Numerical Analysis

Aakash Jog

2015-16

## Contents

1 Lecturer Information ..... 4
2 Required Reading ..... 4
I Representation of Numbers and Errors ..... 5
1 Floating Point Representation ..... 5
1.1 Loss of Significant Digits in Addition and Subtraction ..... 7
II Approximation of Functions ..... 11
1 Series of Approximations ..... 11
1.1 Order of Convergence ..... 11
2 Representation of Polynomials ..... 12
2.1 Power series ..... 12
2.2 Shifted Power Series ..... 14
2.3 Newton's Form ..... 15
2.4 Nested Newton's Form ..... 15
2.5 Properties of Polynomials ..... 16
3 Interpolation ..... 17
3.1 Direct Method ..... 17
3.2 Lagrange's Interpolation ..... 18
3.3 Hermite Polynomials ..... 22
3.4 Newton's Interpolation ..... 22
4 Error in Interpolation ..... 26
4.1 Minimizing the Maximum Error ..... 27
(c) (i) (오 (ㅇ)

This work is licensed under the Creative Commons Attribution-NonCommercialShareAlike 4.0 International License. To view a copy of this license, visit http: //creativecommons.org/licenses/by-nc-sa/4.0/
III Solutions of Equations ..... 28
1 Solving Non-linear Equations ..... 28
1.1 Bisection Method ..... 28
1.2 Regula Falsi ..... 29
2 Newton-Raphson Method ..... 29
2.1 Fixed Point Iterations ..... 30
2.2 Secant Method ..... 31
3 Rate of Convergence ..... 31
3.1 Newton's Method ..... 31
3.2 Fixed Point Iterations ..... 32
3.3 Secant Method ..... 33
IV Linear Systems and Matrices ..... 35
1 Direct Methods ..... 35
1.1 Back Substitution ..... 35
1.2 LU Decomposition/Gaussian Elimination ..... 36
2 Error Analysis ..... 37
2.1 Error in b ..... 39
2.2 Estimation of $\operatorname{cond}(A)$ ..... 40
2.3 Error in $A$ ..... 42
2.4 Iterative Improvement ..... 43
3 Gauss-Jacobi Method ..... 44
V Numerical Differentiation and Integration ..... 46
1 Rule, Nodes, and Weights ..... 46
2 Numerical Differentiation ..... 46
$2.1 \quad k=1$ ..... 46
$2.2 \quad k=2$ ..... 48
2.3 Error Analysis ..... 49

## 1 Lecturer Information

## Prof. Nir Sochen

Office: Schreiber 201
Telephone: +972 3-640-8044
E-mail: sochen@post.tau.ac.il
Office Hours: Sundays, 10:00-12:00

## 2 Required Reading

1. S. D. Conte and C. de Boor, Elementary Numerical Analysis, 1972

## Part I

## Representation of Numbers and Errors

## 1 Floating Point Representation

## Exercise 1.

Represent 9.75 in base 2.

## Solution 1.

$$
\begin{aligned}
9.75 & =8+1+\frac{1}{2}+\frac{1}{4} \\
& =2^{3}+2^{0}+2^{-1}+2^{-2} \\
& =2^{3}\left(2^{0}+2^{-3}+2^{-4}+2^{-5}\right) \\
& =\left(2^{11}(1+0.001+0.0001+0.00001)\right)_{2} \\
& =\left(2^{11}(1.00111)\right)_{2}
\end{aligned}
$$

Definition 1 (Double precision floating point representation). A floating point representation which uses 64 bits for representation of a number is called a double precision floating point representation.
The standard form of double precision representation is

$$
a=\underbrace{ \pm}_{1 \text { bit } 1 \text { bit }} \underbrace{1}_{52 \text { bits }} \times \underbrace{ \pm}_{w^{1 \text { bit }}} \underbrace{\cdots}_{10 \text { bits }}
$$

Theorem 1 (Range of double precision floating point representation). The largest number which can be represented with double precision floating point representation is approximately $10^{307}$ and the smallest number which can be represented is approximately $10^{-307}$.

Proof. As the exponent has 10 bits for representation,

$$
-\left(10^{10}-1\right) \leq \text { exponent } \leq\left(10^{10}-1\right)
$$

Therefore,

$$
-1023 \leq \text { exponent } \leq 1023
$$

Therefore, the smallest number, in terms of absolute value, which can be represented, is

$$
1 . \underbrace{0 \cdots 0}_{52 \text { bits }} \times 2^{-1024} \approx 10^{-307}
$$

Therefore, the smallest number which can be represented is approximately $10^{-307}$, and the largest number which can be represented is approximately $10^{307}$.

Definition 2 (Overflow). If a result is larger than the largest number which can be represented, it is called overflow.

Definition 3 (Underflow). If a result is smaller than the smallest number which can be represented, it is called underflow.

Definition 4 (Least significant digit).

$$
1=1 . \underbrace{0 \cdots 0}_{52 \text { zeros }} \times 2^{0}
$$

Let $1_{\varepsilon}$ be the smallest number larger than 1 , which can be represented in double precision floating point representation.
Therefore,

$$
\begin{aligned}
1 & =1 \cdot \underbrace{0 \cdots 0}_{51 \text { zeros }} 1 \times 2^{0} \\
& =1+2^{-52} \\
& \approx 1+2 \times 10^{-16}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
1-1_{\varepsilon} & =2^{-52} \\
& \approx 2 \times 10^{-16}
\end{aligned}
$$

This number is called the least significant digit, or the machine precision. It is the maximum possible error in representation. It is represented by $\varepsilon$.

Definition 5 (Error). Let the DPFP representation of a number $x$ be $\widetilde{x}$. The absolute error in representation is defined as

$$
\begin{aligned}
\text { absolute error } & =|x-\widetilde{x}| \\
& =0.0 \cdots 01 \times 2^{\text {exponent }}
\end{aligned}
$$

The relative error in representation is defined as

$$
\begin{aligned}
\delta & =\frac{|x-\widetilde{x}|}{x} \\
& =0.0 \cdots 01 \\
& <\varepsilon
\end{aligned}
$$

The maximum error, $2^{-52} \approx 2 \times 10^{-16}$, is called the machine precision. In general,

$$
\tilde{x} \widetilde{\star} \widetilde{y}=(x \star y)(1+\delta)
$$

where $\delta$ is the relative error, $\varepsilon$ is the machine precision, $\delta<\varepsilon$, and $\star$ is an operator.

### 1.1 Loss of Significant Digits in Addition and Subtraction

## Exercise 2.

Represent $\pi+\frac{1}{30}$ in base 10 with 4 digits.

## Solution 2.

$$
\pi \approx 3.14159
$$

Approximating by ignoring the last digits,

$$
\widetilde{\pi}=3.141
$$

Similarly,

$$
\frac{\widetilde{1}}{30}=3.333 \times 10^{-2}
$$

Therefore, adding,

$$
\begin{aligned}
\widetilde{\pi}+\frac{\widetilde{1}}{30} & =3.141+0.03333 \\
& =3.174
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\delta & =\left|\frac{\left(\widetilde{\pi}+\frac{\widetilde{1}}{30}\right)-\left(\pi+\frac{1}{30}\right)}{\pi+\frac{1}{30}}\right| \\
& =0.0003
\end{aligned}
$$

Therefore, $\delta<\varepsilon=0.001$

## Exercise 3.

Given

$$
\begin{aligned}
a & =1.435234 \\
b & =1.429111
\end{aligned}
$$

Find the relative error.

## Solution 3.

$$
\begin{aligned}
a & =1.435234 \\
b & =1.429111
\end{aligned}
$$

Therefore,

$$
a-b=0.0061234
$$

Approximating by ignoring the last digits,

$$
\begin{aligned}
\widetilde{a} & =1.435 \\
\widetilde{b} & =1.429
\end{aligned}
$$

Therefore,

$$
\tilde{a}-\widetilde{b}=0.006
$$

Therefore,

$$
\delta=\left|\frac{(a-b)-(\widetilde{a}-\widetilde{b})}{a-b}\right|
$$

Therefore,

$$
\begin{aligned}
& \delta>10^{-3} \\
& \therefore \delta>\varepsilon
\end{aligned}
$$

## Exercise 4.

Solve

$$
x^{2}+10^{8} x+1=0
$$

## Solution 4.

$$
x=\frac{-10^{8} \pm \sqrt{10^{16}-4}}{2}
$$

Therefore,

$$
x_{-} \approx-10^{8}
$$

Therefore, by Vietta Rules,

$$
\begin{aligned}
x_{1} x_{2} & =\frac{c}{a} \\
x_{1}+x_{2} & =-\frac{b}{a}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
x_{+} x_{-} & =1 \\
\therefore x_{+} & =\frac{1}{x_{-}} \\
& \approx-10^{-8}
\end{aligned}
$$

In MATLAB, this can be executed as $x=\operatorname{roots}\left(\left[1,10^{\wedge} 8,1\right]\right)$
This gives the result

$$
x_{+}=-7.45 \times 10^{-9}
$$

Therefore, the absolute error is

$$
\begin{aligned}
|\widetilde{x}-x| & =\left|-7.45 \times 10^{-9}-\left(-10^{-8}\right)\right| \\
& =2.55 \times 10^{-9}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\delta & =\left|\frac{\tilde{x}-x}{x}\right| \\
& =\left|\frac{2.55 \times 10^{-9}}{10^{-8}}\right| \\
& =0.255 \\
& =25 \%
\end{aligned}
$$

The algorithm used by MATLAB is

$$
\begin{aligned}
& \text { if } b \geq 0 \text { then } \\
& x_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
& x_{2}=\frac{x}{a x_{1}} \\
& \text { else } \\
& x_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
& x_{1}=\frac{c}{a x_{2}}
\end{aligned}
$$

This is done to avoid subtraction of numbers close to each other, and hence avoid the possible error.

