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Part I

Basic Definitions and Theorems
1 Sequences and Series

Definition 1 (Convergent series). The series
∞∑
n=0

an is said to converge if the

sequence of partial sums SN =
N∑
n=0

an converges to a finite limit.

Definition 2 (Pointwise convergence of sequence of functions). Let D ⊆ R,
and {fn(x) : D → R} be a sequence of functions. fn(x) is said to converge
pointwise, to a limit function f(x) on D, if ∀ε > 0, ∀x ∈ D, ∃N ∈ N, such
that ∀n > N ,

∣∣fn(x)− f(x)
∣∣ < ε.

Definition 3 (Uniform convergence of sequence of functions). Let D ⊆ R,
and {fn(x) : D → R} be a sequence of functions. fn(x) is said to converge
uniformly to f(x) on D if ∀ε > 0, ∃N ∈ N, such that, ∀n > N , ∀x ∈ D,∣∣fn(x)− f(x)

∣∣ < ε.

Theorem 1. If
{
fn(x)

}∞
n=1 are continuous functions, and fn(x) U−→ f(x), then

f(x) is also continuous.

Theorem 2. If a sequence of functions converges pointwise as well as uni-
formly, then the limit function must be the same.

Theorem 3 (Weierstrass M-test). If |uk(x)| ≤ ck on D for k ∈ {1, 2, 3, . . . }
and the numerical series

∞∑
k=1

ck converges, then the series of functions
∞∑
k=1

uk(x)
converges uniformly on D.

2 Periodic Functions
Definition 4 (Periodic functions). A function f : R → R is said to be
periodic if ∃0 < L ∈ R, such that ∀x ∈ R,

f(x) = f(x+ L)

If there exists a minimum L, it is called L∗, the fundamental period.For a function
f(x) = k, as any

positive number is a
period, there is no

minimum L. Hence,
@L∗.
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3 Odd and Even Functions
Definition 5 (Odd functions). A function is said to be odd if f(−x) = −f(x).

Odd functions are
symmeteric about the
origin.

Definition 6 (Even functions). A function is said to be even if f(−x) = f(x).
Odd functions are
symmeteric about the
y-axis.

Theorem 4. If h(x) is odd,

L̂

−L

h(x) dx = 0
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Part II

Introduction to Fourier Series
1 Real Fourier Series
Definition 7. Let f : [−L,L]→ R, where L > 0. If ∀x ∈ [−L,L], then

f(x) = 1
2a0 +

∞∑
n=1

(
an cos

(
nπ

L
x
)

+ bn sin
(
nπ

L
x
))

Theorem 5. Let L > 0, m ∈W, n ∈W.
Then

L̂

−L

cos
(
mπ

L
x
)

cos
(
nπ

L
x
)

dx =


0 ; m 6= n

L ; m = n 6= 0
2L ; m = n = 0

Proof.

E =
L̂

−L

cos
(
mπ

L
x
)

cos
(
nπ

L
x
)

dx

=
L̂

−L

1
2

(
cos

(
(m+ n)π

L
x
)

+ cos
(

(m− n)π
L
x
))

dx∵ cosα cosβ =
cos(α+β)

2 + cos(α−β)
2

If m 6= n,

E = 1
2

sin
(
(m+ n) π

L
x
)

(m+ n) π
L

+
sin

(
(m− n) π

L
x
)

(m− n) π
L


∣∣∣∣∣∣∣
L

−L

= 0

If m = n 6= 0,

E =
L̂

−L

1
2

(
cos

(
2mπ

L
x
)

