Harmonic Analysis

Aakash Jog

2015-16

■

Contents

1 Lecturer Information 3
2 Required Reading 3
3 Additional Reading 3
I Basic Definitions and Theorems 4
1 Sequences and Series 4
2 Periodic Functions 4
3 Odd and Even Functions 5
II Introduction to Fourier Series 6
1 Real Fourier Series 6
(c) (i) (ㅇ) (ㅇ)

This work is licensed under the Creative Commons Attribution-NonCommercialShareAlike 4.0 International License. To view a copy of this license, visit http: //creativecommons.org/licenses/by-nc-sa/4.0/

2 Complex Fourier Series 8
3 Bessel's Inequality 9
4 Riemann-Lebesgue's Lemma 9
5 Dirichlet's Kernel 11
6 Relation between Fourier Coefficients of $f(x)$ and $f^{\prime}(x) \quad 15$

1 Lecturer Information

Barak Sober

Office: Shenkar Physics 201
E-mail: barakino@gmail.com
Telephone: +972 3-640-6024

2 Required Reading

1. Folland, G.B.: Fourier Analysis and its applications, Wadsworth \& Brooks/Cole mathematics series, 1992

3 Additional Reading

1. Katznelson, Yitzhak. An introduction to Harmonic analysis. Cambridge University Press, 2004.

Part I

Basic Definitions and Theorems

1 Sequences and Series

Definition 1 (Convergent series). The series $\sum_{n=0}^{\infty} a_{n}$ is said to converge if the sequence of partial sums $S_{N}=\sum_{n=0}^{N} a_{n}$ converges to a finite limit.

Definition 2 (Pointwise convergence of sequence of functions). Let $D \subseteq \mathbb{R}$, and $\left\{f_{n}(x): D \rightarrow \mathbb{R}\right\}$ be a sequence of functions. $f_{n}(x)$ is said to converge pointwise, to a limit function $f(x)$ on D, if $\forall \varepsilon>0, \forall x \in D, \exists N \in \mathbb{N}$, such that $\forall n>N,\left|f_{n}(x)-f(x)\right|<\varepsilon$.

Definition 3 (Uniform convergence of sequence of functions). Let $D \subseteq \mathbb{R}$, and $\left\{f_{n}(x): D \rightarrow \mathbb{R}\right\}$ be a sequence of functions. $f_{n}(x)$ is said to converge uniformly to $f(x)$ on D if $\forall \varepsilon>0, \exists N \in \mathbb{N}$, such that, $\forall n>N, \forall x \in D$, $\left|f_{n}(x)-f(x)\right|<\varepsilon$.

Theorem 1. If $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ are continuous functions, and $f_{n}(x) \xrightarrow{U} f(x)$, then $f(x)$ is also continuous.

Theorem 2. If a sequence of functions converges pointwise as well as uniformly, then the limit function must be the same.

Theorem 3 (Weierstrass M-test). If $\left|u_{k}(x)\right| \leq c_{k}$ on D for $k \in\{1,2,3, \ldots\}$ and the numerical series $\sum_{k=1}^{\infty} c_{k}$ converges, then the series of functions $\sum_{k=1}^{\infty} u_{k}(x)$ converges uniformly on D.

2 Periodic Functions

Definition 4 (Periodic functions). A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be periodic if $\exists 0<L \in \mathbb{R}$, such that $\forall x \in \mathbb{R}$,

$$
f(x)=f(x+L)
$$

For a function $f(x)=k$, as any positive number is a period, there is no minimum L. Hence,

If there exists a minimum L, it is called L^{*}, the fundamental period.

3 Odd and Even Functions

Definition 5 (Odd functions). A function is said to be odd if $f(-x)=-f(x)$.
Odd functions are symmeteric about the origin.
Definition 6 (Even functions). A function is said to be even if $f(-x)=f(x)$.
Odd functions are symmeteric about the y-axis.
Theorem 4. If $h(x)$ is odd,

$$
\int_{-L}^{L} h(x) \mathrm{d} x=0
$$

Part II

Introduction to Fourier Series

1 Real Fourier Series

Definition 7. Let $f:[-L, L] \rightarrow \mathbb{R}$, where $L>0$. If $\forall x \in[-L, L]$, then

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)\right)
$$

Theorem 5. Let $L>0, m \in \mathbb{W}, n \in \mathbb{W}$.
Then

$$
\int_{-L}^{L} \cos \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) \mathrm{d} x=\left\{\begin{array}{lll}
0 & ; & m \neq n \\
L & ; & m=n \neq 0 \\
2 L & ; & m=n=0
\end{array}\right.
$$