## Part II

## Approximation of Functions

## 1 Series of Approximations

### 1.1 Order of Convergence

Definition 6. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a series. $\left\{\alpha_{n}\right\}$ is said to converge to $\alpha$, denoted as $\alpha_{n} \rightarrow \alpha$, if $\forall \varepsilon>0, \varepsilon \in \mathbb{R}, \exists n_{0}(\varepsilon) \in \mathbb{N}$, such that $\forall n \in \mathbb{N}, n>n_{0}(\varepsilon)$, $\left|\alpha_{n}-\alpha\right|<\varepsilon$.

Usually, the series $\left\{\alpha_{n}\right\}$ is compared to a simpler series such as $\frac{1}{n}, \frac{1}{n^{\beta}}, \ldots$.
Definition 7. $\alpha_{n}$ is said to be "big-O" of $\beta_{n}$, and is said to behave like $\beta_{n}$, if $\exists k \in \mathbb{R}, k>0, \exists n_{0} \in \mathbb{N}, n_{0}>0$, such that $\forall n>n_{0}$,

$$
\left|\alpha_{n}\right| \leq k\left|\beta_{n}\right|
$$

It is denoted as

$$
\alpha_{n}=\mathrm{O}\left(\beta_{n}\right)
$$

Definition 8. $\alpha_{n}$ is said to be "small-O" of $\beta_{n}$ if

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\beta_{n}}=0
$$

It is denoted as

$$
\alpha_{n}=\mathrm{o}\left(\beta_{n}\right)
$$

## Exercise 5.

Find the order of convergence of

$$
\alpha_{n}=2 n^{3}+3 n^{2}+4 n+5
$$

## Solution 5.

$$
\begin{aligned}
\alpha_{n} & =2 n^{3}+3 n^{2}+4 n+5 \\
& \leq(2+3+4+5) n^{3} \\
\therefore \alpha_{n} & \leq 14 n^{3}
\end{aligned}
$$

Therefore, comparing to the standard form,

$$
\begin{aligned}
k & =14 \\
\beta_{n} & =n^{3}
\end{aligned}
$$

Therefore, as $\forall n \geq 1,\left|a_{n}\right| \leq 14\left|\beta_{n}\right|$,

$$
\alpha_{n}=\mathrm{O}\left(\beta_{n}\right)
$$

Also,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\beta_{n}} & =\lim _{n \rightarrow \infty} \frac{2 n^{3}+2 n^{2}+4 n+5}{n^{3}} \\
& =2
\end{aligned}
$$

Therefore, as the limits is not zero,

$$
\alpha_{n} \neq \mathrm{o}\left(\beta_{n}\right)
$$

However, $\forall \delta>0$,

$$
\alpha_{n}=\mathrm{o}\left(n^{3+\delta}\right)
$$

## 2 Representation of Polynomials

### 2.1 Power series

Definition 9 (Power series representation of polynomials).

$$
P_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

This representation may lead to loss of significant digits.

## Exercise 6.

Let $P(x)$ represent a straight line.

$$
\begin{aligned}
& P(6000)=\frac{1}{3} \\
& P(6001)=-\frac{2}{3}
\end{aligned}
$$

If only 5 decimal digits are used, show that there is a loss of significant digits, if the power series representation of the polynomial is used.

## Solution 6.

$P(x)$ represents a straight line. Therefore,

$$
P(x)=a x+b
$$

Therefore,

$$
\begin{aligned}
& 6000 a+b=\frac{1}{3} \\
& 6001 a+b=-\frac{2}{3}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(\begin{array}{ll}
6000 & 1 \\
6001 & 1
\end{array}\right)\binom{a}{b} & =\binom{\frac{1}{3}}{-\frac{2}{3}} \\
\therefore\binom{a}{b} & \\
& =\frac{1}{|A|}\left(\begin{array}{cc}
1 & -1 \\
-6001 & 6000
\end{array}\right)\binom{\frac{1}{3}}{-\frac{2}{3}} \\
& =-\binom{1}{-6000.3} \\
& =\binom{-1}{6000.3}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
a & =-1 \\
b & =6000.3
\end{aligned}
$$

Therefore,

$$
P(x)=-x+6000.3
$$

Substituting 6000 and 6001 in this expression,

$$
\begin{aligned}
& P(6000)=0.3 \\
& P(6001)=0.7
\end{aligned}
$$

However, the most accurate values of $P(6000)$ and $P(6001)$, using 5 decimal digits only, should be

$$
\begin{aligned}
& P(6000)=0.33333 \\
& P(6001)=-0.66666
\end{aligned}
$$

Therefore, there is a loss of significant digits.

### 2.2 Shifted Power Series

Definition 10 (Shifted power series representation of polynomials).

$$
P_{n}(x)=a_{0}+a_{1}(x-c)+\cdots+a_{n}(x-c)^{n}
$$

This representation is a power series shifted by $c$. Hence, this representation does not lead to loss of significant digits.

## Exercise 7.

Let $P(x)$ be a straight line.

$$
\begin{aligned}
& P(6000)=\frac{1}{3} \\
& P(6001)=-\frac{2}{3}
\end{aligned}
$$

If only 5 decimal digits are used, show that there is no loss of significant digits, if the shifted power series representation of the polynomial is used, with $c=6000$.

## Solution 7.

$P(x)$ represents a straight line. Therefore,

$$
P(x)=a(x-6000)+b
$$

Therefore,

$$
\begin{aligned}
b & =\frac{1}{3} \\
a+b & =-0.66666 \\
\therefore a & =-0.99999
\end{aligned}
$$

Therefore,

$$
P(x)=-0.99999(x-6000)+0.33333
$$

Substituting 6000 and 6001 in this expression,

$$
\begin{aligned}
& P(6000)=0.33333 \\
& P(6001)=-0.66666
\end{aligned}
$$

Therefore, there is no loss of significant digits, as the values of $P(6000)$ and $P(6001)$ are the most accurate values possible, using 5 decimal digits.

### 2.3 Newton's Form

Definition 11 (Newton's form of representation of polynomials).

$$
P_{n}(x)=a_{0}+a_{1}\left(x-c_{1}\right)+\cdots+a_{n}\left(x-c_{1}\right) \ldots\left(x-c_{n}\right)
$$

The number of multiplications needed to calculate $P_{n}(x)$ is

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

The number of additions or subtractions needed to calculate $P_{n}(x)$ is

$$
\sum_{i=1}^{n} i+n=\frac{n(n+1)}{2}+n
$$

Therefore, the total number of operations needed to calculate $P_{n}(x)$ is $\mathrm{O}\left(n^{2}\right)$.

### 2.4 Nested Newton's Form

Definition 12 (Nested Newton's form of representation of polynomials).

$$
P_{n}(x)=a_{0}+\left(x-c_{1}\right)\left(a_{1}+\left(x-c_{2}\right)\left(a_{2}+\left(x-c_{3}\right)(\ldots)\right)\right)
$$

The number of multiplications needed to calculate $P_{n}(x)$ is

$$
\sum_{i=1}^{n} 1=n
$$

The number of additions or subtractions needed to calculate $P_{n}(x)$ is

$$
\sum_{i=1}^{n} 2=2 n
$$

Therefore, the total number of operations needed to calculate $P_{n}(x)$ is big-O of $\mathrm{O}(n)$.