+ 1
)

dx

= 1
2

L̂

−L

cos
(

2mπ

L
x
)

dx+ 1
2x
∣∣∣∣∣
L

−L

= L
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If m = n = 0,

E =
L̂

−L

cos(0) cos(0) dx

= x|L−L
= 2L

Theorem 6. Let L > 0, m ∈ N, n ∈ N.
Then

L̂

−L

sin
(
mπ

L
x
)

sin
(
nπ

L
x
)

dx =

0 ; m 6= n

L ; m = n

Theorem 7. Let L > 0, m ∈W, n ∈W.
Then

L̂

−L

sin
(
mπ

L
x
)

cos
(
nπ

L
x
)

dx = 0

Assuming f(x) is known, and assuming that it can be integrated term by
term,

L̂

−L

f(x) dx =
L̂

−L

1
2a0 dx+

∞∑
n=1

an

L̂

−L

cos
(
n
π

L
x
)

dx+ bn

L̂

−L

sin
(
n
π

L
x
)

dx

∴

L̂

−L

f(x) dx = 1
2

L̂

−L

a0 dx

= 1
2a0 · 2L

∴ a0 = 1
L

L̂

−L

f(x) dx

Similarly, multiplying the series with cos
(
m π

L
x
)

for m 6= 0 and integrating,

am = 1
L

L̂

−L

f(x) cos
(
m
π

L
x
)

dx
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for m ∈ N.
Similarly, for m ∈ N \ {0},

bm = 1
L

L̂

−L

f(x) sin
(
m
π

L
x
)

dx

Definition 8. The expansion

f(x) ≈ 1
2a0 +

∞∑
i=1

(
an cos

(
n
π

L
x
)

+ bn sin
(
n
π

L
x
))

where, for m ∈ N,

am = 1
L

L̂

−L

f(x) cos
(
m
π

L
x
)

dx

and, for m ∈ N \ {0},

bm = 1
L

L̂

−L

f(x) sin
(
m
π

L
x
)

dx

is called the Fourier Series of f(x).

2 Complex Fourier Series

By Euler’s formula,

cos θ = 1
2
(
eiθ + e−iθ

)
sin θ = 1

2i
(
eiθ − e−iθ

)
Therefore,

1
2i = − i2
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Therefore, substituting in the Fourier series,

f(x) ≈ 1
2a0 +

∞∑
n=1

(
an

1
2

(
e
inπ
L
x + e−

inπ
L
x
)
− bn

i

2

(
e
inπ
L
x − e−

inπ
L
x
))

≈ 1
2a0 +

∞∑
n=1

e inπL x

(
1
2an −

i

2bn
)

+ e−
inπ
L
x

(
1
2an + i

2bn
)

≈ 1
2a0 +

∞∑
n=1

e inπL x

(
1
2an −

i

2bn
)+

1∑
n=−∞

e inπL x

(
1
2an + i

2bn
)

≈
∞∑

n=−∞
cne

inπ
L
x

3 Bessel’s Inequality
Definition 9 (Piecewise continuous functions). f : R → R is said to be
piecewise continuous if, for every finite interval [a, b] there is a finite number
of discontinuity points, and the one-sided limits at each of these points are
also finite.
Definition 10 (Piecewise continuously differentiable functions). f : R→ R
is said to be piecewise continuously differentiable if it is piecewise continuous,
and

lim
h→0+

f(x+ h)− f(x+)
h

<∞

and

lim
h→0−

f(x+ h)− f(x−)
h

<∞

Theorem 8 (Bessel’s Inequality). Let f(x) be a piecewise continuous function
defined on [−L,L]. Then

1
2a0

2 +
∞∑
n=1

an
2 + bn

2 ≤ 1
L

L̂

−L

f(x)2 dx

4 Riemann-Lebesgue’s Lemma
Theorem 9 (Riemann-Lebesgue’s Lemma). If f(x) is piecewise continuous
on [−L,L], then

lim
n→∞

an = lim
n→∞

bn = 0
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Proof. By Bessel’s Inequality,

1
2a0

2 +
∞∑
n=1

an
2 + bn

2 ≤
L̂

−L

f(x)2 dx

∴
1
2a0

2 +
∞∑
n=1

an
2 + bn

2 <∞As the function is
piecewise continuous

in [−L,L], its integral
from −L to L is finite. Therefore,

lim
n→∞

an
2 ≤ lim

n→∞
an

2 + bn
2

∴ lim
n→∞

≤ 0

Therefore,

lim
n→∞

an = 0

Similarly,

lim
n→∞

bn = 0

Exercise 1.
If f(x) is piecewise continuous on [−π, π], show that

lim
n→∞

πˆ
−π

f(x) sin
(n+ 1

2

)
x

 dx = 0

Solution 1.

