the top right corner of the square. The total force acting on
it is 0. Therefore
k¢* © k¢® 1w k¢® 2kQq

0= sy Tz sy tont 0

If @ is at a height z from the plane, the distance between each ¢ and @ is

r= Z2+<\/§>
kQ

Therefore the force of each ¢ on @ is —~.
T
Due to symmetry, the components of the forces in the 2z direction will add
up, and all other components will cancel out.
Let the angle between the z direction and the line joining ¢ and @ be .

Therefore, the net force is

Recitation 1 — Exercise 2.
1. A wire of length 3 metre is charged with 2 Cm™!. What is the wire’s
total charge?

Recitation 1 — Solution 2.

- Q
A_L
5.Q =1L\
= 6C



Recitation 1 — Exercise 3.

A wire of length L has the following charge distribution: A = X\ cos H, where

x is the distance from the wire’s edge. What is the wire’s total charge?

Recitation 1 — Solution 3.

_dg
dx
d T
P —)\ocosf

L
'.q:/)\ocosﬁjdx
0
0

Recitation 1 — Exercise 4.

A hollow sphere of radius R is uniformly charged with a charge (). Calculate
the charge distribution on the surface of the sphere.

Recitation 1 — Solution 4.

T AnR?

Recitation 1 — Exercise 5.

A straight thin wire is uniformly charged with distribution A\. A charge ¢ is
positioned at distance y; beneath the wire and r away form it.

1. Find the force acting on the charge ¢.

2. Show that when the charge is positioned in front of the centre of the
wire the ¢ component of the force is cancelled.

3. Calculate the force an infinite straight wire will exert on the charge q.



Recitation 1 — Solution 5.

de
L0
7/ |
R .
7 T
4 I
|
|
I Y
b f———
| y n
L

Consider an elemental charge d@ of length dy, at distance y as shown. Let
the angle between the line joining dQ) and ¢ and the y direction be 6.

F, = Fcosf
F, = Fsinf
Let
a=L+ U1
SR=1\/r2+(a—y)?
Therefore,
a—y
0 —
cos I
-
o -
sin 7
Therefore,
Fady (a—y)
yla—y
v = kq/ R R
0




kg a B Y1
o WPt a2 VPt

When the charge is positioned above the centre of the wire,

Therefore,

1 1
F, = kq\ —
v <\/y12+7’2 \/a2+7°2>

1
L? L?
\/—2 +r2 \/2 +7"2
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:kq)\ 9 B )
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2 .~ 2, _~
\/r +2 \/7’—1— 5
kg L
T L2
2 .~
r+2
kg 1
o 1 r\?
i+ (1)

P kag\ 1
r 1 r\?
i+(7)
~ 2kgA
o

3 Gauss’ Law

Recitation 2 — Exercise 2.

A ball of radius a is charged with distribution p = pgi. Find the electric
a

field everywhere.
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Recitation 2 — Solution 2.

Consider a spherical Gaussian surface of radius r.
If » < a, the charge in the interior of the Gaussian surface is
r
q(r) = / T g dr
a
0
PO _ 4

= —7r
a

Therefore, by Gauss’ Law,

E - 4nr? = @
€o
_ porr

Arar?

. POT2

n 4@80

If » > a, the entire ball of charge is in the interior of the Gaussian surface.
Therefore,

Q = q(a)
e
a

= poma’

Therefore, by Gauss’ Law,

E - Anr? = Q
€0
Q
4d7r2eg
_ poa’
N 47”250
Therefore,
2
PoT . r<a
E = 4a€g
pPoa” >
aze =0

12



Recitation 2 — Exercise 3.

An infinitely long cylinder of radius a is charged with distribution p = pof.
a

Find the electric field everywhere.

Recitation 2 — Solution 3.
Consider a infinite cylindrical Gaussian surface with radius r.
If » < a, the charge in the interior of the Gaussian surface is

T

q(r) :/WWTQ dr
a
0

. 2Wp0LT3
N 3a

Therefore, by Gauss’ Law,

3
5. ompp - 2Pl
3&50

2
_ por
3@50

If r > a, the entire cylinder of charge is in the interior of the Gaussian surface.
Therefore,

Q= q(a)
__QWpOLa3
N 3a
__2Wp0L&2
3
Therefore, by Gauss’ Law,
27 po La’
E.onr], — ZTPoma
380
B=PT
350T
Therefore,
2
Por . r<a
E— 3(129
£o . r>a
350T
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Recitation 2 — Exercise 4.

Find the electric field due to a thin infinite plane of uniform charge distribu-
tion o.

Recitation 2 — Solution 4.
Consider a cylindrical Gaussian surface, with ends of area A, as shown.

—
-

The charge in the interior of the surface is
dg = Ao

Therefore, by Gauss’ Law,

Ey- A+ Ey- Ay = —

4 Electric Potential

Recitation 3 — Exercise 2.
A system of four charges is constructed as shown.

fb——a —
+q —q
o @ T
a
@ ® l
—q +q
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a) Calculate the work needed to build this system.
b) What is the potential in the centre of the system?

c¢) Calculate the potential in each of the corners (calculate as if there is
no charge in the corner you are calculating for).