### 2.5 Properties of Polynomials

Theorem 2. For a polynomial in shifted power series form,

$$
P_{n}(x)=P_{n}(c)+(x-c) q_{n-1}(x)
$$

Proof.

$$
\begin{aligned}
P_{n}(x) & =a_{0}+a_{1}(x-c)+\cdots+a_{n}(x-c)^{n} \\
& =a_{0}+(x-c)\left(a_{1}+a_{2}(x-2)+\cdots+a_{n}(x-c)^{n-1}\right) \\
& =a_{0}+(x-c) q_{n-1}(x) \\
& =P_{n}(c)+(x-c) q_{n-1}(x)
\end{aligned}
$$

Theorem 3. If $c$ is a root of $P_{n}(x)$, i.e., if

$$
P_{n}(c)=0
$$

then

$$
P_{n}(x)=(x-c) q_{n-1}(x)
$$

If $c_{1} \neq c_{2}$ are roots of $P_{n}(x)$, then

$$
P_{n}(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) r_{n-2}(x)
$$

Similarly, if $P_{n}(x)$ has $n$ different roots, then

$$
P_{n}(x)=A\left(x-c_{1}\right) \ldots\left(x-c_{n}\right)
$$

where $A \in \mathbb{R}$.
If $P_{n}(x)$ has $n+1$ different roots, then

$$
P_{n}(x)=A\left(x-c_{1}\right) \ldots\left(x-c_{n}\right)\left(x-c_{n+1}\right)
$$

where $A=0$.
Theorem 4. If $p(x)$ and $q(x)$ are polynomials of degree at most $n$, that satisfy

$$
\begin{aligned}
p\left(x_{i}\right) & =f\left(x_{i}\right) \\
q\left(x_{i}\right) & =f\left(x_{i}\right)
\end{aligned}
$$

for $i \in\{0, \ldots, n\}$, then

$$
p_{n}(x) \equiv q_{n}(x)
$$

This means that there exists a unique polynomial with degree $n$ which passes through $n+1$ points, i.e. $n+1$ points define a unique $n$ degree polynomial.

Proof. Let

$$
d_{n}(x)=p_{n}(x)-q_{n}(x)
$$

Therefore, $d_{n}(x)$ is a polynomial of degree at most $n$, which has $n+1$ roots. Therefore,

$$
d_{n}(x) \equiv 0
$$

Therefore,

$$
p_{n}(x) \equiv q_{n}(x)
$$

## 3 Interpolation

Theorem 5 (Weierstrass Approximation Theorem). Let $f(x) \in \mathrm{C}[a, b]$, i.e. it is continuous on $[a, b]$. Let $\varepsilon>0$. Then there exists a polynomial $P(x)$ defined on $[a, b]$, such that $\forall x \in[a, b]$,

$$
|f(x)-P(x)|<\varepsilon
$$

Definition 13 (Interpolating polynomial). $p(x)$ is said to be the interpolating polynomial of $f(x)$, if for all sample points $x_{i}$,

$$
f\left(x_{i}\right)=p\left(x_{i}\right)
$$

Theorem 6. Let $f(x)$ such that $\forall i \in\{0, \ldots, n\}$,

$$
f\left(x_{i}\right)=y_{i}
$$

Then, there exists a unique polynomial $p(x)$ of degree at most $n$, which interpolates $f(x)$ at all sample points $x_{i}$.

### 3.1 Direct Method

Definition 14 (Van der Monde matrix). Let

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

Let

$$
f\left(x_{i}\right)=y_{i}
$$

Therefore, as

$$
p\left(x_{i}\right)=f\left(x_{i}\right)
$$

the constraints are

$$
\begin{gathered}
a_{0}+a_{1} x_{0}+\cdots+a_{n} x_{0}^{n}=y_{0} \\
a_{1}+a_{1} x_{1}+\cdots+a_{n} x_{1}{ }^{n}=y_{1} \\
\vdots \\
a_{n}+a_{1} x_{n}+\cdots+a_{n} x_{n}{ }^{n}=y_{n}
\end{gathered}
$$

Therefore,

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}{ }^{2} & \ldots & x_{0}{ }^{n} \\
1 & x_{1} & x_{1}{ }^{2} & \ldots & x_{1}{ }^{n} \\
1 & x_{2} & x_{2}{ }^{2} & \ldots & x_{2}{ }^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}{ }^{2} & \ldots & x_{n}{ }^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

The matrix

$$
V=\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}{ }^{2} & \ldots & x_{0}{ }^{n} \\
1 & x_{1} & x_{1}{ }^{2} & \ldots & x_{1}{ }^{n} \\
1 & x_{2} & x_{2}{ }^{2} & \ldots & x_{2}{ }^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}{ }^{2} & \ldots & x_{n}{ }^{n}
\end{array}\right)
$$

is called the Van der Monde matrix.
Theorem 7. The Van der Monde matrix is invertible, and hence there exists a unique matrix of coefficients $a_{0}, \ldots, a_{n}$, and hence the interpolating polynomial $p(x)$ is unique.

### 3.2 Lagrange's Interpolation

Definition 15 (Lagrange polynomials). Let

$$
L_{k}(x)=\prod_{i=0 ; i \neq k}^{n}\left(x-x_{i}\right)
$$

Therefore,

$$
L_{k}\left(x_{i}\right)=\left\{\begin{array}{lll}
0 & ; & i \neq k \\
1 & ; & i=k
\end{array}\right.
$$

Let

$$
l_{k}(x)=\frac{L_{k}(x)}{L_{k}\left(x_{k}\right)}
$$

Therefore,

$$
l_{k}\left(x_{i}\right)=\left\{\begin{array}{lll}
0 & ; & i \neq k \\
1 ; & i=k
\end{array}\right.
$$

The polynomials $l_{i}(x)$ are called Lagrange polynomials.
Theorem 8. Let

$$
p_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) l_{i}(x)
$$

where $l_{i}(x)$ are Lagrange polynomials.
Then, $p_{n}(x)$ is the interpolating polynomial of $f(x)$.

## Exercise 8.

Which polynomial of degree 2 interpolates the below data?

| $x$ | $f(x)$ |
| :---: | :---: |
| 1 | 1 |
| 2 | 3 |
| 3 | 7 |

## Solution 8.

$$
L_{k}(x)=\prod_{i=0 ; i \neq k}^{n}\left(x-x_{i}\right)
$$

Therefore,

$$
\begin{aligned}
& L_{1}(x)=(x-2)(x-3) \\
& L_{2}(x)=(x-1)(x-3) \\
& L_{3}(x)=(x-1)(x-2)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
L_{1}(1) & =(1-2)(1-3) \\
& =2 \\
L_{2}(2) & =(2-1)(2-3) \\
& =-1 \\
L_{3}(3) & =(3-1)(3-2) \\
& =2
\end{aligned}
$$

Therefore,

$$
l_{k}(x)=\frac{L_{k}(x)}{L_{k}\left(x_{k}\right)}
$$

Therefore,

$$
\begin{aligned}
l_{1}(x) & =\frac{L_{1}(x)}{L_{1}(1)} \\
& =\frac{1}{2}(x-2)(x-3) \\
l_{2}(x) & =\frac{L_{2}(x)}{L_{2}(1)} \\
& =-(x-1)(x-3) \\
l_{3}(x) & =\frac{L_{3}(x)}{L_{3}(1)} \\
& =\frac{1}{2}(x-1)(x-2)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
p_{2}(x) & =\sum_{1} f\left(x_{i}\right) l_{i}(x) \\
& =\frac{1}{2}(x-2)(x-3)-3(x-1)(x-3)+\frac{7}{2}(x-1)(x-2)
\end{aligned}
$$

## Exercise 9.

Given

$$
k(z)=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} x}{\sqrt{1-(\sin z)^{2}(\sin x)^{2}}}
$$

and

$$
\begin{aligned}
& k(1)=1.5709 \\
& k(4)=1.5727 \\
& k(6)=1.5751
\end{aligned}
$$

approximate $k(3.5)$.

## Solution 9.

$$
l_{k}(x)=\frac{\prod_{i=0 ; i \neq k}^{n}\left(x-x_{i}\right)}{\prod_{i=0 ; i \neq k}^{n}\left(x_{k}-x_{i}\right)}
$$

Therefore,

$$
\begin{aligned}
& l_{1}(x)=\frac{(x-4)(x-6)}{(1-4)(1-6)} \\
& l_{4}(x)=\frac{(x-1)(x-6)}{(4-1)(4-6)} \\
& l_{6}(x)=\frac{(x-1)(x-4)}{(6-1)(6-4)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
l_{1}(3.5) & =\frac{(3.5-4)(3.5-6)}{(1-4)(1-6)} \\
& =0.08333 \\
l_{4}(3.5) & =\frac{(3.5-1)(3.5-6)}{(4-1)(4-6)} \\
& =1.04167 \\
l_{6}(3.5) & =\frac{(3.5-1)(3.5-4)}{(6-1)(6-4)} \\
& =-0.125
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
p_{2}(x) & =\sum f\left(x_{i}\right) l_{k}(x) \\
\therefore p_{2}(3.5) & =\sum f\left(x_{1}\right) l_{k}(3.5) \\
& =(1.5709)(0.08333)+(1.5727)(1.04167)+(1.5751)(-0.125) \\
& =1.57225
\end{aligned}
$$

### 3.3 Hermite Polynomials

Definition 16. Let the given data be of the form $\left(x_{i}, f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)\right)$, where $i=0, \ldots, n$.
$H_{2 n+1}$ is called the Hermite polynomial of $f(x)$.
For $H_{2 n+1}$ to be the interpolation polynomial of $f(x)$, the constraints are

$$
\begin{aligned}
& H_{2 n+1}\left(x_{i}\right)=f\left(x_{i}\right) \\
& H_{2 n+1}^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)
\end{aligned}
$$

Therefore, the number of constraints are $2 n+2$.
Hence, the polynomial is of degree at most $2 n+1$.

