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Part I

Representation of Numbers and
Errors
1 Floating Point Representation
Exercise 1.
Represent 9.75 in base 2.

Solution 1.

9.75 = 8 + 1 + 1
2 + 1

4
= 23 + 20 + 2−1 + 2−2

= 23
(
20 + 2−3 + 2−4 + 2−5

)
=
(
211 (1 + 0.001 + 0.0001 + 0.00001)

)
2

=
(
211 (1.00111)

)
2

Definition 1 (Double precision floating point representation). A floating
point representation which uses 64 bits for representation of a number is
called a double precision floating point representation.
The standard form of double precision representation is

a = ±︸︷︷︸
1 bit

1︸︷︷︸
1 bit

. · · ·︸︷︷︸
52 bits

×w
±︸︷︷︸

1 bit

· · ·︸︷︷︸
10 bits

Theorem 1 (Range of double precision floating point representation). The
largest number which can be represented with double precision floating point
representation is approximately 10307 and the smallest number which can be
represented is approximately 10−307.

Proof. As the exponent has 10 bits for representation,

−
(
1010 − 1

)
≤ exponent ≤

(
1010 − 1

)
Therefore,

−1023 ≤ exponent ≤ 1023
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Therefore, the smallest number, in terms of absolute value, which can be
represented, is

1. 0 · · · 0︸ ︷︷ ︸
52 bits

×2−1024 ≈ 10−307

Therefore, the smallest number which can be represented is approximately
10−307, and the largest number which can be represented is approximately
10307.

Definition 2 (Overflow). If a result is larger than the largest number which
can be represented, it is called overflow.

Definition 3 (Underflow). If a result is smaller than the smallest number
which can be represented, it is called underflow.

Definition 4 (Least significant digit).

1 = 1. 0 · · · 0︸ ︷︷ ︸
52 zeros

×20

Let 1ε be the smallest number larger than 1, which can be represented in
double precision floating point representation.
Therefore,

1 = 1. 0 · · · 0︸ ︷︷ ︸
51 zeros

1× 20

= 1 + 2−52

≈ 1 + 2× 10−16

Therefore,

1− 1ε = 2−52

≈ 2× 10−16

This number is called the least significant digit, or the machine precision. It
is the maximum possible error in representation. It is represented by ε.

Definition 5 (Error). Let the DPFP representation of a number x be x̃.
The absolute error in representation is defined as

absolute error = |x− x̃|
= 0.0 · · · 01× 2exponent
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The relative error in representation is defined as

δ = |x− x̃|
x

= 0.0 · · · 01
< ε

The maximum error, 2−52 ≈ 2× 10−16, is called the machine precision.
In general,

x̃ ?̃ ỹ = (x ? y) (1 + δ)

where δ is the relative error, ε is the machine precision, δ < ε, and ? is an
operator.

1.1 Loss of Significant Digits in Addition and Subtrac-
tion

Exercise 2.
Represent π + 1

30 in base 10 with 4 digits.

Solution 2.

π ≈ 3.14159

Approximating by ignoring the last digits,

π̃ = 3.141

Similarly,

1̃
30 = 3.333× 10−2

Therefore, adding,

π̃ + 1̃
30 = 3.141 + 0.03333

= 3.174
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Therefore,

δ =

∣∣∣∣∣∣∣∣∣
(
π̃ + 1̃

30

)
−
(
π + 1

30

)
π + 1

30

∣∣∣∣∣∣∣∣∣
= 0.0003

Therefore, δ < ε = 0.001

Exercise 3.
Given

a = 1.435234
b = 1.429111

Find the relative error.

Solution 3.

a = 1.435234
b = 1.429111

Therefore,
a− b = 0.0061234

Approximating by ignoring the last digits,
ã = 1.435
b̃ = 1.429

Therefore,
ã− b̃ = 0.006

Therefore,

δ =

∣∣∣∣∣∣∣
(a− b)−

(
ã− b̃

)
a− b

∣∣∣∣∣∣∣
Therefore,

δ > 10−3

∴ δ > ε
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Exercise 4.
Solve

x2 + 108x+ 1 = 0

Solution 4.

x = −108 ±
√

1016 − 4
2

Therefore,
x− ≈ −108

Therefore, by Vietta Rules,

x1x2 = c

a

x1 + x2 = − b
a

Therefore,
x+x− = 1

∴ x+ = 1
x−

≈ −10−8

In MATLAB, this can be executed as x = roots([1,10ˆ8,1])
This gives the result

x+ = −7.45× 10−9

Therefore, the absolute error is

|x̃− x| =
∣∣∣∣−7.45× 10−9 −

(
−10−8

)∣∣∣∣
= 2.55× 10−9

Therefore,

δ =
∣∣∣∣∣ x̃− xx

∣∣∣∣∣
=
∣∣∣∣∣2.55× 10−9

10−8

∣∣∣∣∣
= 0.255
= 25%
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The algorithm used by MATLAB is
if b ≥ 0 then

x1 = −b−
√
b2−4ac

2a
x2 = x

ax1
else

x2 = −b+
√
b2−4ac

2a
x1 = c

ax2
end if

This is done to avoid subtraction of numbers close to each other, and hence
avoid the possible error.

10



Part II

Approximation of Functions
1 Series of Approximations

1.1 Order of Convergence

Definition 6. Let {αn}∞n=1 be a series. {αn} is said to converge to α, denoted
as αn → α, if ∀ε > 0, ε ∈ R, ∃n0(ε) ∈ N, such that ∀n ∈ N, n > n0(ε),
|αn − α| < ε.

Usually, the series {αn} is compared to a simpler series such as 1
n
, 1
nβ
, . . . .