Recitation 3 — Solution 2.

a) Let the positions of the charges be A, B, C, D.

f— a —I

° oqI
|

+q

@ L
—q +q

The work done to bring the first charge from infinity to A is
Wa=0

The work done to bring the first charge from infinity to B is

1 ¢
W =
B 4 €0 CL\/§
Similarly for the other two charges.
Therefore,

2 2 2
q —2q —2q q
W =0+ + + +
4 2mey  4Ameoa (47T€0a 4\/§7r50>
¢ ¢

- W 2re, e

2
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‘/centre = ‘/q + V;] + V*CI + V*q
q ¢ 4 g

Care (1) ameo () () e ()

=0

I —q 1 —¢q 1 q

Vi = — —
A drey a + dmey a dmreg v/ 2a
1 —q 1 —q 1 q
Vg = — — —
B dmeg a + dmeg a dmeg v/ 2a
1 q 1 ¢ 1 —q
Vo = - -
©7 drega + drega  4meg /2a
1 1 1 -
v q q q

= 4+ =
dmega  dmega  4meg /2a

Recitation 3 — Exercise 3.

A ring of radius R is charged with total charge Q.

a) Calculate the electric field in the centre of the ring.

b) Calculate the potential in the centre of the ring by integrating the
contributions of the infinitesimal charge elements of the ring.

Recitation 3 — Solution 3.

a) Due to the symmetry of the ring, the field due to every elemental
charge dg will be cancelled out by the field due to a elemental charge
diametrically opposite to dg.

Therefore,

E =0

16



dv

- 47T€0R

- 47T€0R

Recitation 3 — Exercise 4.

Calculate the potential resulting from a ball charged with constant volume
distribution p. Use the expression

T2

o(r2) — plr1) = — / E(r) dr

r1

Repeat the calculation twice:
a) Set o(r=R) =10

b) Set p(r =00) =0

Recitation 3 — Solution 4.

17



Ifr>R,
__de
- dr
_de @
dr  4megr?
[ Q
= [ ——d
/dgp 4drregr? "
o Q
o(r) — ¢(00) = 2
o Q
olr) = 4megr
Ifr <R,
g 4r)
drreqr?
4
0 §7W3
4rregr?
_pr
n 350
Therefore
d
g _d

6eo
Q_, r(B-r)
SO(T) N 47T80R 680
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Recitation 4 — Exercise 1.
A point charge @ is surrounded by a spherical grounded shell of radius R;.

1. What is the charge accumulated on the shell? Where did it come from?
2. The entire system is covered with another spherical shell of radius Ry

and charged with ¢q. What will be the charge accumulated on the
grounded shell?

Recitation 4 — Solution 1.

1. The charge accumulated on the shell comes from the ground.
Let the charge on the shell be Q.
As the shell is grounded, the net potential on it must be zero.

¢ = ¢ due to Q + ¢ due to Q'

Q@
47T€()R1 47T€0R1
SQ=-0Q

2. Let the charge on the grounded shell be Q5.

w = ¢ due to @ + ¢ due to Q2 + ¢ due to ¢
_ Q I Q2 n q
47T€0R1 47T€0R1 47T€0R2
ql

.'.szQ—?2
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Recitation 4 — Exercise 3.

A point charge @ is set in the center (same distance from all corners) of a
perfect tetrahedron. The bottom face of the tetrahedron is uniformly charged
with charge density o.

Recitation 4 — Solution 3.

1. Consider a spherical Gaussian surface passing through the vertices of the
tetrahedron.
Therefore by Gauss’ Law, the total flux passing through the sphere, due

to Q is ¢
Hence, by symmetry, the flux through every surface of the tetrahedron,
due to Q is

:i#ﬁ-m
1Q

The flux on the bottom face due to the bottom face itself is zero. Therefore
the total flux through the bottom face is the flux due to ) only.

2. As the charge on () and the bottom face of the tetrahedron are similar in
charge, the force between them is repulsive in nature. Hence, the force on
the bottom face is directed downwards.

3. Let the area of the bottom face

is exactly above the centre of the bottom face, due to symmetry,

As @
FE-dA=pA
F:a(#ﬁ-aﬁ>
- ()

20



Recitation 4 — Exercise 4.
The following electric field is given:

E = ay?i + o2zy + 22)) + 20yzk

Calculate the potential at ACUr = (x,y, 2), set the potential at the origin to
be zero.

Recitation 4 — Solution 4.
Let ©(0,0,0) = 0.

Therefore,
de
E,=——
dx
—_= ay2
L= —axy’ + fi(y,2)
de
E,=—-—
Y dy
= a(2zy + %)
o= —ary? — a2’y + fi(x, 2)
de
E, =——F/
dz
= 2ayz

L= —ay’ + fo(x,y)
Comparing the three expressions of ¢,
0 = —axy® —ayz® +c

As ¢(0,0,0) =0, ¢ = 0.
Therefore,

Y= —ozng — ay22
Recitation 4 — Exercise 5.