Proof.
$\cdot \cos \alpha \cos \beta=$
$\frac{\cos (\alpha+\beta)}{2}+\frac{\cos (\alpha-\beta)}{2}$

$$
\begin{aligned}
E & =\int_{-L}^{L} \cos \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) \mathrm{d} x \\
& =\int_{-L}^{L} \frac{1}{2}\left(\cos \left((m+n) \frac{\pi}{L} x\right)+\cos \left((m-n) \frac{\pi}{L} x\right)\right) \mathrm{d} x
\end{aligned}
$$

If $m \neq n$,

$$
\begin{aligned}
E & =\left.\frac{1}{2}\left(\frac{\sin \left((m+n) \frac{\pi}{L} x\right)}{(m+n) \frac{\pi}{L}}+\frac{\sin \left((m-n) \frac{\pi}{L} x\right)}{(m-n) \frac{\pi}{L}}\right)\right|_{-L} ^{L} \\
& =0
\end{aligned}
$$

If $m=n \neq 0$,

$$
\begin{aligned}
E & =\int_{-L}^{L} \frac{1}{2}\left(\cos \left(2 m \frac{\pi}{L} x\right)+1\right) \mathrm{d} x \\
& =\frac{1}{2} \int_{-L}^{L} \cos \left(2 m \frac{\pi}{L} x\right) \mathrm{d} x+\left.\frac{1}{2} x\right|_{-L} ^{L} \\
& =L
\end{aligned}
$$

If $m=n=0$,

$$
\begin{aligned}
E & =\int_{-L}^{L} \cos (0) \cos (0) \mathrm{d} x \\
& =\left.x\right|_{-L} ^{L} \\
& =2 L
\end{aligned}
$$

Theorem 6. Let $L>0, m \in \mathbb{N}, n \in \mathbb{N}$.
Then

Theorem 7. Let $L>0, m \in \mathbb{W}, n \in \mathbb{W}$.
Then

$$
\int_{-L}^{L} \sin \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) \mathrm{d} x=0
$$

Assuming $f(x)$ is known, and assuming that it can be integrated term by term,

$$
\begin{aligned}
\int_{-L}^{L} f(x) \mathrm{d} x & =\int_{-L}^{L} \frac{1}{2} a_{0} \mathrm{~d} x+\sum_{n=1}^{\infty} a_{n} \int_{-L}^{L} \cos \left(n \frac{\pi}{L} x\right) \mathrm{d} x+b_{n} \int_{-L}^{L} \sin \left(n \frac{\pi}{L} x\right) \mathrm{d} x \\
\therefore \int_{-L}^{L} f(x) \mathrm{d} x & =\frac{1}{2} \int_{-L}^{L} a_{0} \mathrm{~d} x \\
& =\frac{1}{2} a_{0} \cdot 2 L \\
\therefore a_{0} & =\frac{1}{L} \int_{-L}^{L} f(x) \mathrm{d} x
\end{aligned}
$$

Similarly, multiplying the series with $\cos \left(m \frac{\pi}{L} x\right)$ for $m \neq 0$ and integrating,

$$
a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(m \frac{\pi}{L} x\right) \mathrm{d} x
$$

for $m \in \mathbb{N}$.
Similarly, for $m \in \mathbb{N} \backslash\{0\}$,

$$
b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(m \frac{\pi}{L} x\right) \mathrm{d} x
$$

Definition 8. The expansion

$$
f(x) \approx \frac{1}{2} a_{0}+\sum_{i=1}^{\infty}\left(a_{n} \cos \left(n \frac{\pi}{L} x\right)+b_{n} \sin \left(n \frac{\pi}{L} x\right)\right)
$$

where, for $m \in \mathbb{N}$,

$$
a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(m \frac{\pi}{L} x\right) \mathrm{d} x
$$

and, for $m \in \mathbb{N} \backslash\{0\}$,

$$
b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(m \frac{\pi}{L} x\right) \mathrm{d} x
$$

is called the Fourier Series of $f(x)$.

