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For a function

f(z) =k, as any

positive number is a
period, there is no

minimum L. Hence,

AL*.

Part 1
Basic Definitions and Theorems

1 Sequences and Series

Definition 1 (Convergent series). The series Y- a,, is said to converge if the
n=0

N
sequence of partial sums Sy = Y a, converges to a finite limit.

n=0

Definition 2 (Pointwise convergence of sequence of functions). Let D C R,
and {f,(z) : D — R} be a sequence of functions. f,(z) is said to converge
pointwise, to a limit function f(z) on D, if Ve > 0, Vo € D, 9N € N, such
that Vn > N, | f.(z) — f(2)| < e.

Definition 3 (Uniform convergence of sequence of functions). Let D C R,
and {f,(z) : D — R} be a sequence of functions. f,(z) is said to converge
uniformly to f(z) on D if Ve > 0, AN € N, such that, Yn > N, Vz € D,

() = f2)] <e.

Theorem 1. If {f,(z)}, , are continuous functions, and f,(x) Y f(x), then
f(x) is also continuous.

Theorem 2. If a sequence of functions converges pointwise as well as uni-
formly, then the limit function must be the same.

Theorem 3 (Weierstrass M-test). If |ug(z)| < cx on D for k € {1,2, 3 .}
and the numerical series Z ¢ converges, then the series of functions Z ug(x)

converges uniformly on D

2 Periodic Functions

Definition 4 (Periodic functions). A function f : R — R is said to be
periodic if 40 < L € R, such that Vz € R,

f@)=flz+1L)
If there exists a minimum L, it is called L*, the fundamental period.
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3 0Odd and Even Functions

Definition 5 (Odd functions). A function is said to be odd if f(—z) = — f(z).
Odd functions are
symmeteric about the
origin.
Definition 6 (Even functions). A function is said to be even if f(—2) = f(z).
Odd functions are
symmeteric about the
y-axis.

Theorem 4. If h(z) is odd,

/Lh@) dz =0



‘rcosacos 3=

cos(a+p) cos(a—pf)
2 + 2

Part 11
Introduction to Fourier Series

1 Real Fourier Series

Definition 7. Let f : [-L, L] — R, where L > 0. If Vx € [—L, L], then

flz) = ;ag + i <an cos (ngaz) + by, sin <n£rx>>

Theorem 5. Let L >0, me W, neW.
Then

0 ; m#n

L
/cos (ﬂzﬂx) cos (Tx) de=<¢L ; m=n#0
L 2L ; m=n=20

Proof.
£ fon (2F0) e ()
= / ; <cos ((m + n)Zm) + cos ((m — n)Zx)) dz

iy
If m # n,
L
sin ((m+n)Tx sin((m —n)Xx
p_ 1 [sin(mtn)ge) sin(m—n)ic)
2 (m+n)7 (m—n)%
L
=0
If m=n#0,
Ll
E:/2<cos (QmZx)—i—l) dx
iy
L
_1/ (2m72) do+ L "
=3 COS mLx x 2;E_L
L
=1L



Ifm=n=0,

L
E = /COS(O) cos(0) dz
L
L
=zl’,
=2L
O
Theorem 6. Let L >0, m € N, n € N.
Then
L
e
sin { —x | sin { —x | dx =
L L L ; m=n
L
Theorem 7. Let L >0, me W, n e W.
Then
L
/Sin (Tm) cos <n[jrx> dr =0
L

Assuming f(z) is known, and assuming that it can be integrated term by
term,

L L L L
1 o0
/f(x) dz = /ao de+ ) an/cos (nﬁx) dz + bn/sin (nﬁx) dz
2 P L L
—L —L —-L —L
L . L
f(z)dz = 2/a0dx
L L
1
= —Qq - 2L
L
1
ag = L/f(x) dz
“L

Similarly, multiplying the series with cos (mﬁx) for m # 0 and integrating,

L
Ay = i/Lf(x) Ccos (mZm) dz
L



for m € N.
Similarly, for m € N'\ {0},

Definition 8. The expansion
£@) % Ja+ 3 (ancos (n7) + bysin (n7 )
)~ —a ay cos | n—x nSin (n—x
20— L L
where, for m € N,

L

Ay = 2/]?(35) oS (mZm) dz

—L

and, for m € N\ {0},

is called the Fourier Series of f(x).