A thin rod of length L is charged with a uniform charge density A is laid
along the z-axis.

1. Calculate the electric potential along the z-axis (where x > L)

2. Calculate the electric field along the z-axis (where z > L)

21



3. A second identical thin rod is placed along the z-axis at distance L from
the edge of the first rod. Calculate the force due to left rod, acting on
the right one.

Recitation 4 — Solution 5.

1. Consider an elemental charge dg with length dz at a distance x from the
origin.
Therefore, the potential at a distance d from the origin is

_ dg
dreg(L+d—x
L

'/d _/ Adz
. e dreg(L +d — x)

0

o A (L+d
”80_471'80 d

dy

2.
dep
dE = —
dr
dg
FE =
dreg(L +d — x)?
d
4reg u?
L+d

a 4250 ((L +Ld)(d)>

3. Consider an elemental charge dgwith length dx, on the second rod, at a
distance x from the end of the first rod.

22



i = 4250 <(L +Lx)(m)> dq

A L
" dreg ((L+x)(x)> Ade

"'F:L/z;i; ((L +I;E)(:c)>dw

2L

A2 x

= 1
4dmeg nL+mL

A2 2 1
= In- —1In—
47T€0 3 2

A2 4
= In -
471'80 3

Recitation 5 — Exercise 1.

An electric dipole is comprised of two opposite charges ¢ and —¢q positioned
at distance a from each other as shown.

Y

® +q

1. Calculate the electric field along the y-axis.
2. What is the electric field when y >> a?

3. Repeat the previous sub-questions for points along the z-axis.

23



Recitation 5 — Solution 1.
1.

2. By the Binomial theorem, if z << 1, (1 £2)" = 1 £ nx).
Therefore, as y << d,

(5 - (3)
1+— | =(1+=
2y 2y

Therefore,
— q d d\ ~
E=—"1 _(1+5-1+°%
Y 47r€oy2< +y +y>‘7
_ 2(ajd)
 dmegy? -y
27

- 47r50y3

3. Let the distance between a point (x,0) and each of the charges be r. Let
the angle between the z-axis and the line joining a point (z,0) and +¢ or

—q be 6.
Therefore,
d
N
sin(0) 5
— .
E,=-2 in(d)y
4regr? sin(6);
__ 1 -
 dmeord
7
dregr3

If x >> d, r = d. Therefore,

= v

=L
’ degrs

24



Recitation 5 — Exercise 2.
Calculate the following expressions using both spherical and Cartesian coor-
dinates

1. ?r:f
2. Vi=—1

Recitation 5 — Solution 2.
1. Using Cartesian coordinates,

7:x%—|—y§+sz

Sor = Jrt oy 4 22
Therefore,
~0r A 0r A0
?(r) T r r

:Za +7 87y+ @
WNTTFTE D WETPETE 0TI PT 2
i 8xy + 7 ay + k Y

0z
A xz ~ Yy ~ Z
=1 + +k
/.7}2+y2+22 J /.7}2+y2+22 /$2+y2+22
_>
_ "
- T

I
=>

Using spherical coordinates,

y=rf i
a rsm@

2. Using Cartesian coordinates,

I
=

1 ~ 0 1 ~ 0 1
) =7 = B
€<T> Z(?x< Vi +y? + 22 +z2> < VaZ+y?+ 22 +22>+ 0z (x/x2+y2+22>
_l’_

3 3 ]% - 3
(:c2+y + 22)2 (2% 4 y? + 22)2

[N

A x
=— 1
(22 4+ 92 + 22)

25



Using spherical coordinates,

5 Differential Form of Gauss’ Law

Recitation 5 — Exercise 3.
The following potential is given in cylindrical coordinates

_por® _ porR :
Q(r) =1 B, Jo TR
—”SERO ln(%)+c ;o r>R

1. Find the constant c.
Calculate the electric field E everywhere.
Calculate the total charge, (), inside a section with height H.

Calculate the charge density p using the differential Gauss’ Law.

A

Show that an integral on the density you found , i.e. p, gives the total
charge you calculated above.

Recitation 5 — Solution 3.
1. In cylindrical coordinates,

T =T CoSp
Yy =rsingp
z2=2z

where ¢ is the angle between 7 and the z-axis.

Let
_por?porB (r)
860 450 1
poR? (r)
_ In(— —
2, n 7 + ¢ = po(r)

26



Therefore,

- - e1(r) ;3 r<R
olr) {@2(7‘) ; r>R

At the surface the values of ¢, and ¢, must be equal. Therefore,

¢1(R) = ¢2(R)
pol?  poR-R poR® R
= — =— In{—=)+c
8eg 460 2eq R
_3,00R2

880

3. Consider a cylindrical Gaussian surface with radius just larger than R and
height H.
Therefore by Gauss’ Law,

#Ed?:i

po 2 Q
-2rR°H = —
2€0R m €0
Q — ,007TR2H
€0

27



4. By the differential form of Gauss’ Law,

T R_L

0 19 0

VoE - ar UE)+ 5, (Be) + 5 (B2
;0—4'227“(27’—1-]%)
:T(Q—i—f)

R
Q= [ p(r) - 2xrHdr
/

_ 2pomH [ (2r)?
= ( 5 + Rr

= mR*H py

R

0

Recitation 5 — Exercise 4.