2 Complex Fourier Series

By Euler's formula,

$$
\begin{aligned}
& \cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right) \\
& \sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)
\end{aligned}
$$

Therefore,

$$
\frac{1}{2 i}=-\frac{i}{2}
$$

Therefore, substituting in the Fourier series,

$$
\begin{aligned}
f(x) & \approx \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \frac{1}{2}\left(e^{\frac{i n \pi}{L} x}+e^{-\frac{i n \pi}{L} x}\right)-b_{n} \frac{i}{2}\left(e^{\frac{i n \pi}{L} x}-e^{-\frac{i n \pi}{L} x}\right)\right) \\
& \approx \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(e^{\frac{i n \pi}{L} x}\left(\frac{1}{2} a_{n}-\frac{i}{2} b_{n}\right)+e^{-\frac{i n \pi}{L} x}\left(\frac{1}{2} a_{n}+\frac{i}{2} b_{n}\right)\right) \\
& \approx \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(e^{\frac{i n \pi}{L} x}\left(\frac{1}{2} a_{n}-\frac{i}{2} b_{n}\right)\right)+\sum_{n=-\infty}^{1}\left(e^{\frac{i n \pi}{L} x}\left(\frac{1}{2} a_{n}+\frac{i}{2} b_{n}\right)\right) \\
& \approx \sum_{n=-\infty}^{\infty} c_{n} e^{\frac{i n \pi}{L} x}
\end{aligned}
$$

3 Bessel's Inequality

Definition 9 (Piecewise continuous functions). $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be piecewise continuous if, for every finite interval $[a, b]$ there is a finite number of discontinuity points, and the one-sided limits at each of these points are also finite.
Definition 10 (Piecewise continuously differentiable functions). $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be piecewise continuously differentiable if it is piecewise continuous, and

$$
\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f\left(x^{+}\right)}{h}<\infty
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f\left(x^{-}\right)}{h}<\infty
$$

Theorem 8 (Bessel's Inequality). Let $f(x)$ be a piecewise continuous function defined on $[-L, L]$. Then

$$
\frac{1}{2} a_{0}^{2}+\sum_{n=1}^{\infty} a_{n}^{2}+b_{n}^{2} \leq \frac{1}{L} \int_{-L}^{L} f(x)^{2} \mathrm{~d} x
$$

4 Riemann-Lebesgue's Lemma

Theorem 9 (Riemann-Lebesgue's Lemma). If $f(x)$ is piecewise continuous on $[-L, L]$, then

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0
$$

Proof. By Bessel's Inequality

$$
\begin{aligned}
& \frac{1}{2} a_{0}{ }^{2}+\sum_{n=1}^{\infty} a_{n}{ }^{2}+b_{n}{ }^{2} \leq \int_{-L}^{L} f(x)^{2} \mathrm{~d} x \\
\therefore & \frac{1}{2} a_{0}{ }^{2}+\sum_{n=1}^{\infty} a_{n}{ }^{2}+b_{n}{ }^{2}<\infty
\end{aligned}
$$

piecewise continuous in $[-L, L]$, its integral from $-L$ to L is finite

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}{ }^{2} & \leq \lim _{n \rightarrow \infty} a_{n}{ }^{2}+b_{n}{ }^{2} \\
\therefore \lim _{n \rightarrow \infty} & \leq 0
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

Similarly,

$$
\lim _{n \rightarrow \infty} b_{n}=0
$$

Exercise 1.

If $f(x)$ is piecewise continuous on $[-\pi, \pi]$, show that

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \sin \left(\left(n+\frac{1}{2}\right) x\right) \mathrm{d} x=0
$$

Solution 1.

$$
\sin \left(\left(n+\frac{1}{2}\right) x\right)=\sin (n x) \cos \left(\frac{1}{2} x\right)+\cos (n x) \sin \left(\frac{1}{2} x\right)
$$

Therefore, the limit is

$$
\begin{aligned}
0= & \lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \cos \left(\frac{1}{2} x\right) \sin (n x) \mathrm{d} x \\
& +\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \sin \left(\frac{1}{2} x\right) \cos (n x) \mathrm{d} x
\end{aligned}
$$

Let

$$
\begin{aligned}
g_{1} & =f(x) \cos \left(\frac{1}{2} x\right) \\
g_{2} & =f(x) \sin \left(\frac{1}{2} x\right)
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty}\left(\pi b_{n}\left(g_{1}\right)+\pi a_{n}\left(g_{2}\right)\right)=0
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \sin \left(\left(n+\frac{1}{2}\right) x\right) \mathrm{d} x=0
$$

5 Dirichlet's Kernel

Definition 11 (Dirichlet kernel).