Definition 7. αn is said to be “big-O” of βn, and is said to behave like βn,
if ∃k ∈ R, k > 0, ∃n0 ∈ N, n0 > 0, such that ∀n > n0,

|αn| ≤ k|βn|

It is denoted as

αn = O(βn)

Definition 8. αn is said to be “small-O” of βn if

lim
n→∞

αn
βn

= 0

It is denoted as

αn = o(βn)

Exercise 5.
Find the order of convergence of

αn = 2n3 + 3n2 + 4n+ 5
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Solution 5.

αn = 2n3 + 3n2 + 4n+ 5
≤ (2 + 3 + 4 + 5)n3

∴ αn ≤ 14n3

Therefore, comparing to the standard form,

k = 14
βn = n3

Therefore, as ∀n ≥ 1, |an| ≤ 14|βn|,

αn = O(βn)

Also,

lim
n→∞

αn
βn

= lim
n→∞

2n3 + 2n2 + 4n+ 5
n3

= 2

Therefore, as the limits is not zero,

αn 6= o(βn)

However, ∀δ > 0,

αn = o
(
n3+δ

)

2 Representation of Polynomials

2.1 Power series
Definition 9 (Power series representation of polynomials).

Pn(x) = a0 + a1x+ · · ·+ anx
n

This representation may lead to loss of significant digits.
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Exercise 6.
Let P (x) represent a straight line.

P (6000) = 1
3

P (6001) = −2
3

If only 5 decimal digits are used, show that there is a loss of significant digits,
if the power series representation of the polynomial is used.

Solution 6.
P (x) represents a straight line. Therefore,

P (x) = ax+ b

Therefore,

6000a+ b = 1
3

6001a+ b = −2
3

Therefore,(
6000 1
6001 1

)(
a
b

)
=
(

1
3
−2

3

)

∴

(
a
b

)

= 1
|A|

(
1 −1

−6001 6000

)(
1
3
−2

3

)

= −
(

1
−6000.3

)

=
(
−1

6000.3

)

Therefore,

a = −1
b = 6000.3

Therefore,

P (x) = −x+ 6000.3
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Substituting 6000 and 6001 in this expression,

P (6000) = 0.3
P (6001) = 0.7

However, the most accurate values of P (6000) and P (6001), using 5 decimal
digits only, should be

P (6000) = 0.33333
P (6001) = −0.66666

Therefore, there is a loss of significant digits.

2.2 Shifted Power Series
Definition 10 (Shifted power series representation of polynomials).

Pn(x) = a0 + a1(x− c) + · · ·+ an(x− c)n

This representation is a power series shifted by c. Hence, this representa-
tion does not lead to loss of significant digits.
Exercise 7.
Let P (x) be a straight line.

P (6000) = 1
3

P (6001) = −2
3

If only 5 decimal digits are used, show that there is no loss of significant
digits, if the shifted power series representation of the polynomial is used,
with c = 6000.

Solution 7.
P (x) represents a straight line. Therefore,

P (x) = a(x− 6000) + b

Therefore,

b = 1
3

a+ b = −0.66666
∴ a = −0.99999
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Therefore,

P (x) = −0.99999(x− 6000) + 0.33333

Substituting 6000 and 6001 in this expression,

P (6000) = 0.33333
P (6001) = −0.66666

Therefore, there is no loss of significant digits, as the values of P (6000) and
P (6001) are the most accurate values possible, using 5 decimal digits.

2.3 Newton’s Form
Definition 11 (Newton’s form of representation of polynomials).

Pn(x) = a0 + a1(x− c1) + · · ·+ an(x− c1) . . . (x− cn)

The number of multiplications needed to calculate Pn(x) is
n∑
i=1

i = n(n+ 1)
2

The number of additions or subtractions needed to calculate Pn(x) is
n∑
i=1

i+ n = n(n+ 1)
2 + n

Therefore, the total number of operations needed to calculate Pn(x) is O(n2).

2.4 Nested Newton’s Form
Definition 12 (Nested Newton’s form of representation of polynomials).

Pn(x) = a0 + (x− c1)
(
a1 + (x− c2)

(
a2 + (x− c3) (. . . )

))
The number of multiplications needed to calculate Pn(x) is

n∑
i=1

1 = n

The number of additions or subtractions needed to calculate Pn(x) is
n∑
i=1

2 = 2n

Therefore, the total number of operations needed to calculate Pn(x) is big-O
of O(n).
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2.5 Properties of Polynomials
Theorem 2. For a polynomial in shifted power series form,

Pn(x) = Pn(c) + (x− c)qn−1(x)

Proof.

Pn(x) = a0 + a1(x− c) + · · ·+ an(x− c)n

= a0 + (x− c)
(
a1 + a2(x− 2) + · · ·+ an(x− c)n−1

)
= a0 + (x− c)qn−1(x)
= Pn(c) + (x− c)qn−1(x)

Theorem 3. If c is a root of Pn(x), i.e., if

Pn(c) = 0

then

Pn(x) = (x− c)qn−1(x)

If c1 6= c2 are roots of Pn(x), then

Pn(x) = (x− c1)(x− c2)rn−2(x)

Similarly, if Pn(x) has n different roots, then

Pn(x) = A(x− c1) . . . (x− cn)

where A ∈ R.
If Pn(x) has n+ 1 different roots, then

Pn(x) = A(x− c1) . . . (x− cn)(x− cn+1)

where A = 0.