Theorem 9. Let

$$
H_{2 n+1}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \psi_{n, i}(x)+\sum_{i=0}^{n} f^{\prime}\left(x_{i}\right) \varphi_{n, i}(x)
$$

Let

$$
\delta_{i j}= \begin{cases}0 & ; \\ 1 \neq j \\ 1 & ; \quad i=j\end{cases}
$$

If the polynomials $\psi$ and $\varphi$ satisfy

$$
\begin{aligned}
\psi_{n, i}\left(x_{j}\right) & =\delta_{i j} \\
\psi_{n, i}^{\prime}\left(x_{j}\right) & =0 \\
\varphi_{n, i}\left(x_{j}\right) & =0 \\
\varphi_{n, i}^{\prime}\left(x_{j}\right) & =\delta_{i j}
\end{aligned}
$$

then the polynomial $H_{2 n+1}$ is the interpolation polynomial of $f(x)$.

### 3.4 Newton's Interpolation

Definition 17 (Newton's polynomial). The polynomial

$$
p_{n}(x)=\sum_{i=0}^{n} A_{i} \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

is called Newton's polynomial.

Theorem 10. If $p_{k}(x)$, constructed based on $x_{1}, \ldots, x_{k}$ is known, then $p_{k+1}(x)$, based on $x_{1}, \ldots, x_{k+1}$ can be constructed as

$$
p_{k+1}(x)=p_{k}(x)+A_{k+1}\left(x-x_{0}\right) \ldots\left(x-x_{k}\right)
$$

Proof. For $i=0, \ldots, k$,

$$
\begin{aligned}
p_{k+1}\left(x_{i}\right) & =p_{k}\left(x_{i}\right)+A_{k+1} \prod_{j=0}^{k}\left(x_{i}-x_{j}\right) \\
& =p_{k}\left(x_{i}\right)+0
\end{aligned}
$$

For $i=k+1$,

$$
\begin{aligned}
p_{k+1}\left(x_{k+1}\right) & =p_{k}\left(x_{k+1}\right)+A_{k+1} \prod_{j=0}^{k}\left(x_{k+1}-x_{j}\right) \\
& =f\left(x_{k+1}\right)
\end{aligned}
$$

$\forall i=0, \ldots, k$,
$\left(x_{i}-x_{i}\right)=0$.
Therefore, if $i=j$,
$\left(x_{i}-x_{j}\right)=0$.
Therefore,
$\prod\left(x_{i}-x_{j}\right)=0$
where $A_{k+1}$ can be calculated using $p_{k}\left(x_{k+1}\right)$ and $f\left(x_{k+1}\right)$.
Therefore,
For $n=1$,

$$
\begin{aligned}
p_{0}(x) & =A_{0} \\
& =f\left(x_{0}\right)
\end{aligned}
$$

For $n=2$,

$$
\begin{aligned}
p_{1}(x) & =p_{0}(x)+A_{1}\left(x-x_{0}\right) \\
& =f\left(x_{0}\right)-A_{1}\left(x-x_{0}\right) \\
& =f\left(x_{1}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
A_{1} & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
& =f\left[x_{0}, x_{1}\right]
\end{aligned}
$$

For $n=3$,

$$
\begin{aligned}
p_{2}(x) & =p_{1}(x)+A_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& =f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right) \\
& =f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+A_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& =f\left(x_{2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
A_{2} & =\frac{1}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}\left(f\left(x_{2}\right)-f\left(x_{0}\right)-f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right)\right) \\
& =f\left[x_{0}, x_{1}, x_{2}\right]
\end{aligned}
$$

and so on.
In general,

$$
A_{k}=f\left[x_{0}, \ldots, x_{k}\right]
$$

Definition 18 (Divided difference).

$$
\begin{aligned}
f\left[x_{0}, \ldots, x_{k}\right] & =\frac{f\left[x_{1}, \ldots, x_{k}\right]-f\left[x_{0}, \ldots, x_{k-1}\right]}{x_{k}-x_{0}} \\
f\left[x_{0}\right] & =f\left(x_{0}\right)
\end{aligned}
$$

is called the $k$ th order divided difference of $f(x)$.

## Exercise 10.

Given

$$
k(z)=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} x}{\sqrt{1-(\sin z)^{2}(\sin x)^{2}}}
$$

and

$$
\begin{aligned}
& k(1)=1.5709 \\
& k(4)=1.5727 \\
& k(6)=1.5751
\end{aligned}
$$

approximate $k(3.5)$.
Solution 10.
For the first order divided differences,

$$
k\left[x_{i}\right]=k\left(x_{i}\right)
$$

Therefore,

$$
\begin{aligned}
k[1] & =k(1) \\
& =1.5709 \\
k[4] & =k(4) \\
& =1.5727 \\
k[6] & =k(6) \\
& =1.5751
\end{aligned}
$$

For the second order divided differences,

$$
k\left[x_{i}, x_{j}\right]=\frac{k[i]-k[j]}{i-j}
$$

Therefore,

$$
\begin{aligned}
k[1,4] & =\frac{k[1]-k[4]}{1-4} \\
& =\frac{1.5727-1.5709}{3} \\
k[4,6] & =\frac{k[4]-k[6]}{4-6} \\
& =\frac{1.5751-1.5727}{2}
\end{aligned}
$$

For the third order divided differences,

$$
k\left[x_{i}, x_{j}, x_{k}\right]=\frac{k[i, j]-k[j, k]}{i-k}
$$

Therefore,

$$
k[1,4,6]=\frac{k[1,4]-k[4,6]}{1-6}
$$

Hence,

$$
\begin{aligned}
& A_{0}=k[1] \\
& A_{1}=k[1,4] \\
& A_{2}=k[1,4,6]
\end{aligned}
$$

## 4 Error in Interpolation

Definition 19 (Error in interpolation). The error in interpolation is defined to be

$$
e(x)=f(x)-p_{k}(x)
$$

Theorem 11.

$$
e(x)=f\left[x_{0}, \ldots, x_{k}, x\right] \prod_{i=0}^{k}\left(x-x_{i}\right)
$$

Theorem 12 (Rolle's Theorem). Let $f$ be continuous on $[a, b]$, with a continuous derivative on $(a, b)$, and $f(a)=f(b)=0$. Then, $\exists \varepsilon \in(a, b)$, such that

$$
f^{\prime}(\varepsilon)=0
$$

Theorem 13 (Lagrange's Mean Value Theorem). Let $f$ be continuous on $[a, b]$, with $a$ continuous derivative on $(a, b)$. Then, $\exists \varepsilon \in(a, b)$, such that

$$
f^{\prime}(\varepsilon)=\frac{f(b)-f(a)}{b-a}
$$

This theorem is a general case of

Theorem 14. Let $f$ be continuous on $[a, b]$ with $k$ continuous derivatives on $(a, b)$. Then, $\exists \varepsilon \in(a, b)$, such that

$$
f\left[x_{0}, \ldots, x_{k}\right]=\frac{f^{(k)}(\varepsilon)}{k!}
$$

Theorem 15. Let $f$ be continuous on $[a, b]$ with $n$ continuous derivatives on ( $a, b$ ), not necessarily distinct. Then, the interpolation polynomial is

$$
p_{n}(x)=\sum_{i=0}^{n} f\left[x_{0}, \ldots, x_{i}\right] \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

Theorem 16. Let $f$ be continuous on $[a, b]$ with $k$ continuous derivatives on $(a, b)$, not necessarily distinct.
If

$$
\left|\frac{f^{(k+1)}(\varepsilon)}{(k+1)!}\right| \leq M
$$

then, for $\forall \varepsilon \in\left[x_{0}, x_{k}\right]$,

$$
|e(x)| \leq\left|\frac{f^{(k+1)}(\varepsilon)}{(k+1)!} \prod_{i=0}^{k}\left(x-x_{i}\right)\right|
$$

### 4.1 Minimizing the Maximum Error

Theorem 17. The minimum error in interpolation is given by

$$
\min _{0 \leq x_{0} \leq \cdots \leq x_{k}}\left(\max \left|\prod_{i=0}^{k}\left(x-x_{i}\right)\right|\right)=\min _{0 \leq x_{0} \leq \cdots \leq x_{k}}\left(\max \left|p_{k+1}(x)\right|\right)
$$

Definition 20 (Chebyshev polynomial). The Chebyshev polynomial is defined as

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right)
$$

Theorem 18. If $x=\cos \theta$,

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& \vdots \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

And hence,

$$
T_{n}(x)=\prod_{i=0}^{n-1}\left(x-x_{i}\right)
$$

where

$$
x_{i}=\cos \left(\frac{(2 i+1) \pi}{2 n}\right)
$$

$\forall i \in\{0, \ldots, n-1\}$.