2 Complex Fourier Series

By Euler’s formula,

cosf = (ew + e_w)

sinf = % (ew — e_w)

— N =

Therefore,
1 ot
2% 2



Therefore, substituting in the Fourier series,

1 > 1 inm inm ) inm inm
f(x) ~ —Qg 4+ Z <(ln2 (eLx +e L x) - bn% (eLCE _ €_L$>>

3 Bessel’s Inequality

Definition 9 (Piecewise continuous functions). f : R — R is said to be
piecewise continuous if, for every finite interval [a, b] there is a finite number
of discontinuity points, and the one-sided limits at each of these points are
also finite.

Definition 10 (Piecewise continuously differentiable functions). f: R — R
is said to be piecewise continuously differentiable if it is piecewise continuous,
and

flz+h)— f")

lim < 00

h—0— h

Theorem 8 (Bessel’s Inequality). Let f(x) be a piecewise continuous function
defined on [—L, L]. Then

L
1 > 1
—ap® + Z an? + b2 < — / f(x)2 dx
2 — L
L

4 Riemann-Lebesgue’s Lemma

Theorem 9 (Riemann-Lebesgue’s Lemma). If f(z) is piecewise continuous

n [—L, L], then

lim a, = lim b, =0
n—oo n—o0



Proof. By |Bessel’s Inequality],

L

1 o)
2 2 2 2
5@0 +Zan +bn S f(l') dl’
n=1 I
1 )
As the function is 7(102 + Z an2 + bn2 < 00
piecewise continuous 2 n—1

in [—L, L], its integral
from —L to L is finite. Therefore,

lim a,? < lim a,%+ b,>
n—oo n—oo
colim <0
n—o0
Therefore,
lim a, =0
n—oo
Similarly,
lim b, =0

n—o0

Exercise 1.
If f(x) is piecewise continuous on [—m, 7], show that

nh_g)lo/f(x) sin ((n—i— ;) m) dz =0

Solution 1.

sin ((n + ;) g;) _ sin(nz) cos (?) + cos(nz) sin (;)

Therefore, the limit is

+ lim /f(x) sin (;x> cos(nz) dx
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Let

g1 = f(x) cos (

)
)

dim (7by(g91) + man(g2)) =0

S e

g2 = f(x)sin <

Therefore,

Therefore,
T TR
Jim f(z)sin n—i—i x|dr =0

5 Dirichlet’s Kernel

Definition 11 (Dirichlet kernel).

D,,(t) = ; + i:lcos(nt)

is called the Dirichlet kernel of order m.

Theorem 10 (Second representation of Dirichlet’s kernel). Let m € N.
Then, fort # 2wk, where k € Z,

D, (t) = ; + cos(t) 4 cos(2t) + - - - + cos(mt)

sin <(m +1) t)

2 sin (%t)
Theorem 11. Let
1 m
Sm(f,x) = 590 + Y ay cos(nz) + b, sin(nz)
n=1

Then,
Sm(f,x) = i/f(a: +t) (; i cos(nt)) dt

11



Proof.

Sm(f @) = ;ao + i a, cos(nx) + b, sin(nx)
n=1
11
= 5|5 [
+ n§:1 71r_/ f(s)cos(ns)ds | cos(nx)
+ nf:l 71r_/ f(s)sin(ns)ds | sin(nz)
bn
— 71r/f(8) (; + nﬁ; cos(ns) cos(nx) + sin(ns) sin(nx)) ds
/f ( +ZCOS 8—$)>d5
Let
=s5—x
.dt =ds
Therefore,
/ f(t+x) ( —l—Zcosnt)dt
n=1

As the function is
2m-periodic, the limits
can be changed from

—m —x and ™ — x to
—7 and 7.