Theorem 4. If p(x) and q(x) are polynomials of degree at most n, that satisfy

p(xi) = f(xi)
q(xi) = f(xi)

for i ∈ {0, . . . , n}, then

pn(x) ≡ qn(x)

This means that there exists a unique polynomial with degree n which passes
through n+ 1 points, i.e. n+ 1 points define a unique n degree polynomial.
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Proof. Let

dn(x) = pn(x)− qn(x)

Therefore, dn(x) is a polynomial of degree at most n, which has n+ 1 roots.
Therefore,

dn(x) ≡ 0

Therefore,

pn(x) ≡ qn(x)

3 Interpolation
Theorem 5 (Weierstrass Approximation Theorem). Let f(x) ∈ C[a, b], i.e.
it is continuous on [a, b]. Let ε > 0. Then there exists a polynomial P (x)
defined on [a, b], such that ∀x ∈ [a, b],∣∣f(x)− P (x)

∣∣ < ε

Definition 13 (Interpolating polynomial). p(x) is said to be the interpolating
polynomial of f(x), if for all sample points xi,

f(xi) = p(xi)

Theorem 6. Let f(x) such that ∀i ∈ {0, . . . , n},

f(xi) = yi

Then, there exists a unique polynomial p(x) of degree at most n, which
interpolates f(x) at all sample points xi.

3.1 Direct Method
Definition 14 (Van der Monde matrix). Let

p(x) =
n∑
i=0

aix
i

17



Let

f(xi) = yi

Therefore, as

p(xi) = f(xi)

the constraints are

a0 + a1x0 + · · ·+ anx0
n = y0

a1 + a1x1 + · · ·+ anx1
n = y1
...

an + a1xn + · · ·+ anxn
n = yn

Therefore,

1 x0 x0
2 . . . x0

n

1 x1 x1
2 . . . x1

n

1 x2 x2
2 . . . x2

n

... ... ... ...
1 xn xn

2 . . . xn
n





a0
a1
a2
...
an

 =



y0
y1
y2
...
yn


The matrix

V =



1 x0 x0
2 . . . x0

n

1 x1 x1
2 . . . x1

n

1 x2 x2
2 . . . x2

n

... ... ... ...
1 xn xn

2 . . . xn
n


is called the Van der Monde matrix.

Theorem 7. The Van der Monde matrix is invertible, and hence there exists a
unique matrix of coefficients a0, . . . , an, and hence the interpolating polynomial
p(x) is unique.

3.2 Lagrange’s Interpolation
Definition 15 (Lagrange polynomials). Let

Lk(x) =
n∏

i=0;i 6=k
(x− xi)
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Therefore,

Lk(xi) =

0 ; i 6= k

1 ; i = k

Let

lk(x) = Lk(x)
Lk(xk)

Therefore,

lk(xi) =

0 ; i 6= k

1 ; i = k

The polynomials li(x) are called Lagrange polynomials.

Theorem 8. Let

pn(x) =
n∑
i=0

f(xi)li(x)

where li(x) are Lagrange polynomials.
Then, pn(x) is the interpolating polynomial of f(x).

Exercise 8.
Which polynomial of degree 2 interpolates the below data?

x f(x)
1 1
2 3
3 7

Solution 8.

Lk(x) =
n∏

i=0;i 6=k
(x− xi)

Therefore,

L1(x) = (x− 2)(x− 3)
L2(x) = (x− 1)(x− 3)
L3(x) = (x− 1)(x− 2)
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Therefore,

L1(1) = (1− 2)(1− 3)
= 2

L2(2) = (2− 1)(2− 3)
= −1

L3(3) = (3− 1)(3− 2)
= 2

Therefore,

lk(x) = Lk(x)
Lk(xk)

Therefore,

l1(x) = L1(x)
L1(1)

= 1
2(x− 2)(x− 3)

l2(x) = L2(x)
L2(1)

= −(x− 1)(x− 3)

l3(x) = L3(x)
L3(1)

= 1
2(x− 1)(x− 2)

Therefore,

p2(x) =
∑

f(xi)li(x)

= 1
2(x− 2)(x− 3)− 3(x− 1)(x− 3) + 7

2(x− 1)(x− 2)

Exercise 9.
Given

k(z) =

π
2ˆ

0

dx√
1− (sin z)2(sin x)2
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and

k(1) = 1.5709
k(4) = 1.5727
k(6) = 1.5751

approximate k(3.5).

Solution 9.

lk(x) =

n∏
i=0;i 6=k

(x− xi)
n∏

i=0;i 6=k
(xk − xi)

Therefore,

l1(x) = (x− 4)(x− 6)
(1− 4)(1− 6)

l4(x) = (x− 1)(x− 6)
(4− 1)(4− 6)

l6(x) = (x− 1)(x− 4)
(6− 1)(6− 4)

Therefore,

l1(3.5) = (3.5− 4)(3.5− 6)
(1− 4)(1− 6)

= 0.08333

l4(3.5) = (3.5− 1)(3.5− 6)
(4− 1)(4− 6)

= 1.04167

l6(3.5) = (3.5− 1)(3.5− 4)
(6− 1)(6− 4)

= −0.125

Therefore,

p2(x) =
∑

f(xi)lk(x)
∴ p2(3.5) =

∑
f(x1)lk(3.5)

= (1.5709)(0.08333) + (1.5727)(1.04167) + (1.5751)(−0.125)
= 1.57225
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3.3 Hermite Polynomials
Definition 16. Let the given data be of the form

(
xi, f(xi), f ′(xi)

)
, where

i = 0, . . . , n.
H2n+1 is called the Hermite polynomial of f(x).
For H2n+1 to be the interpolation polynomial of f(x), the constraints are

H2n+1(xi) = f(xi)
H ′2n+1(xi) = f ′(xi)

Therefore, the number of constraints are 2n+ 2.
Hence, the polynomial is of degree at most 2n+ 1.

Theorem 9. Let

H2n+1(x) =
n∑
i=0

f(xi)ψn,i(x) +
n∑
i=0

f ′(xi)ϕn,i(x)

Let

δij =

0 ; i 6= j

1 ; i = j

If the polynomials ψ and ϕ satisfy

ψn,i(xj) = δij

ψn,i
′(xj) = 0

ϕn,i(xj) = 0
ϕ′n,i

′(xj) = δij

then the polynomial H2n+1 is the interpolation polynomial of f(x).