1. Calculate the potential resulting from a solid ball of radius R charged

uniformly with constant distribution p.

2. Calculate the potential along the z-axis resulting from a solid cylinder
of radius a and height L charged uniformly with constant distribution

_p‘

Recitation 5 — Solution 4.
1.

4.3 . Q
po-=xmre 5 r<R —
q(T)Z{ i L o(r) Z{“éj

5 L
po-xmR° ; r>R Fr— e

3 (3R%* — 1?2

2. Consider an elemental disk of charge ¢ at height z from the centre of

the cylinder.

28



Therefore, the potential along the z-axis is

r=q =13 dQ
/ q
V pu—
() / / dmeg(2' — 2)
r=0 z:—%

6 Capacitors

Recitation 6 — Exercise 1.

A plate capacitor which is made of square plates of sides a fell and a little
angle # formed between its plates as shown. The smallest distance between
the plates is d. Calculate the new capacitance.

Recitation 6 — Solution 1.

The tilted capacitor plate can be considered to be approximately equivalent

to a parallel plate at height d + ““;ne, i.e. the tilted plate can be considered

to be made parallel to the other plate by pivoting it at the axis through its
midpoint.

The capacitance of the original capacitor is

Q

V
_ o4

d

29



Therefore, the capacitance of the tilted capacitor is
£0a>
atan@
(d+ t5n0)
As 0 << 1, tanf =~ 0.

. A af !
(1, )

C' =

Alternatively, the tilted capacitor can be considered to be a capacitor with
capacitance varying with z.

Considering the origin to be at the left end of the lower plate, the equation
of the tilted plate is

y=d+mx
=d+ tanfx
As 0 << 1,
y=d+6x
Thererefore,
L
f@
y
_ 0
C= L
[ dx
0
£ cgad
i
_0
L

30



Recitation 6 — Exercise 2.

A cylindrical capacitor is comprised of two concentric cylinders of length L
and radii @ and b (where L >> a, b and a < b). The inner cylinder (radius a)
carries total charge () and the outer cylinder (radius b) is grounded. Assume
vacuum inside the system and all bodies to be conducting.

1. Calculate the electric field everywhere.
2. Calculate the capacitance per unit length.
3. Calculate the energy density everywhere.

Recitation 6 — Solution 2.

1. As the bodies are condicting, the field inside the inner cylinder is 0.
Consider a cylindrical Gaussian surface with radius a < r < b. Therefore,
by Gauss’ Law,

e -
OQ

- 2megLr

As the outer cylinder is grounded, and due to the charge on the inner
cylinder, the charge on its inner surface is —Q).
Therefore, by Gauss’s Law, the field outside must be 0.

-~ Q
 2meglLr
b
Q
2mweqLLr

= ¢ In 9
- 2meolL a
O — 27T80L

")

o2
2

2
_ 12meyL Q n b
 21n (g) 2meo L a

31
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Therefore,

7 Dielectric Materials

Recitation 6 — Exercise 3.

The capacitance of an empty plate capacitor (vacuum between the plates) is
Cpy. Half of the capacitor volume is filled with a dielectric material of constant
k in two different ways as shown.

Calculate the new capacitance in the two cases.

Recitation 6 — Solution 3.

The arrangements are equivalent to connection of capacitors in series and
parallel respectively.

32



In this case,

A
2
KkegA
Cy=—3
2
Therefore,

C1Cy
Ce uivalent —
duivalent Cy +Cy

33



i

In this case,

A
6 -
C, = %2
A
REQS
Cy= =72
Therefore,

C’equivaulent - C'1 + C12

Recitation 7 — Exercise 1.

A plate capacitor of area A and distance d is connected to a potential dif-
ference V. A dielectric material of constant ¢ = k.gg is inserted into the
capacitor (while connected to the voltage source).

1. Calculate the new capacitance.
2. How did the free charge on the capacitor plates change in the process?
3. How did the energy stored in the capacitor change?

Now, all the dielectric material is removed. Afterward, the capacitor is dis-
connected from the voltage source. A dielectric material of constant € = k.gg
is inserted into the capacitor (while disconnected from the voltage source).

4. Calculate the new capacitance.
5. How did the potential difference between the plates change?
6. How did the energy stored in the capacitor change?

For both cases, was the dielectric material attracted or repelled by the ca-
pacitor?