sin
(n+ 1

2

)
x

 = sin(nx) cos
(

1
2x
)

+ cos(nx) sin
(

1
2x
)

Therefore, the limit is

0 = lim
n→∞

πˆ
−π

f(x) cos
(

1
2x
)

sin(nx) dx

+ lim
n→∞

πˆ
−π

f(x) sin
(

1
2x
)

cos(nx) dx
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Let

g1 = f(x) cos
(

1
2x
)

g2 = f(x) sin
(

1
2x
)

Therefore,

lim
n→∞

(
πbn(g1) + πan(g2)

)
= 0

Therefore,

lim
n→∞

πˆ
−π

f(x) sin
(n+ 1

2

)
x

 dx = 0

5 Dirichlet’s Kernel
Definition 11 (Dirichlet kernel).

Dm(t) = 1
2 +

m∑
n=1

cos(nt)

is called the Dirichlet kernel of order m.

Theorem 10 (Second representation of Dirichlet’s kernel). Let m ∈ N.
Then, for t 6= 2πk, where k ∈ Z,

Dm(t) = 1
2 + cos(t) + cos(2t) + · · ·+ cos(mt)

=
sin

((
m+ 1

2

)
t
)

2 sin
(

1
2t
)

Theorem 11. Let

Sm(f, x) = 1
2a0 +

m∑
n=1

an cos(nx) + bn sin(nx)

Then,

Sm(f, x) = 1
π

πˆ
−π

f(x+ t)
1

2

m∑
n=1

cos(nt)
 dt
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Proof.

Sm(f, x) = 1
2a0 +

m∑
n=1

an cos(nx) + bn sin(nx)

= 1
2

 1
π

πˆ
−π

f(s) ds


︸ ︷︷ ︸

a0

+
m∑
n=1

 1
π

πˆ
−π

f(s) cos(ns) ds


︸ ︷︷ ︸

an

cos(nx)

+
m∑
n=1

 1
π

πˆ
−π

f(s) sin(ns) ds


︸ ︷︷ ︸

bn

sin(nx)

= 1
π

πˆ
−π

f(s)
1

2 +
m∑
n=1

cos(ns) cos(nx) + sin(ns) sin(nx)
 ds

= 1
π

πˆ
−π

f(s)
1

2 +
m∑
n=1

cos
(
n(s− x)

) ds

Let
t = s− x

∴ dt = ds
Therefore,

Sm(f, x) = 1
π

π−xˆ
−π−x

f(t+ x)
1

2 +
m∑
n=1

cos(nt)
 dt

As the function is
2π-periodic, the limits

can be changed from
−π − x and π − x to

−π and π.

= 1
π

πˆ
−π

f(t+ x)Dm(t) dt

= 1
π

πˆ
−π

f(t+ x)Dm(−t) dt

= 1
π

(
f(t) ∗Dm(t)

)
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Theorem 12 (Dirichlet Theorem). This theorem is also
valid for [−L,L].

Let f : [−π, π] → R be a piecewise
continuously differentiable function.
Then, ∀x ∈ (−π, π),

1
2a0 +

∞∑
n=1

an cos(nx) + bn sin(nx) = f(x−) + f(x+)
2

and for x = π or x = −π,

1
2a0 +

∞∑
n=1

an cos(nx) + bn sin(nx) = f(π−) + f(−π+)
2

Exercise 2.
Prove that ∀x ∈ [0, 1],

x(π − x) = π2

6 −
∞∑
n=1

1
n2 cos(2nx)

Solution 2.
Let the function be extended naturally to [0, π]. Hence, let the function be
extended evenly to [−π, π].
Therefore as the function is even, the Fourier series of the function is

x(π − x) ≈ a0

2 +
∞∑
n=1

an cos(nx)