3.4 Newton’s Interpolation
Definition 17 (Newton’s polynomial). The polynomial

pn(x) =
n∑
i=0

Ai
i−1∏
j=0

(x− xj)

is called Newton’s polynomial.
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Theorem 10. If pk(x), constructed based on x1, . . . , xk is known, then
pk+1(x), based on x1, . . . , xk+1 can be constructed as

pk+1(x) = pk(x) + Ak+1(x− x0) . . . (x− xk)

Proof. For i = 0, . . . , k,

pk+1(xi) = pk(xi) + Ak+1

k∏
j=0

(xi − xj)

= pk(xi) + 0 ∀i = 0, . . . , k,
(xi − xi) = 0.
Therefore, if i = j,
(xi − xj) = 0.
Therefore,∏

(xi − xj) = 0

For i = k + 1,

pk+1(xk+1) = pk(xk+1) + Ak+1

k∏
j=0

(xk+1 − xj)

= f(xk+1)

where Ak+1 can be calculated using pk(xk+1) and f(xk+1).
Therefore,
For n = 1,

p0(x) = A0

= f(x0)

For n = 2,

p1(x) = p0(x) + A1(x− x0)
= f(x0)− A1(x− x0)
= f(x1)

Therefore,

A1 = f(x1)− f(x0)
x1 − x0

= f [x0, x1]

For n = 3,

p2(x) = p1(x) + A2(x− x0)(x− x1)
= f(x0) + f [x0, x1](x− x0)
= f(x0) + f [x0, x1](x− x0) + A2(x− x0)(x− x1)
= f(x2)
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Therefore,

A2 = 1
(x2 − x0)(x2 − x1)

(
f(x2)− f(x0)− f [x0, x1](x2 − x0)

)
= f [x0, x1, x2]

and so on.
In general,

Ak = f [x0, . . . , xk]

Definition 18 (Divided difference).

f [x0, . . . , xk] = f [x1, . . . , xk]− f [x0, . . . , xk−1]
xk − x0

f [x0] = f(x0)

is called the kth order divided difference of f(x).

Exercise 10.
Given

k(z) =

π
2ˆ

0

dx√
1− (sin z)2(sin x)2

and

k(1) = 1.5709
k(4) = 1.5727
k(6) = 1.5751

approximate k(3.5).

Solution 10.
For the first order divided differences,

k[xi] = k(xi)

24



Therefore,

k[1] = k(1)
= 1.5709

k[4] = k(4)
= 1.5727

k[6] = k(6)
= 1.5751

For the second order divided differences,

k[xi, xj] = k[i]− k[j]
i− j

Therefore,

k[1, 4] = k[1]− k[4]
1− 4

= 1.5727− 1.5709
3

k[4, 6] = k[4]− k[6]
4− 6

= 1.5751− 1.5727
2

For the third order divided differences,

k[xi, xj, xk] = k[i, j]− k[j, k]
i− k

Therefore,

k[1, 4, 6] = k[1, 4]− k[4, 6]
1− 6

Hence,

A0 = k[1]
A1 = k[1, 4]
A2 = k[1, 4, 6]
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4 Error in Interpolation
Definition 19 (Error in interpolation). The error in interpolation is defined
to be

e(x) = f(x)− pk(x)
Theorem 11.

e(x) = f [x0, . . . , xk, x]
k∏
i=0

(x− xi)

Theorem 12 (Rolle’s Theorem). Let f be continuous on [a, b], with a con-
tinuous derivative on (a, b), and f(a) = f(b) = 0. Then, ∃ε ∈ (a, b), such
that

f ′(ε) = 0

Theorem 13 (Lagrange’s Mean Value Theorem). Let f be continuous on
[a, b], with a continuous derivative on (a, b). Then, ∃ε ∈ (a, b), such that

f ′(ε) = f(b)− f(a)
b− a

Theorem 14.This theorem is a
general case of

Lagrange’s Mean
Value Theorem.

Let f be continuous on [a, b] with k continuous derivatives on
(a, b). Then, ∃ε ∈ (a, b), such that

f [x0, . . . , xk] = f (k)(ε)
k!

Theorem 15. Let f be continuous on [a, b] with n continuous derivatives on
(a, b), not necessarily distinct. Then, the interpolation polynomial is

pn(x) =
n∑
i=0

f [x0, . . . , xi]
i−1∏
j=0

(x− xj)

Theorem 16. Let f be continuous on [a, b] with k continuous derivatives on
(a, b), not necessarily distinct.
If ∣∣∣∣∣∣f

(k+1)(ε)
(k + 1)!

∣∣∣∣∣∣ ≤M

then, for ∀ε ∈ [x0, xk],

∣∣e(x)
∣∣ ≤

∣∣∣∣∣∣f
(k+1)(ε)

(k + 1)!

k∏
i=0

(x− xi)

∣∣∣∣∣∣
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4.1 Minimizing the Maximum Error
Theorem 17. The minimum error in interpolation is given by

min
0≤x0≤···≤xk

max

∣∣∣∣∣∣
k∏
i=0

(x− xi)

∣∣∣∣∣∣
 = min

0≤x0≤···≤xk

(
max

∣∣pk+1(x)
∣∣)

Definition 20 (Chebyshev polynomial). The Chebyshev polynomial is de-
fined as

Tn(x) = cos(n cos−1 x)

Theorem 18. If x = cos θ,

T0(x) = 1
T1(x) = x

...
Tn+1(x) = 2xTn(x)− Tn−1(x)

And hence,

Tn(x) =
n−1∏
i=0

(x− xi)

where

xi = cos
(

(2i+ 1)π
2n

)