34



Recitation 7 — Solution 1.
If there is no dielectric in the capacitor, the capacitance is

_ o
-V
_ @
- Eud

UQA

g0
€0

. €0A
- d
1. After the dielectric material is inserted,

_ @
Vi

Co

i

As the battery is connected, the voltage will remain constant. Therefore,
Vo=V

_@
Vo
0'1A

g1
Ke€0

Cl

KeEoA

35



o2
Va

As the battery is disconnected, the charge cannot flow out and must re-

main constant. Therefore, Qg = Q1.

_
Va
O'2A

g2
Ke€0

IieéfoA
d
= 'LieCO

. OQ

fieCO = —

..‘/2:

1
Uy = SCoVy”

1 Vo?
R
Uy

Re

As Uy > Uy, the process of inserting the dielectric increases the potential.
Therefore, the dielectric is repelled by the plates.

As Uy < Uy, the process of inserting the dielectric decreases the potential.
Therefore, the dielectric is attracted by the plates.

36



Part 11
Electrodynamics

Recitation 7 — Exercise 2.
The current and current density are related by the relations

—

j=p7
* =07
I =)Xv

1. Calculate the current in a cylinder of radius R carrying uniform charge
density p moving in velocity v along the cylinder axis.

2. Calculate the current on a segment of length L in an infinite thin plane
carrying uniform charge density o moving in velocity v along the plane
surface.

3. Calculate the current in a thin ring of radius R carrying uniform charge
distribution A rotating around its axis with period T'.

Recitation 7 — Solution 2.

1.
1://7-574
= pvA

2.
_/?ﬁ
= ovl

3.
I =M
= \WwR

21

- -?-R
_27r)\R
T
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Recitation 7 — Exercise 3.

A cylinder of length L and cross-section A is made of metallic material with
conductivity o = 00% The bases of the cylinder are connected to potential
difference V.

1. Calculate the resistivity.
2. Calculate the current density in the cylinder.

3. Calculate the electric field inside the metal.

Recitation 7 — Solution 3.

1.

0O = 00—

X

1

p=—

o

. T
_O'0L

2. The cylinder can be considered to be a resistor made up of elemental disk
resistors in series.
Consider an elemental disk of thickness dx at a distance x from the origin.
Therefore, the resistance of the disk is

pdx
dR =
h A

B zdx

O'QLA
L

z dx
R p—
/UOLA

0
L2

= 20,LA

B L

- 20'0A
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Therefore,

V=IR
B L
N 20’014
QO'QAV
[ =
L
. i_ZUQV
AL
. ,_20’0‘/
So) = I
3.
j=0Fk
200V
" 02 =oF
2V
LE=

Recitation 7 — Exercise 5.

A cylinder of length L and radius a (L >> a) is made of metallic mate-
rial with resistivity p = poZ. The bases of the cylinder are made of ideal
conductor and are connected to potential difference V.

1. Calculate the resistance.

2. Calculate the current in the cylinder.
3. Calculate the electric field, B, inside the metal.

— - —
4. Calculate the current density, 7, and make sure that f 7 -ds=1.

Recitation 7 — Solution 5.

1. The cylinder can be considered to be a resistor made up of elemental
cylindrical shell disk resistors in parallel.
Consider an elemental cylindrical shell of radius r thickness dr.

39



Therefore, the resistance of the shell is

pL
dR =
2mr dr

porL

- 2mar dr
poL

- 2madr
1 1

‘7~ ) ar

B /a 2ma dr
poL

0
_ 2ma?
poL

2ma?

V=IR

poL
V=1
2ma?

B 2ma*V
poL

i
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Therefore,

2V
/] ds- L-27r7“d7’

Therefore, [ 7 -ds = 1.

Recitation 8 — Exercise 2.
A circuit is comprised of a voltage source (¢), three identical resistors (R; =

Ry = Ry = R), a switch (S5), and an empty capacitor (C'). At ¢t = 0 the
switch is closed and current starts to flow.
Ry

A" ol

Rs

T ¢

1. Calculate the current flowing in each of the resistors after a very short
time (t — 0%).

2. Calculate the current flowing in each of the resistors after a very long
time (t — o00).

3. What is short/long time in this case?

Recitation 8 — Solution 2.

Ry

L+ 1 )
Rs
€E— Rs L
I —— C
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By KVL on the left loop,
8—([1+IQ)R—]1R:0
By KVL on the larger loop,

8—(]1+]2)R—]2R—g:()
Therefore, solving,
2
3[2R+OQ:€
d@ | 2Q
"3R— 4+ — =
c 1 + C €
d@ _ (1) (. _2@
a ~\3r)\" " C
dQ 1
OQ_C:~ ImC dt
2 2
Let 7 = %. Therefore,
1
", dQC = ——dt
Q-5 7
Q- q t
1
[ ot
Q-Z v
_ce 0
2
Ce _t
Q=5 (1-¢7)
Therefore,
d@
I(t) = —
(D) =
Ce (1) t
= —_— —_ e T
2 \T
_ &
- 3R
Therefore,
5—]2R
I J—
! 2R
_ce _ b
2R 2
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1. Ift = 0™,

. gt
Io = lim gpe
_ieo
3R
_ &
3R
Therefore,
19 ]2
= — =
7 9r 2
_ ¢ &
2R 2
_ & _ &
2R 6R
_ &
" 3R
Therefore,
[0:[1+12
_i+ €
3R 3R
B 2e
3R
2. If t — o0,
. gt
I = lim e
€
— .0
3R
=0
Therefore,
19 [2
= - _ 2
DY D)
€
=—-0
2R
€
2R
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Therefore,

10:[1+12
3
=
R
3

T 2R

3. These short and long times are in comparison to the time constant of the
3R

circuit, i.e. 7= ==,
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Part 111
Magnetism

1 Lorentz Force

Recitation 8 — Exercise 4.