## Part III

## Solutions of Equations

## 1 Solving Non-linear Equations

### 1.1 Bisection Method

```
Algorithm 1 Bisection Method
    Let \(f\) be continuous on \([a, b]\), such that \(f(a) f(b)<0\).
    \(m \leftarrow \frac{a_{n}+b_{n}}{2}\)
    if \(f\left(a_{n}\right) f(m)<0\) then
        \(a_{n+1} \leftarrow a_{n}\)
        \(b_{n+1} \leftarrow m\)
        \(r_{n} \leftarrow b_{n+1}\)
    else
        \(a_{n+1} \leftarrow m\)
        \(b_{n+1} \leftarrow a_{n}\)
        \(r_{n} \leftarrow a_{n+1}\)
    end if
    \(r \leftarrow \lim _{n \rightarrow \infty} r_{n}\)
13: \(r\) is a root of the equation \(f(x)=0\)
```

Theorem 19. Let $f$ be continuous on $[a, b]$, such that $f(a) f(b)<0$, where $\left\{r_{n}\right\}$ are generated by the bisection algorithm. Then

$$
\lim _{n \rightarrow \infty} r_{n}=r
$$

such that $f(r)=0$, and

$$
\left|r_{n}-r\right|<\frac{b-a}{2^{n}}
$$

where $n \in \mathbb{N}$.

### 1.2 Regula Falsi

```
Algorithm 2 Regula Falsi Method
    Let \(f\) be continuous on \([a, b]\), such that \(f(a) f(b)<0\).
    if \(f\left(a_{n}\right) f\left(x_{n}\right)<0\) then
        \(b_{n+1} \leftarrow x_{n}\)
    else
        \(a_{n+1} \leftarrow x_{n}\)
    end if
    Solve \(p_{1}(x)=f\left(a_{n}\right)+f\left[a_{n}, b_{n}\right]\left(x-a_{n}\right)\) for \(x_{n}\)
    \(x_{n} \leftarrow \frac{f\left(b_{n}\right) a_{n}-f\left(a_{n}\right) b_{n}}{f\left(b_{n}\right)-f\left(a_{n}\right)}\)
    \(r \leftarrow \lim _{n \rightarrow \infty} r_{n}\)
```


## 2 Newton-Raphson Method

```
Algorithm 3 Newton-Raphson Method
    1: Choose \(x_{0} \in \mathbb{R}\) to be the first approximation of \(f(x)\).
    2: \(x_{n+1} \leftarrow x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\)
```

Exercise 11.
Solve

$$
x=a^{\frac{1}{m}}
$$

using Newton-Raphson method, and hence find $\sqrt{2}$.

## Solution 11.

$$
\begin{aligned}
x & =a^{\frac{1}{m}} \\
\therefore x^{m} & =a
\end{aligned}
$$

Therefore, let

$$
f(x)=x^{m}-a
$$

Therefore, the solution to the equation is the solution to

$$
f(x)=0
$$

Therefore,

$$
\begin{aligned}
f(x) & =x^{m}-a \\
\therefore f^{\prime}(x) & =m x^{m-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =\frac{x_{n}{ }^{m}-a}{m x_{n}{ }^{m-1}} \\
& =\frac{m x_{n}{ }^{m}-x_{n}{ }^{m}+a}{m x_{n}^{m-1}} \\
& =\frac{1}{m}\left(\frac{a}{x_{n}{ }^{m-1}}+(m-1) x_{n}\right)
\end{aligned}
$$

Therefore, if $m=2$,

$$
x_{n+1}=\frac{1}{2}\left(\frac{a}{x_{n}}+x_{n}\right)
$$

Therefore, if $a=2$,

$$
x_{n+1}=\frac{1}{2}\left(\frac{2}{x_{n}}+x_{n}\right)
$$

Therefore, let

$$
x_{0}=2
$$

Therefore,

$$
\begin{aligned}
& x_{1}=1.5 \\
& x_{2}=1.41666 \\
& x_{3}=1.414215685
\end{aligned}
$$

### 2.1 Fixed Point Iterations

Definition 21 (Fixed point). A fixed point of a function $g(x)$ is a point which satisfies

$$
x=g(x)
$$

Theorem 20 (Fixed point theorem). Let $g$ be a continuous function in $[a, b]$ such that

1. $\forall x \in[a, b], g(x) \in[a, b]$.
2. $g^{\prime}(x)$ exists and $\forall x \in[a, b],\left|g^{\prime}(x)\right|<1$, or $g(x)$ is Lipschitz, i.e. $|g(x)-g(y)| \leq k|x-y|$.
then,
3. $\exists!\xi$, such that $\xi \in[a, b]$ is a fixed point of $g(x)$.
4. $\forall x \in[a, b]$, the series $x_{n+1}=g\left(x_{n}\right)$ converges to $\xi$.

### 2.2 Secant Method

```
Algorithm 4 Secant Method
    1: Choose \(x_{0} \in \mathbb{R}\) to be the first approximation of \(f(x)\).
    2: \(x_{n+1} \leftarrow x_{n}-\frac{f\left(x_{n}\right)}{f\left[x_{n-1}, x_{n}\right]}\)
```


## 3 Rate of Convergence

Definition 22 (Rate of convergence). Let the series $x_{n}$ converge to $\xi$. If

$$
\lim _{n \rightarrow \infty} \frac{\left|e_{n+1}\right|^{2}}{\left|e_{n}\right|^{p}}=c
$$

where $c \neq 0 \in \mathbb{R}$. Then, $p$ is the rate of convergence. The rate of convergence is said to be linear if $p=1$, and quadratic if $p=2$.

### 3.1 Newton's Method

Theorem 21. The rate of convergence of Newton's method is 2.
Proof. Let $\xi$ be the root of $f(\xi)$.
Using the Taylor Series,

$$
\begin{aligned}
0 & =f(\xi) \\
& =f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(\xi-x_{n}\right)+\frac{1}{2} f^{\prime \prime}(\eta)\left(\xi-x_{n}\right)^{2}+\ldots
\end{aligned}
$$

where $\eta \in\left[x_{n}, \xi\right]$.
Let $f(x)$ be continuous with a continuous derivative, such that $f^{\prime}(\xi) \neq 0$.
Therefore $f^{\prime}\left(x_{n}\right) \neq 0$, for $x_{n} \approx \xi$.
Therefore,

$$
\begin{aligned}
0 & =f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(\xi-x_{n}\right)+\frac{1}{2} f^{\prime \prime}(\eta)\left(\xi-x_{n}\right)^{2} \\
\therefore-f\left(x_{n}\right) & =f^{\prime}\left(x_{n}\right)\left(\xi-x_{n}\right)+\frac{1}{2} f^{\prime \prime}(\eta)\left(\xi-x_{n}\right)^{2}+\ldots \\
\therefore-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} & =\left(\xi-x_{n}\right)+\frac{1}{2} \frac{f^{\prime \prime}(\eta)}{f^{\prime}\left(x_{n}\right)}\left(\xi-x_{n}\right) \\
\therefore \xi-\left(x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right) & =-\frac{1}{2} \frac{f^{\prime \prime}(\eta)}{f^{\prime}\left(x_{n}\right)}\left(\xi-x_{n}\right)^{2} \\
\therefore \xi-x_{n+1} & =-\frac{1}{2} \frac{f^{\prime \prime}(\eta)}{f^{\prime}\left(x_{n}\right)}\left(\xi-x_{n}\right)^{2} \\
\therefore e_{n+1} & =-\frac{1}{2} \frac{f^{\prime \prime}(\eta)}{f^{\prime}\left(x_{n}\right)} e_{n}^{2} \\
\therefore \frac{e_{n+1}}{e_{n}^{2}} & =\frac{1}{2} \frac{f^{\prime \prime}(\eta)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

Therefore, assuming $f^{\prime \prime}(\xi) \neq 0$,

$$
\begin{aligned}
\therefore \lim _{n \rightarrow \infty}\left|\frac{e_{n+1}}{e_{n}^{2}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{f^{\prime \prime}(\eta)}{2 f^{\prime}\left(x_{n}\right)}\right| \\
& =\frac{f^{\prime \prime}(\xi)}{2 f^{\prime}(\xi)} \\
& =c \\
& \neq 0
\end{aligned}
$$

Therefore the rate of convergence of Newton's Method is 2 .