∀i ∈ {0, . . . , n− 1}.
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Part III

Solutions of Equations
1 Solving Non-linear Equations

1.1 Bisection Method

Algorithm 1 Bisection Method
1: Let f be continuous on [a, b], such that f(a)f(b) < 0.
2: m← an+bn

2
3: if f(an)f(m) < 0 then
4: an+1 ← an
5: bn+1 ← m
6: rn ← bn+1
7: else
8: an+1 ← m
9: bn+1 ← an

10: rn ← an+1
11: end if
12: r ← lim

n→∞
rn

13: r is a root of the equation f(x) = 0

Theorem 19. Let f be continuous on [a, b], such that f(a)f(b) < 0, where
{rn} are generated by the bisection algorithm. Then

lim
n→∞

rn = r

such that f(r) = 0, and

|rn − r| <
b− a

2n

where n ∈ N.
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1.2 Regula Falsi

Algorithm 2 Regula Falsi Method
1: Let f be continuous on [a, b], such that f(a)f(b) < 0.
2: if f(an)f(xn) < 0 then
3: bn+1 ← xn
4: else
5: an+1 ← xn
6: end if
7: Solve p1(x) = f(an) + f [an, bn](x− an) for xn
8: xn ← f(bn)an−f(an)bn

f(bn)−f(an)
9: r ← lim

n→∞
rn

2 Newton-Raphson Method

Algorithm 3 Newton-Raphson Method
1: Choose x0 ∈ R to be the first approximation of f(x).
2: xn+1 ← xn − f(xn)

f ′(xn)

Exercise 11.
Solve

x = a
1
m

using Newton-Raphson method, and hence find
√

2.

Solution 11.

x = a
1
m

∴ xm = a

Therefore, let

f(x) = xm − a

Therefore, the solution to the equation is the solution to

f(x) = 0
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Therefore,

f(x) = xm − a
∴ f ′(x) = mxm−1

Therefore,

xn+1 = xn −
f(xn)
f ′(xn)

= xn
m − a

mxnm−1

= mxn
m − xnm + a

mxnm−1

= 1
m

(
a

xnm−1 + (m− 1)xn
)

Therefore, if m = 2,

xn+1 = 1
2

(
a

xn
+ xn

)

Therefore, if a = 2,

xn+1 = 1
2

(
2
xn

+ xn

)

Therefore, let

x0 = 2

Therefore,

x1 = 1.5
x2 = 1.41666
x3 = 1.414215685

2.1 Fixed Point Iterations
Definition 21 (Fixed point). A fixed point of a function g(x) is a point
which satisfies

x = g(x)
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Theorem 20 (Fixed point theorem). Let g be a continuous function in [a, b]
such that

1. ∀x ∈ [a, b], g(x) ∈ [a, b].

2. g′(x) exists and ∀x ∈ [a, b],
∣∣g′(x)

∣∣ < 1, or g(x) is Lipschitz, i.e.∣∣g(x)− g(y)
∣∣ ≤ k|x− y|.

then,

1. ∃!ξ, such that ξ ∈ [a, b] is a fixed point of g(x).

2. ∀x ∈ [a, b], the series xn+1 = g(xn) converges to ξ.

2.2 Secant Method

Algorithm 4 Secant Method
1: Choose x0 ∈ R to be the first approximation of f(x).
2: xn+1 ← xn − f(xn)

f [xn−1,xn]

3 Rate of Convergence
Definition 22 (Rate of convergence). Let the series xn converge to ξ. If

lim
n→∞

|en+1|2

|en|p
= c

where c 6= 0 ∈ R. Then, p is the rate of convergence. The rate of convergence
is said to be linear if p = 1, and quadratic if p = 2.

3.1 Newton’s Method
Theorem 21. The rate of convergence of Newton’s method is 2.

Proof. Let ξ be the root of f(ξ).
Using the Taylor Series,

0 = f(ξ)

= f(xn) + f ′(xn)(ξ − xn) + 1
2f
′′(η)(ξ − xn)2 + . . .
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where η ∈ [xn, ξ].
Let f(x) be continuous with a continuous derivative, such that f ′(ξ) 6= 0.
Therefore f ′(xn) 6= 0, for xn ≈ ξ.
Therefore,

0 = f(xn) + f ′(xn)(ξ − xn) + 1
2f
′′(η)(ξ − xn)2

∴ −f(xn) = f ′(xn)(ξ − xn) + 1
2f
′′(η)(ξ − xn)2 + . . .

∴ − f(xn)
f ′(xn) = (ξ − xn) + 1

2
f ′′(η)
f ′(xn)(ξ − xn)

∴ ξ −
(
xn −

f(xn)
f ′(xn)

)
= −1

2
f ′′(η)
f ′(xn)(ξ − xn)2

∴ ξ − xn+1 = −1
2
f ′′(η)
f ′(xn)(ξ − xn)2

∴ en+1 = −1
2
f ′′(η)
f ′(xn)en

2

∴
en+1

en2 = 1
2
f ′′(η)
f ′(xn)

Therefore, assuming f ′′(ξ) 6= 0,

∴ lim
n→∞

∣∣∣∣∣en+1

en2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ f ′′(η)
2f ′(xn)

∣∣∣∣∣
= f ′′(ξ)

2f ′(ξ)
= c

6= 0
Therefore the rate of convergence of Newton’s Method is 2.

3.2 Fixed Point Iterations
Theorem 22. The rate of convergence of fixed point iterations is 1.
Proof.

ξ = g(ξ)
= g(xn) + g′(η)(ξ − xn)

∴ ξ − g(xn) = g′(η)(ξ − xn)
∴ ξ − xn+1 = g′(η)(ξ − xn)

∴ en+1 = g′(η)en
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If g′(ξ) 6= 0, then

lim
n→∞

|en+1|
|en|

= lim
n→∞

∣∣∣g′(η)
∣∣∣

= g′(ξ)
= c

6= 0

Therefore the rate of convergence if 1.