A particle of mass m, charge ¢ and velocity o s entering a region of a
constant uniform magnetic field B. The angle between the particle’s velocity
and the magnetic field is 6.

1. Describe the trajectory of the particle.
2. Calculate the cyclotron radius R.
3. Calculate the cyclotron frequency w and period 7'

4. Calculate the longitudinal distance the particle traverses in one time
period.

Recitation 8 — Solution 4.

1. The magnetic force acting on the particle is
F=qvxB

Therefore, the force is always perpendicular to the velocity.
Therefore, it changes the direction of the component of the velocity
perpendicular to the magnetic field, but not its magnitude.

However the component of the velocity in the direction of § is unaf-
fected by the force.
Therefore, the particle goes in a circle, due to the component of the ve-

locity perpendicular to 5 and in a straight line due to the component
of the velocity parallel to § Hence, it goes in a helical path.

2. Let the direction of B be k.

F=qvxB
? =qu (3811164—]%008«9) x kB
— quBsin i
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Therefore,

mu? sin? 0
— = qguBsinf
R v
_ musin 0
— E
3.
vsin 6
CL) =
R
vsin 6
= mu sin 0
qB
_ 4B
om
Therefore,
2"
w
21
— 4B
B 2mm
— e

4. The component of the velocity in the direction of § is responsible for
the longitudinal movement of the particle.
Therefore, the distance traversed by the particle in one time period is,

d=wvcosO-T
2mm

qB
_ 2mmucost

= B

=wvcosf

Biot-Savart Law
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Recitation 8 — Exercise 6.
Given an arc of radius R and angle «, the arc carries current /. Calculate
the magnetic field along the arc’s axis.

Recitation 8 — Solution 6.

dl = Rda

Let 7 be the vector joining dl/ and a point at a distance z on the axis.
Therefore,

= o [l X7

A7 r?

Therefore, § must be perpendicular to both 7 and 3

Recitation 9 — Exercise 1.
The electric potential is given in cylindrical coordinates by

A(a® —r?) cor<a
V(r)=4q—-Aa’InZ +C oa<r<b
—(Aa*+B)nZ+D ; b<r

where 7 is the distance from the 2z axis. The constants A # 0 and B # 0 are
also given.

1. Calculate the electric field everywhere.
2. Find the charge distributions that create this field.
3. Find the surface charge density at » = a and at r = 2b.

4. Write an expression for C' and D as functions of the given parameters
a, b, A and B.
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Recitation 9 — Solution 1.
1. If r <a,
ov .

p=-2"
87"T

= — ;ﬂ (A(a2 — 7“2)) 7

= 2Ar?7

Ifa<r<hb,

V.E =

0
o B+t

Therefore, if r < a,

10
10
L —ua
€0
. p:4A€Q
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Therefore, if a < r < b,

V.E - rE)

7’67“
10 Aa
_7"87"< 7")
)
€0
p=0

Therefore, if b < r,

V.E-=

7’87“
10 Aa2+B
7“87"( r )
Lo
€0
p=0

3. Consider a cylindrical Gaussian surface with radius r and height H.
Therefore, by Gauss’ Law,

EX
:/(QAr)dS

= (2Ar)(2mrH)
Therefore,
@
olr=a)= 2maH
Q

olr=b = n

4. The potential must be continuous at r = a and r = b.
Therefore, comparing the expressions of the potential,

C=0

D:Aazln%
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3 Magnetic Dipole Moment

Recitation 9 — Exercise 3.
A thin disk of radius R carries surface charge density o. The disk is rotating
around its axis at angular frequency w in the z-y plane.

1. Calculate the disk’s magnetic dipole moment.

2. Calculate the magnetic field in the center of the disk.

Recitation 9 — Solution 3.
1. Consider an elemental ring of radius r and thickness dr. Therefore, the
current due to the rotating elemental ring is

The magnetic dipole moment of the disk is

7 =14

 QwR?
2
The magnetic dipole moment is directed perpendicular to the disk.

2. The magnetic field due to the moving elemental ring is

po dl
90

R
MOWU /
0

_ powo R
2

dB =
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4 Ampere’s Law

Recitation 9 — Exercise 4.

A hollow cyoligder of inner radius a and outer radius b carries uniform current

density aCU j parallel to the cylinder’s axis. Calculate the magnetic field
everywhere.