Zi/}@+@DMw&
:i/f(tva)D

—t)dt
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Theorem 12 (Dirichlet Theorem). Let f : [—m,m] — R be a piecewise Ths theorem is also
. . . . valid for [—L, L].
continuously differentiable function.

Then, Yz € (—7,m),

;ao + i a, cos(nx) + by, sin(nz) = f(@7) ‘; f(z™)
n=1
and for x =mw or x = —,
;ao + i a, cos(nx) + by, sin(nz) = f(7) +2f(—7T+)
n=1

Exercise 2.
Prove that Vz € [0, 1],

z(m — ) % Z s(2nx)

Solution 2.

Let the function be extended naturally to [0, 7]. Hence, let the function be
extended evenly to [—, 7).
Therefore as the function is even, the Fourier series of the function is

x(m—1x) =~ EO—I-ZCLnCOS n)
n=1
Therefore,
1 T
ao—/f(x)da:
T
1 ™
=— —1z)d
7T/x(w x)dx
0
_r
!
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Ay = ;/f(x) cos(nz) dz

_2 / 2(r — &) cos(nz) do

™

2
— :1:'7r —z? cos(nx) dz
m

™

2o

mr — 2? cos(nx) dz — /(ﬂ' — 21) /cos(mc) dz dx)

0
T
The integral of cosx — 2 33'7'(' _ Z’ SlIl / T — 2 SlIl ) dx
from O to 7 is zero, i.e.
( s(n

0

3 |

if the limits are m and 0
0, the function sin z is
ZEEOs 2 sin(nx
= — (m — 2x) (nz) dx
™ n
0
™
The integral of cosz — g T — 2 co m) 4 / 2 COS(TL%) dzr
from 0 to 7 is zero. v n? 0
s
2 cos(nx)
=— (7 —22)—
™ n 0
2
— n+1
e (GRVRREEY
n
Therefore,
4 . n=2k
n2
Ay =
0 ;o n=2k+1
Therefore,
2 00
m
x(m—1x)=— Z s(2mk)
6 o

Theorem 13. Let f[—m, 7] — R be continuous and f(—m) = f(n). Let f'(z)
be piecewise continuous. Then the Fourier series converges absolutely to some
limit and uniformly to f(x).
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6 Relation between Fourier Coefficients of f(x)
and f'(z)

Theorem 14. Let the Fourier coefficients of f(x) be ag, an, and b,. Then,
the Fourier coefficients of f'(x) are

Qo = 0
oy, = nby,
Bn = —hay

Proof. Assuming f’(x) is integrable,
1 o0
f(z) ~ 500+ > ay, cos(nz) + B, sin(nz)

n=1
Therefore,
: / F(x)d
Qg = — x)dx
T x

f(m) = f(=m)

Therefore,
o, = nb,
B = —nay

O

Theorem 15. Let the complex Fourier coefficient of f(x) be ¢,. Then, the
complex Fourier coefficient of f'(x) is

Y = INCy
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On a general interval,
this theorem translates
to term-by-term
differentiation, i.e.,

the order of
summation and
differentiation can be
changed.

This theorem also
holds for a general
interval [—L, L].

Theorem 16. Let f(z) : [-7, 7] — R be a continuous function such that
f(=m) = f(m), and let f'(x) be piecewise continuous.
If

1 oo

flx) = 500 + Y a, cos(nx) + by, sin(nz)
n=1

%)
— / Cn eine
=00

n

f(z) ~ i nb,, cos(nx) — na, sin(nz)
n=1

> .
= Z nc,e"”

n=—oo

Theorem 17. Let f: [—m, 7] = R be a continuous function that maintains
f(=m) = f(m) and let f'(x) be piecewise continuous. Then, Sy, (f,x) converges
uniformly to f(x).

Definition 12 (Inner product). Let Z and 7 be vectors. Their inner product
is defined to be

=1

Theorem 18.

(Z,7)| </ (T, 7)\/(7,7)

Theorem 19. Let f(z) be continuous on [—m, 7| with piecewise continuous
f'(x). Let Sp(f,x) converge uniformly to f(x). Then, the Fourier series is
term-by-term differentiable.
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