3.3 Secant Method
Let

f(x) = p1(x) + error
= f(xn) + f [xn, xn−1](x− xn) + f [xn, xn−1, x](x− xn)(x− xn−1)

Therefore,

0 = f(ξ)
= f(xn) + f [xn, xn−1](ξ − xn) + f [xn, xn−1, x](ξ − xn)(ξ − xn−1)

Therefore,

− f(xn)
f [xn, xn−1] = ξ − xn + f [xn, xn−1, ξ]

f [xn, xn−1] (ξ − xn)(ξ − xn−1)

∴ ξ − xn + f(xn)
f [xn, xn−1] = −f [xn, xn−1, ξ]

f [xn, xn−1] (ξ − xn)(ξ − xn−1)

∴ ξ − xn+1 = −f [xn, xn−1, ξ]
f [xn, xn−1] (ξ − xn)(ξ − xn−1)

∴ en+1 = −f [xn, xn−1, ξ]
f [xn, xn+1] enen−1

Therefore,

lim
n→∞

|en+1|
|en||en−1|

=
∣∣∣∣∣f [ξ, ξ, ξ]
f [ξ, ξ]

∣∣∣∣∣
=
∣∣∣∣∣ f ′′(ξ)2ϕ′(ξ)

∣∣∣∣∣
= c
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Let c be non zero.
Therefore,

|en+1| = c|en||en−1|

Let the rate of convergence be p.
Therefore,

|en| = b|en−1|p

For a large n,

|en+1| = b|en|p

Therefore,

en+1 = c
∣∣b|en−1|p

∣∣ |en−1|
= bc|en−1|p+1

Therefore,

|en+1| = b
∣∣b|en−1|p

∣∣p
= bbp|en−1|p

2

Therefore,

c = bp

Therefore,

p2 = p+ 1

Therefore, the rate of convergence is

ρ = 1 +
√

5
2
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Part IV

Linear Systems and Matrices
Theorem 23. Let A be a n× n matrix. Then, the following statements are
equivalent.

1. For any vector b there is a unique solution for Ax = b.

2. The homogeneous system Ax = 0 has only the trivial solution x = 0.

3. A is invertible.

4. detA 6= 0.

1 Direct Methods

1.1 Back Substitution

Algorithm 5 Back Substitution
Input: bn×1, upper triangular An×n
Output: Ax = b

1: xn ← bn
ann

2: for all 0 < k < n do

3: xk ←
bk−

n∑
j=k+1

akjxj

akk
4: end for
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1.2 LU Decomposition/Gaussian Elimination

Algorithm 6 LU Decomposition/Gaussian Elimination
Input: invertible An×n
Output: lower triangular Ln×n, and upper triangular Un×n, such that

LU = A

1: procedure RowOperation((P, i, j))
2: Ri ← Ri −mijRj . Ri and Rj are the ith and jth rows of P
3: end procedure

4: A(1) ← A
5: b(1) ← b
6: for k = 1, . . . , n− 1 do
7: for i = k + 1, . . . , n do
8: mik ← aik

(k)

akk(k)

9: A(k+1) ← RowOperation(A(k), i, k).
10: end for
11: end for

12: if i > j then
13: Lij ← mij

14: else if i = j then
15: Lij ← 1
16: else
17: Lij ← 0
18: end if
19: U ← A(n)

Theorem 24. Let the LU Decomposition/Gaussian Elimination of A be

A = LU

Then the solution to the matrix equation

Ax = bj

is given by

Ly = b

where

Ux = y
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Theorem 25. The number of operations required for solving the matrix
equation An×nxn×1 = bn×1 using LU Decomposition/Gaussian Elimination is
O
(

2
3n

3
)
.

2 Error Analysis
Definition 23. The norm of the vector is defined to be a function from Rn

to R which satisfies all of the following.

1. ∀x ∈ Rn, ‖x‖ ≥ 0.

2. ‖x‖ = 0 ⇐⇒ x = 0.

3. ∀x ∈ R, ∀α ∈ R, ‖αx‖ = |α|‖x‖.

4. ∀x, y ∈ R, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 24 (Infinity norm). The function max
1≤i≤n

|yi| is defined to be the
infinity norm of the vector y.

Definition 25 (L1 norm). The function
n∑
i=1
|yi| is defined to be the L1 norm

of the vector y.

Definition 26 (L2 norm). The function
√

n∑
i=1

yi2 is defined to be the L2 norm

of the vector y.

Definition 27 (Matrix norm). A function from Rn2 to R, which for every
A,B ∈ Rn2 and for any α ∈ R, satisfies the following conditions is called the
matrix norm of a matrix A.

1. ‖A‖ ≥ 0.

2. ‖A‖ = 0 ⇐⇒ A = 0.

Theorem 26. If ‖ · ‖ is a vector norm on Rn, then the function

‖A‖ = max
‖x‖=1

‖Ax‖

is a matrix norm.
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Definition 28 (Induced norm). Let ‖ · ‖ be a vector norm on Rn. The
function

‖A‖ = sup
‖x‖=1

‖Ax‖

is called the induced norm.

Definition 29 (Induced infinity norm). The function

‖A‖∞ = sup
‖x‖∞=1

‖Ax‖∞

is called the induced infinity norm.

Theorem 27.

sup
‖x‖=1

‖Ax‖ = sup
‖x‖≤1

‖Ax‖ = sup
‖x‖6=0

‖Ax‖
‖x‖

Theorem 28.

‖A‖∞ = max
1≤i≤n

n∑
j=1
|aij|

where A = (aij).