### 3.2 Fixed Point Iterations

Theorem 22. The rate of convergence of fixed point iterations is 1 .
Proof.

$$
\begin{aligned}
\xi & =g(\xi) \\
& =g\left(x_{n}\right)+g^{\prime}(\eta)\left(\xi-x_{n}\right) \\
\therefore \xi-g\left(x_{n}\right) & =g^{\prime}(\eta)\left(\xi-x_{n}\right) \\
\therefore \xi-x_{n+1} & =g^{\prime}(\eta)\left(\xi-x_{n}\right) \\
\therefore e_{n+1} & =g^{\prime}(\eta) e_{n}
\end{aligned}
$$

If $g^{\prime}(\xi) \neq 0$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|} & =\lim _{n \rightarrow \infty}\left|g^{\prime}(\eta)\right| \\
& =g^{\prime}(\xi) \\
& =c \\
& \neq 0
\end{aligned}
$$

Therefore the rate of convergence if 1 .

### 3.3 Secant Method

Let

$$
\begin{aligned}
f(x) & =p_{1}(x)+\text { error } \\
& =f\left(x_{n}\right)+f\left[x_{n}, x_{n-1}\right]\left(x-x_{n}\right)+f\left[x_{n}, x_{n-1}, x\right]\left(x-x_{n}\right)\left(x-x_{n-1}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
0 & =f(\xi) \\
& =f\left(x_{n}\right)+f\left[x_{n}, x_{n-1}\right]\left(\xi-x_{n}\right)+f\left[x_{n}, x_{n-1}, x\right]\left(\xi-x_{n}\right)\left(\xi-x_{n-1}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-\frac{f\left(x_{n}\right)}{f\left[x_{n}, x_{n-1}\right]} & =\xi-x_{n}+\frac{f\left[x_{n}, x_{n-1}, \xi\right]}{f\left[x_{n}, x_{n-1}\right]}\left(\xi-x_{n}\right)\left(\xi-x_{n-1}\right) \\
\therefore \xi-x_{n}+\frac{f\left(x_{n}\right)}{f\left[x_{n}, x_{n-1}\right]} & =-\frac{f\left[x_{n}, x_{n-1}, \xi\right]}{f\left[x_{n}, x_{n-1}\right]}\left(\xi-x_{n}\right)\left(\xi-x_{n-1}\right) \\
\therefore \xi-x_{n+1} & =-\frac{f\left[x_{n}, x_{n-1}, \xi\right]}{f\left[x_{n}, x_{n-1}\right]}\left(\xi-x_{n}\right)\left(\xi-x_{n-1}\right) \\
\therefore e_{n+1} & =-\frac{f\left[x_{n}, x_{n-1}, \xi\right]}{f\left[x_{n}, x_{n+1}\right]} e_{n} e_{n-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|\left|e_{n-1}\right|} & =\left|\frac{f[\xi, \xi, \xi]}{f[\xi, \xi]}\right| \\
& =\left|\frac{f^{\prime \prime}(\xi)}{2 \varphi^{\prime}(\xi)}\right| \\
& =c
\end{aligned}
$$

Let $c$ be non zero.
Therefore,

$$
\left|e_{n+1}\right|=c\left|e_{n}\right|\left|e_{n-1}\right|
$$

Let the rate of convergence be $p$.
Therefore,

$$
\left|e_{n}\right|=b\left|e_{n-1}\right|^{p}
$$

For a large $n$,

$$
\left|e_{n+1}\right|=b\left|e_{n}\right|^{p}
$$

Therefore,

$$
\begin{aligned}
e_{n+1} & =\left.c|b| e_{n-1}\right|^{p}| | e_{n-1} \mid \\
& =b c\left|e_{n-1}\right|^{p+1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|e_{n+1}\right| & =\left.\left.b|b| e_{n-1}\right|^{p}\right|^{p} \\
& =b b^{p}\left|e_{n-1}\right|^{p^{2}}
\end{aligned}
$$

Therefore,

$$
c=b^{p}
$$

Therefore,

$$
p^{2}=p+1
$$

Therefore, the rate of convergence is

$$
\rho=\frac{1+\sqrt{5}}{2}
$$

## Part IV

## Linear Systems and Matrices

Theorem 23. Let $A$ be a $n \times n$ matrix. Then, the following statements are equivalent.

1. For any vector $b$ there is a unique solution for $A x=b$.
2. The homogeneous system $A x=0$ has only the trivial solution $x=0$.
3. $A$ is invertible.
4. $\operatorname{det} A \neq 0$.

## 1 Direct Methods

### 1.1 Back Substitution

```
Algorithm 5 Back Substitution
Input: \(b_{n \times 1}\), upper triangular \(A_{n \times n}\)
Output: \(A x=b\)
    \(x_{n} \leftarrow \frac{b_{n}}{a_{n n}}\)
    for all \(0<k<_{n} n\) do
        \(x_{k} \leftarrow \frac{b_{k}-\sum_{j=k+1}^{n} a_{k j} x_{j}}{a_{k k}}\)
    end for
```


### 1.2 LU Decomposition/Gaussian Elimination

```
Algorithm 6 LU Decomposition/Gaussian Elimination
Input: invertible \(A_{n \times n}\)
Output: lower triangular \(L_{n \times n}\), and upper triangular \(U_{n \times n}\), such that
    \(L U=A\)
    procedure RowOperation \(((P, i, j))\)
        \(R_{i} \leftarrow R_{i}-m_{i j} R_{j} \quad \triangleright R_{i}\) and \(R_{j}\) are the \(i\) th and \(j\) th rows of \(P\)
    end procedure
    \(A^{(1)} \leftarrow A\)
    \(b^{(1)} \leftarrow b\)
    for \(k=1, \ldots, n-1\) do
        for \(i=k+1, \ldots, n\) do
            \(m_{i k} \leftarrow \frac{a_{i k}(k)}{a_{k k}(k)}\)
            \(A^{(k+1)} \leftarrow\) RowOperation \(\left(A^{(k)}, i, k\right)\).
        end for
    end for
    if \(i>j\) then
        \(L_{i j} \leftarrow m_{i j}\)
    else if \(i=j\) then
        \(L_{i j} \leftarrow 1\)
    else
        \(L_{i j} \leftarrow 0\)
    end if
    \(U \leftarrow A^{(n)}\)
```

Theorem 24. Let the LU Decomposition/Gaussian Elimination of $A$ be

$$
A=L U
$$

Then the solution to the matrix equation

$$
A x=b j
$$

is given by

$$
L y=b
$$

where

$$
U x=y
$$

Theorem 25. The number of operations required for solving the matrix equation $A_{n \times n} x_{n \times 1}=b_{n \times 1}$ using LU Decomposition/Gaussian Elimination is O $\left(\frac{2}{3} n^{3}\right)$.

## 2 Error Analysis

Definition 23. The norm of the vector is defined to be a function from $\mathbb{R}^{n}$ to $\mathbb{R}$ which satisfies all of the following.

1. $\forall x \in \mathbb{R}^{n},\|x\| \geq 0$.
2. $\|x\|=0 \Longleftrightarrow x=0$.
3. $\forall x \in \mathbb{R}, \forall \alpha \in \mathbb{R},\|\alpha x\|=|\alpha|\|x\|$.
4. $\forall x, y \in \mathbb{R},\|x+y\| \leq\|x\|+\|y\|$.

Definition 24 (Infinity norm). The function $\max _{1 \leq i \leq n}\left|y_{i}\right|$ is defined to be the infinity norm of the vector $y$.

Definition 25 ( $L_{1}$ norm). The function $\sum_{i=1}^{n}\left|y_{i}\right|$ is defined to be the $L_{1}$ norm of the vector $y$.

Definition 26 ( $L_{2}$ norm). The function $\sqrt{\sum_{i=1}^{n} y_{i}{ }^{2}}$ is defined to be the $L_{2}$ norm of the vector $y$.

Definition 27 (Matrix norm). A function from $\mathbb{R}^{n^{2}}$ to $\mathbb{R}$, which for every $A, B \in \mathbb{R}^{n^{2}}$ and for any $\alpha \in \mathbb{R}$, satisfies the following conditions is called the matrix norm of a matrix $A$.

1. $\|A\| \geq 0$.
2. $\|A\|=0 \Longleftrightarrow A=0$.

Theorem 26. If $\|\cdot\|$ is a vector norm on $\mathbb{R}^{n}$, then the function

$$
\|A\|=\max _{\|x\|=1}\|A x\|
$$

is a matrix norm.