$$
D_{m}(t)=\frac{1}{2}+\sum_{n=1}^{m} \cos (n t)
$$

is called the Dirichlet kernel of order m.
Theorem 10 (Second representation of Dirichlet's kernel). Let $m \in \mathbb{N}$.
Then, for $t \neq 2 \pi k$, where $k \in \mathbb{Z}$,

$$
\begin{aligned}
D_{m}(t) & =\frac{1}{2}+\cos (t)+\cos (2 t)+\cdots+\cos (m t) \\
& =\frac{\sin \left(\left(m+\frac{1}{2}\right) t\right)}{2 \sin \left(\frac{1}{2} t\right)}
\end{aligned}
$$

Theorem 11. Let

$$
S_{m}(f, x)=\frac{1}{2} a_{0}+\sum_{n=1}^{m} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

Then,

$$
S_{m}(f, x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t)\left(\frac{1}{2} \sum_{n=1}^{m} \cos (n t)\right) \mathrm{d} t
$$

Proof.

$$
\begin{aligned}
S_{m}(f, x)= & \frac{1}{2} a_{0}+\sum_{n=1}^{m} a_{n} \cos (n x)+b_{n} \sin (n x) \\
= & \frac{1}{2} \underbrace{\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \mathrm{d} s\right)}_{a_{0}} \\
& +\sum_{n=1}^{m} \underbrace{\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \cos (n s) \mathrm{d} s\right)}_{a_{n}} \cos (n x) \\
& +\sum_{n=1}^{m} \underbrace{\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \sin (n s) \mathrm{d} s\right)}_{b_{n}} \sin (n x) \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} f(s)\left(\frac{1}{2}+\sum_{n=1}^{m} \cos (n s) \cos (n x)+\sin (n s) \sin (n x)\right) \mathrm{d} s \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} f(s)\left(\frac{1}{2}+\sum_{n=1}^{m} \cos (n(s-x))\right) \mathrm{d} s
\end{aligned}
$$

Let

$$
\begin{aligned}
t & =s-x \\
\therefore \mathrm{~d} t & =\mathrm{d} s
\end{aligned}
$$

Therefore,

As the function is
2π-periodic, the limits can be changed from $-\pi-x$ and $\pi-x$ to $-\pi$ and π.

$$
\begin{aligned}
S_{m}(f, x) & =\frac{1}{\pi} \int_{-\pi-x}^{\pi-x} f(t+x)\left(\frac{1}{2}+\sum_{n=1}^{m} \cos (n t)\right) \mathrm{d} t \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) D_{m}(t) \mathrm{d} t \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) D_{m}(-t) \mathrm{d} t \\
& =\frac{1}{\pi}\left(f(t) * D_{m}(t)\right)
\end{aligned}
$$

Theorem 12 (Dirichlet Theorem). Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be a piecewise continuously differentiable function.
Then, $\forall x \in(-\pi, \pi)$,

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}
$$

and for $x=\pi$ or $x=-\pi$,

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)=\frac{f\left(\pi^{-}\right)+f\left(-\pi^{+}\right)}{2}
$$

Exercise 2.

Prove that $\forall x \in[0,1]$,

$$
x(\pi-x)=\frac{\pi^{2}}{6}-\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos (2 n x)
$$

Solution 2.

Let the function be extended naturally to $[0, \pi]$. Hence, let the function be extended evenly to $[-\pi, \pi]$.
Therefore as the function is even, the Fourier series of the function is

$$
x(\pi-x) \approx \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)
$$

Therefore,

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x(\pi-x) \mathrm{d} x \\
& =\frac{\pi^{2}}{3}
\end{aligned}
$$

The integral of $\cos x$ from 0 to π is zero, i.e. if the limits are π and 0 , the function $\sin x$ is zero.

The integral of $\cos x$ from 0 to π is zero.

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \cos (n x) \mathrm{d} x \\
& =\frac{2}{\pi} \int_{0}^{\pi}\left(x \pi-x^{2}\right) \cos (n x) \mathrm{d} x \\
& =\left.\frac{2}{\pi}\left(\left(x \pi-x^{2}\right) \int \cos (n x) \mathrm{d} x-\int(\pi-2 x) \int \cos (n x) \mathrm{d} x \mathrm{~d} x\right)\right|_{0} ^{\pi} \\
& =\left.\frac{2}{\pi}\left(\left(x \pi-x^{2}\right) \frac{\sin (n x)^{0}}{n}-\int(\pi-2 x) \frac{\sin (n x)}{n} \mathrm{~d} x\right)\right|_{0} ^{\pi} \\
& =\left.\frac{2}{\pi}\left(-\int(\pi-2 x) \frac{\sin (n x)}{n} \mathrm{~d} x\right)\right|_{0} ^{\pi} \\
& =\left.\frac{2}{\pi}\left((\pi-2 x) \frac{\cos (n x)}{n^{2}}+\int \frac{2 \cos (n x)}{n^{2}} \mathrm{~d} x\right)\right|_{0} ^{\pi} \\
& =\left.\frac{2}{\pi}(\pi-2 x) \frac{\cos (n x)}{n^{2}}\right|_{0} ^{\pi} \\
& =\frac{2}{n^{2}}\left((-1)^{n+1}-1\right)
\end{aligned}
$$