Recitation 9 — Solution 4.
Consider a closed, virtual Ampere loop of radius r.
Therefore, by Ampere’s law,

/B : 3 = MOIenclosed

Ifo<r,

/B : 3 = H()Ienclosed

- B 2mr = pojn(b? — a?)

- B = MO](bz — CL2)7T

' 2mr
 poj(0* — a?)
N 2r

Ifa<r<hb,

/§ ’ 3 = M(]]enclosed

o B2 = pojn(r® — a?)
- B= NOj(TQ — CL2>7T

2mr
_ poj(r® —a?)
2r
If r <a,
_>
/§ -dl = /JJOIenclosed
B 2mr=0
S.B=0
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Recitation 9 — Exercise 6.

A uniform surface charge density o is spread on the entire xz-y plane. This
charge density is moving at constant velocity U = v2. Calculate the mag-
netic field everywhere.

Recitation 9 — Solution 6.
Consider a square virtual Ampere loop, directed anti-clockwise, as shown.

Let

oV
kl

%
o

Therefore by Ampere’s Law,

¢§ : 3 = ,UOIenclosed

- 2B|l = pokl
- |B| = “;’k
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Therefore,

B _ —mkg s 2>0
%kgj ;o o2<0

Recitation 10 — Exercise 3.

A parallel plate capacitor is made of two circular disks of radius a with
distance d between them. The capacitor carries charge £, on its plates. At
t = 0, the capacitor is connected to a resistor R.

1. Find the time dependent current /(t), in the circuit.
. T .
2. Find the surface current density k (r,t), on the plates of the capacitor.

The capacitor is charged again, with charge +Q)y on its plates. At t = 0, the
capacitor is filled with a material of resistivity po.

3. Find the time dependent current (), in the circuit.

_>
4. Find the surface current density k& (r,t), on the plates of the capacitor.

Recitation 10 — Solution 3.
1. As the capacitor is being discharged,

Qo __+
= —e

I RO RC

2. The area of the plates of the capacitor is
A = rd?

The charge on an annular area with inner radius r and outer radius a is
Ul <7ra2 — 7rr2)
Ta

7,2
of-3)
a
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Therefore, the current through that annular area is

dq

=1

dt

dq

k-2nr = —
wr dt

3. The capacitor filled with the resisting material is equivalent to the capac-
itor connected to an equivalent resistor.

The resistance due to the resisting material is

d

R:POA

_ Pod
ma?

Therefore,

[ = @6_ th

RC
QO B rod o

M(je

Ta?

Q07T(I2 a2t
= e rodC

podC

I r?
k=—|1——
27rr< a2>

Recitation 10 — Exercise 4.

A square loop of sides a and mass m, carrying current I, is hung on the z
axis with frictionless hinges as shown.

o4



B B B B B B B

The gravitational force is in the —§ direction. Calculate the magnetic
field b = B,g needed in order to maintain the square loop at angle ¢ with
the y-z plane.

Recitation 10 — Solution 4.

B B B B B B B

o =T X ?g
= (g) (2 sinf — j cos 9) x (mg) <_§)

~

= % - mg sin 6 (—k)

95



=7 x Fy
=a (5 sinf — j cos 0) (IaBOE)
= Ia®B cos 0k

For the rod to be at equilibrium,

Tg:TB

mg

. B=—"2=
. 2j_atame

Recitation 11 — Exercise 1.
A hollow cylinder of inner radius a and outer radius b is given. The following
magnetic field is measured

06 por<a
B = C’(r—%)é poa<r<b
éé o b<r

where 7 is the distance from the 2z axis. The constants A and C are also
given.
Calculate the current density j everywhere.

Recitation 11 — Solution 1.
By the differential form of Ampere’s Law,

€X§:M07

In cylindrical coordinates,

VxHB = (1‘932 aB@)f

r 00 0z

)A

Therefore,
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B =0
—
S g =0
T =0
Ifa<r<b,

10
B--2(B
?X r@r(r )2

e 0 [, 9
MOJ—;a*T(T —G)Z
_2Cr,
oy
=2C3%
- 2C
Y
Ho
Ifo<r,
10 R
?Xﬁ—;E(TBQ)Z
104y,
‘MO]_rar T?" :
=0
7=0

5 Faraday’s Law

Recitation 11 — Exercise 3.

A long rectangular wire loop of side b is made of thin ideal conductor. The far
end of the rectangular loop is not connected. A rod of mass m and resistance
R is placed on the loop, and can slide on it without friction. A uniform,
constant magnetic field B = ByZ, perpendicular to the plane of the loop, is
given. The velocity of the rod when it is placed at x = 0, the left end of the
loop, is U = vyZ.

57



Calculate the emf e, the current I induced in the rectangular wire, the ve-
locity ¥, and the force ? acting on the rod as a function of x.

Recitation 11 — Solution 3.