Definition 28 (Induced norm). Let $\|\cdot\|$ be a vector norm on $\mathbb{R}^{n}$. The function

$$
\|A\|=\sup _{\|x\|=1}\|A x\|
$$

is called the induced norm.
Definition 29 (Induced infinity norm). The function

$$
\|A\|_{\infty}=\sup _{\|x\|_{\infty}=1}\|A x\|_{\infty}
$$

is called the induced infinity norm.

## Theorem 27.

$$
\sup _{\|x\|=1}\|A x\|=\sup _{\|x\| \leq 1}\|A x\|=\sup _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}
$$

## Theorem 28.

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

where $A=\left(a_{i j}\right)$.

## Theorem 29.

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

Theorem 30. $\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i j}\right)^{2}}$ is not an induced norm, for any vector norm.
Definition 30 (Frobinus norm).

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i j}\right)^{2}}
$$

is called the Frobinus norm of $A$.
Theorem 31. The Frobinus norm is a matrix norm.
Definition 31. The spectral radius of a matrix $A$ is defined as

$$
\rho(A)=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|
$$

where $\lambda_{i}$ are the eigenvalues of $A$.

Theorem 32.

$$
\|A\|_{2}=\sqrt{\rho\left(A^{\top} A\right)}
$$

Theorem 33. For any matrix induced norm

$$
\rho(A) \leq\|A\|
$$

Theorem 34. For any $\varepsilon>0$, there exists a norm for which

$$
\|A\| \leq \rho(A)+\varepsilon
$$

### 2.1 Error in $b$

Let $x$ be the ideal solution, and let $\widetilde{x}$ be the calculated solution.

$$
e=x-\tilde{x}
$$

Therefore, the ideal system is

$$
A x=b
$$

and the calculated system is

$$
A \widetilde{x}=\widetilde{b}
$$

Therefore,

$$
e=x-\tilde{x}
$$

Let

$$
\begin{aligned}
r & =b-\widetilde{b} \\
& =b-A \widetilde{x}
\end{aligned}
$$

be the residue.
Therefore,

$$
\begin{aligned}
A e & =A(x-\widetilde{x}) \\
& =A x-A \widetilde{x} \\
& =b-A \widetilde{x} \\
& =r
\end{aligned}
$$

Therefore,

$$
e=A^{-1} r
$$

Therefore,

$$
\begin{aligned}
\|e\| & =\left\|A^{-1} r\right\| \\
& \leq\left\|A^{-1}\right\|\|r\|
\end{aligned}
$$

Therefore,

$$
\frac{\|e\|}{\|x\|}=\frac{\|x-\widetilde{x}\|}{\|x\|}
$$

Therefore,

$$
\begin{aligned}
\|b\| & =\|A x\| \\
& \leq\|A\|\|x\| \\
\therefore \frac{1}{\|x\|} & \leq\|A\| \frac{1}{\|b\|} \\
\therefore \frac{\|e\|}{\|x\|} & \leq\|e\|\|A\| \frac{1}{\|b\|} \\
& \leq\|A\| \frac{1}{\|b\|}\left\|A^{-1}\right\|\|r\| \\
& \leq\|A\|\left\|A^{-1}\right\| \frac{\|r\|}{\|b\|}
\end{aligned}
$$

Definition 32 (Condition number).

$$
\operatorname{cond}(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of $A$.
Theorem 35. For any matrix A,

$$
\operatorname{cond}(A) \geq 1
$$

### 2.2 Estimation of $\operatorname{cond}(A)$

Theorem 36. The eigenvalues of $A^{-1}$ are $\frac{1}{\lambda_{i}}$, where $\lambda_{i}$ are the eigenvalues of $A$.

Proof. Let $u_{i}$ be the eigenvectors of $A$, corresponding to $\lambda_{i}$. Therefore,

$$
A u_{i}=\lambda_{i} u_{i}
$$

Therefore

$$
\begin{aligned}
A^{-1} A u_{i} & =A^{-1} \lambda_{i} u_{i} \\
\therefore u_{i} & =A^{-1} \lambda_{1} u_{i} \\
\therefore \frac{1}{\lambda_{i}} u_{i} & =A^{-1} u_{i}
\end{aligned}
$$

Therefore, the eigenvalues of $A^{-1}$, corresponding to $u_{i}$, are $\frac{1}{\lambda_{i}}$.

## Theorem 37.

$$
\operatorname{cond}(A) \geq \frac{\max _{i}\left|\lambda_{i}\right|}{\min _{i}\left|\lambda_{i}\right|}
$$

where $\lambda_{i}$ are the eigenvalues of $A$.
Proof.

$$
\begin{aligned}
\rho(A) & =\max _{i}\left|\lambda_{i}\right| \\
\therefore \rho\left(A^{-1}\right) & =\max _{i} \frac{1}{\left|\lambda_{i}\right|} \\
& =\frac{1}{\min _{i}\left|\lambda_{i}\right|}
\end{aligned}
$$

Therefore,

$$
\rho(A) \rho\left(A^{-1}\right)=\frac{\max _{i}\left|\lambda_{i}\right|}{\min _{i}\left|\lambda_{i}\right|}
$$

Therefore, as $\rho(A) \geq\|A\|$, and $\rho\left(A^{-1}\right) \geq\left\|A^{-1}\right\|$,

$$
\begin{aligned}
\operatorname{cond}(A) & \geq \rho(A) \rho\left(A^{-1}\right) \\
\therefore \operatorname{cond}(A) & \geq \frac{\max _{i}\left|\lambda_{i}\right|}{\min _{i}\left|\lambda_{i}\right|}
\end{aligned}
$$

Theorem 38. For any non-invertible matrix $B$,

$$
\operatorname{cond}(A) \geq \frac{\|A\|}{\|A-B\|}
$$

Proof. If $B$ is non-invertible, then $\exists x \neq 0$, such that

$$
B x=0
$$

Therefore,

$$
\begin{aligned}
\|A-B\|\|x\| & \geq\|(A-B) x\| \\
& \geq\|A x\| \\
& \geq \frac{\|x\|}{\left\|A^{-1}\right\|}
\end{aligned}
$$

Therefore, as $x \neq 0$,

$$
\|x\| \neq 0
$$

Therefore,

$$
\begin{aligned}
\|A-B\| & \geq \frac{1}{\left\|A^{-1}\right\|} \\
\therefore\|A\|\left\|A^{-1}\right\| & \geq\|A\| \frac{1}{\|A-B\|} \\
\therefore \operatorname{cond}(A) & \geq\|A\| \frac{1}{\|A-B\|}
\end{aligned}
$$

### 2.3 Error in $A$

Let $x$ be the ideal solution, and let $\widetilde{x}$ be the calculated solution.
Let

$$
\varepsilon=\left(\varepsilon_{i j}\right)
$$

be the error in $A$.
Let

$$
e=x-\widetilde{x}
$$

Therefore, the ideal system is

$$
A x=b
$$

and the calculated system is

$$
(A+\varepsilon) \widetilde{x}=b
$$

Therefore,

$$
\begin{aligned}
(A+\varepsilon) \widetilde{x}-A x & =0 \\
\therefore A \widetilde{x}-A x+\varepsilon \widetilde{x} & =0 \\
\therefore \varepsilon \widetilde{x} & =A(x-\widetilde{x}) \\
& =A e
\end{aligned}
$$

Therefore,

$$
e=A^{-1} \varepsilon \widetilde{x}
$$

Therefore

$$
\begin{aligned}
& \|e\| \\
\therefore & =\left\|A^{-1}\right\|\|\varepsilon\|\|\widetilde{x}\| \\
& \leq\|A\|\left\|A^{-1}\right\| \frac{\|\varepsilon\|}{\|A\|} \\
\therefore & \frac{\|e\|}{\|\widetilde{x}\|} \leq \operatorname{cond}(A) \frac{\|\varepsilon\|}{\|A\|}
\end{aligned}
$$

### 2.4 Iterative Improvement

```
Algorithm 7 Iterative Improvement
    function LUSolUtion \((A x=b)\)
        \(L, U \leftarrow\) LU Decomposition/Gaussian Elimination \((A)\)
        Solve \(L y=b\)
        Solve \(U x=y\) return \(x\)
    end function
    Solve \(A x=b\)
    \(\widetilde{x}^{(1)} \leftarrow x\)
    for \(i=1,2, \ldots\) do
        \(r^{(n)} \leftarrow b-A \widetilde{x}^{(n)}\)
        \(\operatorname{LUSOLUTion}\left(A e^{(n)}=r^{(n)}\right)\)
        \(\operatorname{LUSOLUtion}\left(A e^{(n)}=r^{(n)}\right)\)
    end for
    \(\widetilde{x}^{(n+1)} \leftarrow \widetilde{x}^{(n)}+e^{(n)}\)
```

Theorem 39. Consider a fixed point method

$$
f(x)=A x-b
$$

where $A$ is a matrix, and $x$ and $b$ are vectors.
If $g$ maps a closed set $S \subset \mathbb{R}^{n}$ to itself, and $g$ is contracting, i.e. for $k<1$,

$$
\|g(x)-g(y)\| \leq k\|x-y\|
$$

then,

1. There exists a fixed point $\xi$ in $S$.
2. The fixed point $\xi$ is unique.
3. All series of the form $x^{(0)}, x^{(1)}, \ldots$, such that $x^{(n+1)}=g\left(x^{(n)}\right)$ converge to the fixed point $\xi$, i.e.,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|\xi-x^{(n)}\right\|=0 \\
& \text { i.e., } \\
& \left\|\xi-x^{(n)}\right\| \leq \frac{k}{1-k}\left\|x^{(n)}-x^{(n-1)}\right\| \\
& \leq \frac{k^{n}}{1-k}\left\|x^{(1)}-x^{(0)}\right\|
\end{aligned}
$$

Theorem 40. As the $L U$ decomposition of $A$ needs to be calculated only once, the algorithm is $\mathrm{O}\left(n^{2}\right)$.