Theorem 29.

‖A‖1 = max
1≤j≤n

n∑
i=1
|aij|

Theorem 30.
√

n∑
i=1

n∑
j=1

(aij)2 is not an induced norm, for any vector norm.

Definition 30 (Frobinus norm).

‖A‖F =
√√√√ n∑
i=1

n∑
j=1

(aij)2

is called the Frobinus norm of A.

Theorem 31. The Frobinus norm is a matrix norm.

Definition 31. The spectral radius of a matrix A is defined as

ρ(A) = max
1≤i≤n

|λi|

where λi are the eigenvalues of A.
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Theorem 32.

‖A‖2 =
√
ρ
(
ATA

)
Theorem 33. For any matrix induced norm

ρ(A) ≤ ‖A‖

Theorem 34. For any ε > 0, there exists a norm for which

‖A‖ ≤ ρ(A) + ε

2.1 Error in b

Let x be the ideal solution, and let x̃ be the calculated solution.

e = x− x̃

Therefore, the ideal system is

Ax = b

and the calculated system is

Ax̃ = b̃

Therefore,

e = x− x̃

Let

r = b− b̃
= b− Ax̃

be the residue.
Therefore,

Ae = A(x− x̃)
= Ax− Ax̃
= b− Ax̃
= r
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Therefore,

e = A−1r

Therefore,

‖e‖ =
∥∥∥A−1r

∥∥∥
≤
∥∥∥A−1

∥∥∥ ‖r‖
Therefore,

‖e‖
‖x‖

= ‖x− x̃‖
‖x‖

Therefore,

‖b‖ = ‖Ax‖
≤ ‖A‖‖x‖

∴
1
‖x‖
≤ ‖A‖ 1

‖b‖

∴
‖e‖
‖x‖
≤ ‖e‖‖A‖ 1

‖b‖

≤ ‖A‖ 1
‖b‖

∥∥∥A−1
∥∥∥ ‖r‖

≤ ‖A‖
∥∥∥A−1

∥∥∥ ‖r‖
‖b‖

Definition 32 (Condition number).

cond(A) = ‖A‖
∥∥∥A−1

∥∥∥
is called the condition number of A.

Theorem 35. For any matrix A,

cond(A) ≥ 1

2.2 Estimation of cond(A)
Theorem 36. The eigenvalues of A−1 are 1

λi
, where λi are the eigenvalues

of A.
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Proof. Let ui be the eigenvectors of A, corresponding to λi.
Therefore,

Aui = λiui

Therefore

A−1Aui = A−1λiui

∴ ui = A−1λ1ui

∴
1
λi
ui = A−1ui

Therefore, the eigenvalues of A−1, corresponding to ui, are 1
λi

.

Theorem 37.

cond(A) ≥
max
i
|λi|

min
i
|λi|

where λi are the eigenvalues of A.

Proof.

ρ(A) = max
i
|λi|

∴ ρ
(
A−1

)
= max

i

1
|λi|

= 1
min
i
|λi|

Therefore,

ρ(A)ρ
(
A−1

)
=

max
i
|λi|

min
i
|λi|

Therefore, as ρ(A) ≥ ‖A‖, and ρ
(
A−1

)
≥
∥∥∥A−1

∥∥∥,
cond(A) ≥ ρ(A)ρ

(
A−1

)
∴ cond(A) ≥

max
i
|λi|

min
i
|λi|
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Theorem 38. For any non-invertible matrix B,

cond(A) ≥ ‖A‖
‖A−B‖

Proof. If B is non-invertible, then ∃x 6= 0, such that

Bx = 0

Therefore,

‖A−B‖‖x‖ ≥
∥∥(A−B)x

∥∥
≥ ‖Ax‖

≥ ‖x‖
‖A−1‖

Therefore, as x 6= 0,

‖x‖ 6= 0

Therefore,

‖A−B‖ ≥ 1
‖A−1‖

∴ ‖A‖
∥∥∥A−1

∥∥∥ ≥ ‖A‖ 1
‖A−B‖

∴ cond(A) ≥ ‖A‖ 1
‖A−B‖

2.3 Error in A

Let x be the ideal solution, and let x̃ be the calculated solution.
Let

ε = (εij)

be the error in A.
Let

e = x− x̃
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Therefore, the ideal system is
Ax = b

and the calculated system is
(A+ ε)x̃ = b

Therefore,
(A+ ε)x̃− Ax = 0

∴ Ax̃− Ax+ εx̃ = 0
∴ εx̃ = A (x− x̃)

= Ae

Therefore,
e = A−1εx̃

Therefore
‖e‖ =

∥∥∥A−1
∥∥∥ ‖ε‖ ‖x̃‖

∴
‖e‖
‖x̃‖
≤ ‖A‖

∥∥∥A−1
∥∥∥ ‖ε‖
‖A‖

∴
‖e‖
‖x̃‖
≤ cond(A) ‖ε‖

‖A‖

2.4 Iterative Improvement

Algorithm 7 Iterative Improvement
1: function LUSolution(Ax = b)
2: L,U ← LU Decomposition/Gaussian Elimination(A)
3: Solve Ly = b
4: Solve Ux = y return x
5: end function
6: Solve Ax = b
7: x̃(1) ← x
8: for i = 1, 2, . . . do
9: r(n) ← b− Ax̃(n)

10: LUSolution(Ae(n) = r(n))
11: LUSolution(Ae(n) = r(n))
12: end for
13: x̃(n+1) ← x̃(n) + e(n)
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Theorem 39. Consider a fixed point method

f(x) = Ax− b

where A is a matrix, and x and b are vectors.
If g maps a closed set S ⊂ Rn to itself, and g is contracting, i.e. for k < 1,∥∥g(x)− g(y)

∥∥ ≤ k‖x− y‖

then,

1. There exists a fixed point ξ in S.

2. The fixed point ξ is unique.

3. All series of the form x(0), x(1), . . . , such that x(n+1) = g
(
x(n)

)
converge

to the fixed point ξ, i.e.,

lim
n→∞

∥∥∥ξ − x(n)
∥∥∥ = 0

i.e.,
∥∥∥ξ − x(n)

∥∥∥ ≤ k

1− k
∥∥∥x(n) − x(n−1)

∥∥∥
≤ kn

1− k
∥∥∥x(1) − x(0)

∥∥∥
Theorem 40. As the LU decomposition of A needs to be calculated only once,
the algorithm is O

(
n2
)
.