Therefore,

$$
a_{n}= \begin{cases}-\frac{4}{n^{2}} & ; \quad n=2 k \\ 0 & ; \quad n=2 k+1\end{cases}
$$

Therefore,

$$
x(\pi-x)=\frac{\pi^{2}}{6}-\sum_{k=1}^{\infty} \frac{1}{n^{2}} \cos (2 \pi k)
$$

Theorem 13. Let $f[-\pi, \pi] \rightarrow \mathbb{R}$ be continuous and $f(-\pi)=f(\pi)$. Let $f^{\prime}(x)$ be piecewise continuous. Then the Fourier series converges absolutely to some limit and uniformly to $f(x)$.

6 Relation between Fourier Coefficients of $f(x)$ and $f^{\prime}(x)$

Theorem 14. Let the Fourier coefficients of $f(x)$ be a_{0}, a_{n}, and b_{n}. Then, the Fourier coefficients of $f^{\prime}(x)$ are

$$
\begin{aligned}
\alpha_{0} & =0 \\
\alpha_{n} & =n b_{n} \\
\beta_{n} & =-n a_{n}
\end{aligned}
$$

Proof. Assuming $f^{\prime}(x)$ is integrable,

$$
f^{\prime}(x) \approx \frac{1}{2} \alpha_{0}+\sum_{n=1}^{\infty} \alpha_{n} \cos (n x)+\beta_{n} \sin (n x)
$$

Therefore,

$$
\begin{aligned}
\alpha_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f^{\prime}(x) \mathrm{d} x \\
& =\frac{f(\pi)-f(-\pi)}{\pi} \\
& =0 \\
\alpha_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f^{\prime}(x) \cos (n x) \mathrm{d} x \\
& =\left.\frac{1}{\pi} f(x) \cos (n x)\right|_{-\pi} ^{\pi}+\frac{n}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \alpha_{n}=n b_{n} \\
& \beta_{n}=-n a_{n}
\end{aligned}
$$

Theorem 15. Let the complex Fourier coefficient of $f(x)$ be c_{n}. Then, the complex Fourier coefficient of $f^{\prime}(x)$ is

$$
\gamma_{n}=i n c_{n}
$$

On a general interval, this theorem translates to term-by-term differentiation, i.e., the order of summation and differentiation can be changed.

Theorem 16. Let $f(x):[-\pi, \pi] \rightarrow \mathbb{R}$ be a continuous function such that $f(-\pi)=f(\pi)$, and let $f^{\prime}(x)$ be piecewise continuous.
If

$$
\begin{aligned}
f(x) & =\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x) \\
& =\int_{n=\infty}^{\infty} c_{n} e^{i n x}
\end{aligned}
$$

then,

$$
\begin{aligned}
f^{\prime}(x) & \approx \sum_{n=1}^{\infty} n b_{n} \cos (n x)-n a_{n} \sin (n x) \\
& =\sum_{n=-\infty}^{\infty} i n c_{n} e^{i n x}
\end{aligned}
$$

This theorem also holds for a general interval $[-L, L]$.

Theorem 17. Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be a continuous function that maintains $f(-\pi)=f(\pi)$ and let $f^{\prime}(x)$ be piecewise continuous. Then, $S_{m}(f, x)$ converges uniformly to $f(x)$.

Definition 12 (Inner product). Let \bar{x} and \bar{y} be vectors. Their inner product is defined to be

$$
\langle\bar{x}, \bar{y}\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}
$$

Theorem 18.

$$
|\langle\bar{x}, \bar{y}\rangle| \leq \sqrt{\langle\bar{x}, \bar{x}\rangle} \sqrt{\langle\bar{y}, \bar{y}\rangle}
$$

Theorem 19. Let $f(x)$ be continuous on $[-\pi, \pi]$ with piecewise continuous $f^{\prime}(x)$. Let $S_{m}(f, x)$ converge uniformly to $f(x)$. Then, the Fourier series is term-by-term differentiable.

