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1 Lecturer Information
Naftali Landsberg

Office: Kitot 215
Telephone: +972 3-640-6422
E-mail: naftali.landsberg@gmail.com
Office Hours: Sundays, 12:00

2 Recommended Reading
1. B. P. Lathi, Linear Systems and Signals, Oxford University Press (2nd

Edition), 2005

2. Di Stefano et al, Feedback and Control Systems (SchaumâĂŹs Outline
Series)

3. DâĂŹAzzo, J. and C. Houpis, Linear Control System Analysis & Design.
4th ed., McGraw Hill, 1995

4. K. Ogata, Modern Control Engineering, Prentice Hall (5th edition 2005)

5. K. Ogata, Discrete-time control systems, Prentice Hall (2nd Edition
1995)
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3 Classification of Systems
1. Linear and Non-linear

2. Causal and Non-causal

3. Time invariant and Time variant

Definition 1. A system is said to be linear if it satisfies the following criteria.

1. Superposition
If u1 → y1 and u2 → y2, then (u1 + u2)→ (y1 + y3).

2. Homogenity
If u→ y, then αu→ αy, where α is a constant.

Theorem 1. Every linear system can be described by an ODE of the type

y(n) + an−1y
(n−1) + · · ·+ a1y

(1) + a0y = bmu
(m) + · · ·+ b1u

(1) + b0u

where m < n.

4 Time-domain Analysis of Linear Time-invariant
Systems

Definition 2 (Step function).

δ−1(t) =

0 ; t < 0
1 ; t > 0

Definition 3 (Delta function).

δ(t) =

0 ; t 6= 0
→∞ ; t = 0

Definition 4 (Ramp function).

δ−2(t) =

0 ; t < 0
t ; t ≥ 0

Theorem 2.

f(t)δ(t) = f(0)δ(t)

3



Theorem 3.
tˆ

0−

f(τ)δ(τ) =
tˆ

0−

f(0)δ(τ) dτ

= f(0) , t > 0

Theorem 4.
tˆ

0−

f(τ)δ(t− τ) dτ =
tˆ

0−

f(t)δ(t− τ) dτ

= f(t)
tˆ

0−

δ(t− τ) dτ

= f(t)

Theorem 5.
tˆ

0−

f(τ)δ(t− τ) dτ = f(t)

= f(t) ∗ δ(t)

Exercise 1.
Find the solution for

y(2) + 5y(1) + 6y = u(t)
y(0−) = 1
y′(0−) = 2
u(t) = δ−1(t)

Solution 1.

y(2) + 5y(1) + 6y = u(t)

Therefore, the corresponding homogeneous ODE is

y(2) + 5y(1) + 6y = 0

Therefore, the corresponding characteristic equation is

λ2 + 5λ+ 6 = 0
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Therefore,

λ1 = −2
λ2 = −3

Therefore, the ZIR solution is

yZIR(t) = Aeλ1t +Beλ2t

= Ae−2t +Be−3t

Substituting the initial conditions,

A+B = 1
−2A− 3B = 2

Therefore, the matrix form of the system of equations is(
1 1
−2 −3

)(
A
B

)
=
(

1
2

)

Therefore, solving,

A = 5
B = −4

Therefore,

yZIR(t) = 5e−2t − 4e−3t

The ZSR solution is,

yZSR(t) = αe−2t + βe−3t + yp

As u(t) = δ−1(t),

y = c

Therefore, substituting into the ODE, considering zero initial conditions, for
t > 0,

6c = 1

Therefore,

yZSR(t) =
(
αe−2t + βe−3t + 1

6

)
δ−1(t)
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As this is a ZSR case, the solution is zero for t < 0. Hence, δ−1(t) can be
written on the right side. This is not necessarily true for the ZIR case.
Therefore,

yZSR(0) = 1
6 + α + β

Also, as the ZSR solution is zero at zero,

0 = 1
6 + α + β

Differentiating yZSR(t),

y′ZSR(0) = (−2α− 3β)δ−1(t) +
(

1
6 + αe−2t + βe−3t

)
δ(t)

As f(t)δ(t) = f(0)δ(t),

y′ZSR(0) = (−2α− 3β)δ−1(t) +
(

1
6 + α + β

)
δ(t)

= (−2α− 3β)δ−1(t)

Therefore, solving,

α = −1
2

β = 1
3

Therefore,

ytotal(t) = yZSR + yZIR

=
(

1
6 −

1
2e
−2t + 1

3e
−3t
)
δ−1(t) + 5e−2t − 4e−3t

= 1
6 + 9

2e
−2t − 11

3 e
−3t , t > 0

The same solution can be found by solving for u(t) = δ(t) and then convolving
the solution thus found, and the actual input u(t) = δ−1(t).
Therefore, the new ODE is

y(2) + 5y(1) + 6y = δ(t)
y(0−) = 0

y − (0−) = 0
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The impulse response yδ can be calculated by finding the response for the
step function yδ−1 ZSR(t), and then differentiating it.

yδ−1 ZSR(t) =
(

1
6 −

1
2e
−2t + 1

3e
−3t
)
δ−1(t)

∴ yδZSR(t) = d
dt yδ−1 ZSR(t)

=
(
e−2t − e−3t

)
δ−1(t) +

(
1
6 −

1
2e
−2t + 1

3e
−3t
)
δ(t)

Else, the impulse response yδ can be calculated by integrating the ODE
around zero and finding the new initial conditions for t = 0+.
Therefore,

y(2) + 5y(1) + 6y = δ(t)