3 Gauss-Jacobi Method
Definition 33. A matrix C is called an approximate inverse to the matrix
A if in some norm,

‖I − CA‖ = k

such that

k < 1

Theorem 41. If C is an approximate inverse to A, then A and C are
invertible matrices.
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Theorem 42. Let D be the matrix containing only the diagonal elements of
A. Then, D−1 is an approximate inverse to A.

Definition 34 (Gauss-Jacobi Method). The iterative method

x(n+1) = x(n) +D−1
(
b− Ax(n)

)
is called the Gauss-Jacobi Method.

Theorem 43. The number of operations in the Gauss-Jacobi Method is
O
(
n2
)
.

Theorem 44. Let D be the matrix containing only the diagonal elements of
A. Then

D−1
ij = 1

aii
δij

where δij is the Kronecker delta function.

Algorithm 8 Gauss-Jacobi Method
1: Find lower triangular L, diagonal D, and upper triangular U , such that
A = L+D + U

2: C ← D−1

3: BJ ← (I − CA) = −C(L+ U) . ‖BJ‖ is called the contraction
coefficient.

4: dJ ← Cb
5: x(n+1) ← Bx(n) + d

Algorithm 9 Gauss-Seidel Method
1: Find lower triangular L, diagonal D, and upper triangular U , such that
A = L+D + U

2: C ← (L+D)−1

3: BGS ← (I − CA) = −CU
4: dGS ← Cb
5: x(n+1) ← Bx(n) + d
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Part V

Numerical Differentiation and
Integration
1 Rule, Nodes, and Weights
Consider a linear operator L, i.e.,

L(af + bg) = aL(f) + bL(g)

where f and g are two functions.
Let pk be the interpolation polynomial of f(x).
Therefore,

e(x) = f(x)− pk(x)
∴ L(e) = L(f)− L(pk)

For example, for Lagrange interpolation,

pk(x) =
k∑
i=0

f(xi)li(x)

where all li are Lagrange polynomials with respect to the corresponding xi.
Therefore,

L(pk) =
k∑
i=0

f(xi)L(li)

Therefore,

L(f) ≈
k∑
i=0

wif(xi)

where f(xi) are called the nodes, wi are called the weights, and the entire
expression is called the rule.

2 Numerical Differentiation

2.1 k = 1

p1(x) = f(x0) + f [x0, x1](x− x0)
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Therefore,

Da(f) ≈ Da(p1)
∴ f ′(x) ≈ f [x0, x1]

Let

a = x0

h = x1 − x0

Therefore,

f ′(a) ≈ f [a, a+ h]

≈ f(a+ h)− f(a)
h

Therefore,

∣∣E(f)
∣∣ =

∣∣∣∣∣12hf ′′(η)
∣∣∣∣∣

where η ∈ [a, a+ h].
This is called the forward difference scheme.

Let

a = x0

h = x0 − x1

Therefore,

f ′(a) ≈ f [a, a− h]

≈ f(a)− f(a− h)
h

Therefore,

∣∣E(f)
∣∣ =

∣∣∣∣∣12hf ′′(η)
∣∣∣∣∣

where η ∈ [a, a+ h].
This is called the backward difference scheme.
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Let a = x0−x1
2 , and h = x1−x0

2 .

a = x0 − x1

2
h = x1 − x0

2

Therefore,

f ′(a) ≈ f [a− h, a+ h]

≈ f(a− h)− f(a+ h)
2h

Therefore,

∣∣E(f)
∣∣ =

∣∣∣∣∣h2

6 f
′′′(η)

∣∣∣∣∣
where η ∈ [a, a+ h].
This is called the central difference scheme.

2.2 k = 2

p2(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

Therefore,

Da(f) ≈ Da(p2)
∴ f ′(x) ≈ f [x0, x1] + f [x0, x1, x2](x− x1 + x− x0)

Let

a = x0

Therefore,

f ′(a) ≈ f [a, x1] + f [a, x1, x2](a− x1)
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2.3 Error Analysis
Let

f(x) = pk(x) + e(x)

= pk(x) + f [x0, . . . , xk, x]
k∏
i=0

(x− xi)

Let

ψk(x) =
k∏
i=0

(x− xi)

Therefore,

f(x) = pk(x) + f [x0, . . . , xk, x]ψk(x)

Therefore,

f ′(x) = pk
′(x) + d

dx
(
f [x0, . . . , xk, x]ψk(x)

)
By definition,

d
dx f [x0, . . . , xk, x] = f [x0, . . . , xk, x, x]

Therefore,

f ′(x) = pk
′(x) + f [x0, . . . , xk, x, x]ψ(x) + f [x0, . . . , xk, x]ψk ′(x)

Therefore,

e(x) = f ′(x)− pk ′(x)
= f [x0, . . . , xk, x, x]ψk(x) + f [x0, . . . , xk, x]ψk ′(x)

Therefore,

e(x) = f (k+2)(ξ)
(k + 2)! ψk(x) + f (k+1)(η)

(k + 1)! ψk
′(x)

where ξ, η ∈ [x0, xk].
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