Therefore,

a0 = 1
π

πˆ
−π

f(x) dx

= 1
π

πˆ

0

x(π − x) dx

= π2

3
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an = 1
π

πˆ
−π

f(x) cos(nx) dx

= 2
π

πˆ

0

x(π − x) cos(nx) dx

= 2
π

πˆ

0

(
xπ − x2

)
cos(nx) dx

= 2
π

((
xπ − x2

) ˆ
cos(nx) dx−

ˆ
(π − 2x)

ˆ
cos(nx) dx dx

)∣∣∣∣∣∣
π

0

= 2
π

(xπ − x2
)
�
�
�
��>

0
sin(nx)
n

−
ˆ

(π − 2x)sin(nx)
n

dx


∣∣∣∣∣∣∣∣∣
π

0

The integral of cosx
from 0 to π is zero, i.e.
if the limits are π and
0, the function sinx is

zero.
= 2
π

(
−
ˆ

(π − 2x)sin(nx)
n

dx
)∣∣∣∣∣∣

π

0

= 2
π

(
(π − 2x)cos(nx)

n2 +
ˆ 2 cos(nx)

n2 dx
)∣∣∣∣∣∣

π

0

The integral of cosx
from 0 to π is zero.

= 2
π

(π − 2x)cos(nx)
n2

∣∣∣∣∣
π

0

= 2
n2

(
(−1)n+1 − 1

)
Therefore,

an =

−
4
n2 ; n = 2k

0 ; n = 2k + 1

Therefore,

x(π − x) = π2

6 −
∞∑
k=1

1
n2 cos(2πk)

Theorem 13. Let f [−π, π]→ R be continuous and f(−π) = f(π). Let f ′(x)
be piecewise continuous. Then the Fourier series converges absolutely to some
limit and uniformly to f(x).
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6 Relation between Fourier Coefficients of f (x)
and f ′(x)

Theorem 14. Let the Fourier coefficients of f(x) be a0, an, and bn. Then,
the Fourier coefficients of f ′(x) are

α0 = 0
αn = nbn

βn = −nan

Proof. Assuming f ′(x) is integrable,

f ′(x) ≈ 1
2α0 +

∞∑
n=1

αn cos(nx) + βn sin(nx)

Therefore,

α0 = 1
π

πˆ
−π

f ′(x) dx

= f(π)− f(−π)
π

= 0

αn = 1
π

πˆ
−π

f ′(x) cos(nx) dx

= 1
π
f(x) cos(nx)

∣∣π
−π + n

π

πˆ
−π

f(x) sin(nx) dx

Therefore,

αn = nbn

βn = −nan

Theorem 15. Let the complex Fourier coefficient of f(x) be cn. Then, the
complex Fourier coefficient of f ′(x) is

γn = incn
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Theorem 16.On a general interval,
this theorem translates

to term-by-term
differentiation, i.e.,

the order of
summation and

differentiation can be
changed.

Let f(x) : [−π, π] → R be a continuous function such that
f(−π) = f(π), and let f ′(x) be piecewise continuous.
If

f(x) = 1
2a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)

=
∞̂

n=∞

cne
inx

then,

f ′(x) ≈
∞∑
n=1

nbn cos(nx)− nan sin(nx)

=
∞∑

n=−∞
incne

inx

Theorem 17.This theorem also
holds for a general

interval [−L,L].

Let f : [−π, π]→ R be a continuous function that maintains
f(−π) = f(π) and let f ′(x) be piecewise continuous. Then, Sm(f, x) converges
uniformly to f(x).

Definition 12 (Inner product). Let x and y be vectors. Their inner product
is defined to be

〈x, y〉 =
∞∑
i=1

xiyi

Theorem 18.∣∣〈x, y〉∣∣ ≤ √〈x, x〉√〈y, y〉
Theorem 19. Let f(x) be continuous on [−π, π] with piecewise continuous
f ′(x). Let Sm(f, x) converge uniformly to f(x). Then, the Fourier series is
term-by-term differentiable.
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