## 3 Gauss-Jacobi Method

Definition 33. A matrix $C$ is called an approximate inverse to the matrix $A$ if in some norm,

$$
\|I-C A\|=k
$$

such that

$$
k<1
$$

Theorem 41. If $C$ is an approximate inverse to $A$, then $A$ and $C$ are invertible matrices.

Theorem 42. Let $D$ be the matrix containing only the diagonal elements of $A$. Then, $D^{-1}$ is an approximate inverse to $A$.

Definition 34 (Gauss-Jacobi Method). The iterative method

$$
x^{(n+1)}=x^{(n)}+D^{-1}\left(b-A x^{(n)}\right)
$$

is called the Gauss-Jacobi Method.
Theorem 43. The number of operations in the Gauss-Jacobi Method is O $\left(n^{2}\right)$.
Theorem 44. Let $D$ be the matrix containing only the diagonal elements of A. Then

$$
D_{i j}^{-1}=\frac{1}{a_{i i}} \delta_{i j}
$$

where $\delta_{i j}$ is the Kronecker delta function.

```
Algorithm 8 Gauss-Jacobi Method
    : Find lower triangular \(L\), diagonal \(D\), and upper triangular \(U\), such that
    \(A=L+D+U\)
    \(C \leftarrow D^{-1}\)
    \(B_{J} \leftarrow(I-C A)=-C(L+U) \quad \triangleright\left\|B_{J}\right\|\) is called the contraction
    coefficient.
    \(d_{J} \leftarrow C b\)
    \(x^{(n+1)} \leftarrow B x^{(n)}+d\)
```

```
Algorithm 9 Gauss-Seidel Method
    1: Find lower triangular \(L\), diagonal \(D\), and upper triangular \(U\), such that
    \(A=L+D+U\)
    \(C \leftarrow(L+D)^{-1}\)
    \(B_{G S} \leftarrow(I-C A)=-C U\)
    \(d_{G S} \leftarrow C b\)
    \(x^{(n+1)} \leftarrow B x^{(n)}+d\)
```


## Part V

## Numerical Differentiation and Integration

## 1 Rule, Nodes, and Weights

Consider a linear operator $L$, i.e.,

$$
L(a f+b g)=a L(f)+b L(g)
$$

where $f$ and $g$ are two functions.
Let $p_{k}$ be the interpolation polynomial of $f(x)$.
Therefore,

$$
\begin{aligned}
e(x) & =f(x)-p_{k}(x) \\
\therefore L(e) & =L(f)-L\left(p_{k}\right)
\end{aligned}
$$

For example, for Lagrange interpolation,

$$
p_{k}(x)=\sum_{i=0}^{k} f\left(x_{i}\right) l_{i}(x)
$$

where all $l_{i}$ are Lagrange polynomials with respect to the corresponding $x_{i}$. Therefore,

$$
L\left(p_{k}\right)=\sum_{i=0}^{k} f\left(x_{i}\right) L\left(l_{i}\right)
$$

Therefore,

$$
L(f) \approx \sum_{i=0}^{k} w_{i} f\left(x_{i}\right)
$$

where $f\left(x_{i}\right)$ are called the nodes, $w_{i}$ are called the weights, and the entire expression is called the rule.

## 2 Numerical Differentiation

$2.1 k=1$

$$
p_{1}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)
$$

Therefore,

$$
\begin{aligned}
D_{a}(f) & \approx D_{a}\left(p_{1}\right) \\
\therefore f^{\prime}(x) & \approx f\left[x_{0}, x_{1}\right]
\end{aligned}
$$

Let

$$
\begin{aligned}
a & =x_{0} \\
h & =x_{1}-x_{0}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f^{\prime}(a) & \approx f[a, a+h] \\
& \approx \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

Therefore,

$$
|E(f)|=\left|\frac{1}{2} h f^{\prime \prime}(\eta)\right|
$$

where $\eta \in[a, a+h]$.
This is called the forward difference scheme.
Let

$$
\begin{aligned}
a & =x_{0} \\
h & =x_{0}-x_{1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f^{\prime}(a) & \approx f[a, a-h] \\
& \approx \frac{f(a)-f(a-h)}{h}
\end{aligned}
$$

Therefore,

$$
|E(f)|=\left|\frac{1}{2} h f^{\prime \prime}(\eta)\right|
$$

where $\eta \in[a, a+h]$.
This is called the backward difference scheme.

Let $a=\frac{x_{0}-x_{1}}{2}$, and $h=\frac{x_{1}-x_{0}}{2}$.

$$
\begin{aligned}
& a=\frac{x_{0}-x_{1}}{2} \\
& h=\frac{x_{1}-x_{0}}{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f^{\prime}(a) & \approx f[a-h, a+h] \\
& \approx \frac{f(a-h)-f(a+h)}{2 h}
\end{aligned}
$$

Therefore,

$$
|E(f)|=\left|\frac{h^{2}}{6} f^{\prime \prime \prime}(\eta)\right|
$$

where $\eta \in[a, a+h]$.
This is called the central difference scheme.

## $2.2 k=2$

$$
p_{2}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

Therefore,

$$
\begin{aligned}
D_{a}(f) & \approx D_{a}\left(p_{2}\right) \\
\therefore f^{\prime}(x) & \approx f\left[x_{0}, x_{1}\right]+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{1}+x-x_{0}\right)
\end{aligned}
$$

Let

$$
a=x_{0}
$$

Therefore,

$$
f^{\prime}(a) \approx f\left[a, x_{1}\right]+f\left[a, x_{1}, x_{2}\right]\left(a-x_{1}\right)
$$

### 2.3 Error Analysis

Let

$$
\begin{aligned}
f(x) & =p_{k}(x)+e(x) \\
& =p_{k}(x)+f\left[x_{0}, \ldots, x_{k}, x\right] \prod_{i=0}^{k}\left(x-x_{i}\right)
\end{aligned}
$$

Let

$$
\psi_{k}(x)=\prod_{i=0}^{k}\left(x-x_{i}\right)
$$

Therefore,

$$
f(x)=p_{k}(x)+f\left[x_{0}, \ldots, x_{k}, x\right] \psi_{k}(x)
$$

Therefore,

$$
f^{\prime}(x)=p_{k}{ }^{\prime}(x)+\frac{\mathrm{d}}{\mathrm{~d} x}\left(f\left[x_{0}, \ldots, x_{k}, x\right] \psi_{k}(x)\right)
$$

By definition,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f\left[x_{0}, \ldots, x_{k}, x\right]=f\left[x_{0}, \ldots, x_{k}, x, x\right]
$$

Therefore,

$$
f^{\prime}(x)=p_{k}{ }^{\prime}(x)+f\left[x_{0}, \ldots, x_{k}, x, x\right] \psi(x)+f\left[x_{0}, \ldots, x_{k}, x\right] \psi_{k}{ }^{\prime}(x)
$$

Therefore,

$$
\begin{aligned}
e(x) & =f^{\prime}(x)-p_{k}{ }^{\prime}(x) \\
& =f\left[x_{0}, \ldots, x_{k}, x, x\right] \psi_{k}(x)+f\left[x_{0}, \ldots, x_{k}, x\right] \psi_{k}{ }^{\prime}(x)
\end{aligned}
$$

Therefore,

$$
e(x)=\frac{f^{(k+2)}(\xi)}{(k+2)!} \psi_{k}(x)+\frac{f^{(k+1)}(\eta)}{(k+1)!} \psi_{k}^{\prime}(x)
$$

where $\xi, \eta \in\left[x_{0}, x_{k}\right]$.