Oy = / V. dA
= BA
= Bbl
Therefore,
dogp dl
——B _ Bp—
dt dt
= BQb’U

Therefore, by Faraday’s Law,

ddp
€= ———
dt
= —BobU
Therefore,
e=1IR
BobU
S =
R
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As the magnetic flux is increasing in the 2 direction, i.e. inwards, by Lenz’s
Law, the current is directed clockwise.

F = —Ibj x By

= —IbBy
do
: — = —IbB
ST 0
' @ B _IbBD
“dt m
o _B()sz?}
a mR
. @ B _BOZbQ
v mR
v t
dv / B’V
v mR
Vo 0

v By?v?
In|{—)=-— t
' n(m) mR

_ B
.U =1pe mRE

Recitation 11 — Exercise 4.

A metallic rod of length R is rotating in the z-y plane, around one of its
ends, at angular velocity w in an area with constant magnetic field § = By.
Calculate the integral [ E . EZ between the edges of the reod in two ways.

1. Using integration over the Lorentz force acting on the charges in the
rod.

2. Using Faraday’s Law.

Recitation 11 — Solution 4.
1.

¢7 x B =qE

C.quB =qF
.. Boquwr = qF
. E = Bywr
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Therefore,

/ﬁ-(ﬁ"—/Bowrdr
0

0
Bywa?

2

2. The area swept by the rod is,

dA = /r@dr
0
a0

2

By Faraday’s Law,

.. _d%s
S dt
__d (3 . Z)
dt
dA
— —By —
O at
2
a
= —Bow?
Therefore,
2
/E . Ei _ Bywa
2

Recitation 12 — Exercise 2.

The magetic field inside an infinite long solenoid of radius a is ﬁ = B,(t)z.

1. Calculate the electric field everywhere.

2. Show that the differential and the integral forms of Faraday’s Law give
the same result.

60



Recitation 12 — Solution 2.
B = B.(t)
= ponl(t)

Consider a virtual Amperian loop of radius r, coaxial to the solenoid.
Therefore, the magnetic flux through it is,

{uom"QnI(t) ; r<a
Oy =

pora*nl(t) 5 r>a
Therefore,
d®p  fporrni(t) ; r<a
dt pora®nl(t) ; r>a

Therefore, by the integral form of Faraday’s Law,

yﬁﬁa:_@ff

dt
—poma’nl(t) ; r>a
B —“‘g:f(t) cor<a
—HERI(t) 5 r>a

By the differential form of Faraday’s Law

Y

S . 8

ot
0
- a8/ - dr .
—— (rkp)k — 5 k= —Hongk‘
10
~ rEg) = —ponl(t)

Therefore,
—uonjﬁ ;or<a
T’E@ = . 22
—ponls 5 r>a
DB —%I(t) cor<a
o ——“%f"f(t) or>a

61



Recitation 12 — Exercise 5.

A short solenoid (length [ and radius a, with ny turns per unit length) lies
on the axis of a very long solenoid (radius b > a, ny turns per unit length).
A current I; flows in the short solenoid. What is the flux through the long
solenoid?

Recitation 12 — Solution 5.
If the current in the larger solenoid is Iy and the current in the smaller
solenoid is 0,

B = ponals
Therefore, the magnetic flux through the short solenoid is,

dp, = mlBA

=nql - ponols - ra®

_ %1 _ ®Bo
As M = L = 252

Io I
Py B
I I
C ®py mal - ponals - wa?
L I
= uoﬂnlngla2

" (I)BQ = [Loﬂ'nlngl&zll
Therefore, the flux through the long solenoid is pgmninyla?l;.

Recitation 13 — Exercise 1.

A coaxial cable of length L is made out of two parallel, conductive, thin tubes
of radii a,b << L, each carrying current [ in the opposite direction.

1. Calculate the magnetic field everywhere.
2. Calculate the cable’s inductance.
3. Calculate the magnetic energy density.

4. Using the energy density, calculate the cable’s inductance.
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Recitation 13 — Solution 1.
1. Consider a virtual Amperian loop of radius r, coaxial to the cable.

Therefore, by Ampere’s Law,
0 ;or<a
B=gwml . g<r<b

2rr ’

0 ;ob<r

@B:/?dﬁ

b

I

:/Moga.mr@
27r

=-——In

poll | b
2T a

Therefore,
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Recitation 13 — Exercise 4.

A parallel plate capacitor with round plates is charged. The area of the
plates is A and the distance between them is d.

1. Show that during the charging of the capacitor the displacement current
Ip(t) is equal to the charge current.

2. The capacitor is disconnected from the power source. The plates are

being pulled apart at constant velocity v. Calculate the displacement
current.

Recitation 13 — Solution 4.

1.

o
EF=—
€0

@
E(]A
.. [D = EoAE - Q

=1 wire

_de
Cdt
2. Let the distance between the plates be .
QQ
T 20
_ Q%
N 2€0A

u

Therefore,

By Ampere’s Law,

d
]D:E()[I,th//ﬁ'dg
do

= Eolo

dt
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