∴

0+ˆ

0−

y′′ dt+
0+ˆ

0−

5y′ dt+
0+ˆ

0−

6y dt = 1

Let

y′′ = 1
a
δ(t)

∴ y′ = 1
a
δ−1(t)

∴ y′ = 1
a
δ−2(t)

Therefore, substituting,

y′(0+)− y′(0−) + 5
(
y(0+)− y(0−)

)
+ 6

ˆ y

∣∣∣∣∣
0+
−
ˆ
y

∣∣∣∣∣
0−

 = 1

Substituting the initial conditions,

y′(0+) = 1

Similarly for t > 0.
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5 Impulse Response

5.1 Finding the General Solution for an ODE
n∑
k=0

aky
(k)(t) =

m∑
k=0

bku
(k)(t)

y(0−) = 0
y(1)(0−) = 0

...
y(n−1)(0−) = 0

where
u(t) = f(t)δ−1(t)

1. Solve
n∑
k=0

aky
(k)(t) = u(t)

y(0−) = 0
y(1)(0−) = 0

...
y(n−1)(0−) = 0

where
u(t) = f(t)δ−1(t)

(a) Solve
n∑
k=0

aky
(k)(t) = δ(t)

y(0−) = 0
y(1)(0−) = 0

...
y(n−1)(0−) = 0

where
u(t) = f(t)δ−1(t)
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i. Solve
n∑
k=0

aky
(k)(t) = 0

y(0−) = 0
y(1)(0−) = 0

...
y(n−2)(0−) = 0

y(n−1)(0−) = 1
an

ii. Let this solution be yδ

2. Let this solution be y(t).
Therefore,

yf (t) =
tˆ

0

f(τ)yδ(t− τ) dτ

3. The solution for
n∑
k=0

aky
(k)(t) =

m∑
k=0

bku
(k)

y(0−) = 0
y(1)(0−) = 0

...
y(n−1)(0−) = 0

where

u(t) = f(t)δ−1(t)

is

yZSR(t) =
n∑
k=0

bkyf
(k)(t)
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Definition 5 (Convolution).

h(t) ∗ f(t) =
∞̂

−∞

h(τ)f(t− τ) dτ

=
∞̂

−∞

h(t− τ)f(τ) dτ

Theorem 6. If

h(t < 0) = 0
f(t < 0) = 0

then

h(t) ∗ f(t) =
tˆ

0

h(τ)f(t− τ) dτ

=
tˆ

0

h(t− τ)f(τ) dτ

Exercise 2.
Let

h(t) =
(
Ae−αt +Be−βt

)
δ−1(t)

f(t) = sin(at)δ−1(t)

Find h(t) ∗ f(t).

Solution 2.

h(t) ∗ f(t) =
tˆ

0

h(t− τ)f(τ) dτ

=
tˆ

0

(
Ae−α(t−τ) +Be−β(t−τ)

)
sin(αt) dτ
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6 Laplace Transform
Definition 6 (One-sided Laplace transform).

L
{
y(t)

}
=
∞̂

0−

y(t)e−st dt

= Y (s)

Theorem 7. If f(0−) = 0,

L
{
f (n)(t)

}
= snF (s)

If f(0−) 6= 0,

L
{
f (n)(t)

}
= snF (s)−

n∑
i=1

sn−if (i−1)(0)

Theorem 8. If

F (s) = L
{
f(t)

}

f(t) F (s)
δ(t) 1
δ(t− t0) e−st0

δ−1(t) 1
s

e−atδ−1(t) 1
s+a

Exercise 3.
Solve

y′′ + 5y′ + 6y = u(t) + 2u′(t)
y(0−) = 1
y′(0−) = 2

where

u(t) = δ−1(t)
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Solution 3.

y′′ + 5y′ + 6y = u(t) + 2u′(t)
∴ L

{
y′′ + 5y′ + 6y

}
= L

{
u(t) + 2u′(t)

}
Therefore,

2
(
sU(s)− u(0)

)
= s2Y (s)− sy(0−)− y′(0−) + 5

(
sY (s)− y(0−)

)
+ 6Y (s)

∴ Y (s)
(
s2 + 5s+ 6

)
= U(s) (2s+ 1) + sy(0−) + 5y(0−)− 2u(0−)

Therefore,

Y (s) = 2s+ 1
(s+ 2)(s+ 3)U(s) + s+ 7

(s+ 2)(s+ 3)

= 2s+ 1
s(s+ 2)(s+ 3) + s+ 7

(s+ 2)(s+ 3)
As u(t) = δ−1(t),

U(s) = 1
s

Let

Therefore, solving,

A = 1
6

B = 3
2

C = −5
3

Therefore,

Therefore,

Theorem 9. Let

F (s) = A0

(s− λ)q + A1

(s− λ)q−1 + · · ·+ Aq−1

s− λ
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Then

Ak = 1
k!

dk
dsk

(
Q(s)

)∣∣∣∣∣∣
s=λ

where

k ∈ {0, . . . , q − 1}
Q(s) = (s− λ)qF (s)

Theorem 10. The solution of
n∑
k=0

aky
(k) =

m∑
k=0

bku
(k)

where

u(t) = f(t)δ−1(t)

is

Y (s) = B(s)
A(s)︸ ︷︷ ︸

transfer function

U(s)

︸ ︷︷ ︸
contribution of the input

+ Q(s)
A(s)︸ ︷︷ ︸

contribution of the initial conditions
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