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Part I

Sequences and Series
1 Sequences
Definition 1 (Sequence). A sequence of real numbers is a set of numbers
which are written in some order. There are infinitely many terms in a se-
quence. It is denoted by {an}∞n=1 or {an}.

Example 1. 1, 1
2 ,

1
3 , . . . is called the harmonic sequence.

an = 1
n

Example 2. 1,−1
2 ,

1
3 , . . . is called the alternating harmonic sequence.

an = (−1)n+1 1
n

Example 3.
1
2 ,

2
3 ,

3
4 , . . .

an = n

n+ 1

Example 4.
2
3 ,

3
9 ,

4
27 , . . .

an = n+ 1
3n

Example 5. The Fibonacci sequence is given by

fn =

1 ; n = 1, 2
fn−1 + fn−2 ; n ≥ 3

Example 6. A geometric sequence is given by

an = a1q
n−1

where q is called the common ratio.
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Example 7. A geometric sequence is given by

an = a1 + d(n− 1)

where d is called the common difference.

Definition 2 (Equal sequences). Two sequences {an} and {bn} are said to
be equal if an = bn, ∀n ∈ N.

Definition 3 (Sequences bounded from above). {an} is said to be bounded
from above if ∃M ∈ R, s.t. an ≤ M , ∀n ∈ N. Each such M is called an
upper bound of {an}.

Definition 4 (Sequences bounded from below). {an} is said to be bounded
from below if ∃m ∈ R, s.t. an ≥M , ∀n ∈ N. Each such M is called an lower
bound of {an}.

Definition 5. {an} is said to be bounded if it is bounded from below and
bounded from above.

Example 8. The sequence an = n2 + 2 is not bounded from above but is
bounded from below, by all m ≤ 3.

Example 9.
{

2n− 1
3n

}
is bounded.

m = 0 ≤ 2n− 1
3n ≤ 2n

3n = 2
3 = M

Definition 6 (Monotonic increasing sequence). A sequence {an} is called
monotonic increasing if ∃n0 ∈ N, s.t. an ≤ an+1, ∀n ≥ n0.

Definition 7 (Monotonic decreasing sequence). A sequence {an} is called
monotonic decreasing if ∃n0 ∈ N, s.t. an ≥ an+1, ∀n ≥ n0.

Definition 8 (Strongly increasing sequence). A sequence {an} is called
monotonic increasing if ∃n0 ∈ N, s.t. an < an+1, ∀n ≥ n0.

Definition 9 (Strongly decreasing sequence). A sequence {an} is called
monotonic decreasing if ∃n0 ∈ N, s.t. an > an+1, ∀n ≥ n0.
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Example 10. The sequence
{
n2

2n

}
is strongly decreasing. However, this is

not evident by observing the first few terms. 1
2 , 1,

9
8 , 1,

25
32 , . . .

an > an+1

⇐⇒ n2

2n >
(n+ 1)2

2n+1

⇐⇒ 2n2 > (n+ 1)2

⇐⇒
√

2n > n+ 1
⇐⇒ n(

√
2− 1) > 1

⇐⇒ n >
1√

2− 1
⇐⇒ n > 3

Exercise 1.
Is an = (−1)n monotonic?

Solution 1.
The sequence −1, 1,−1, 1, . . . is not monotonic.

1.1 Limit of a Sequence
Definition 10. Let {an} be a given sequence. A number L is said to be the
limit of the sequence if ∀ε > 0, ∃n0 ∈ N, s.t. |an − L| < ε, ∀n ≥ n0. That
is, there are infinitely many terms inside the interval and a finite number of
terms outside it.

Example 11. The sequence { 1
n
} tends to 0, i.e. for any open interval (−ε, ε),

there are finite number of terms of the sequence outside the interval, and
therefore there are infinitely many terms inside the interval.

Exercise 2.
Prove

lim
n→∞

n+ 2
2n− 1 = 1

2
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Solution 2.
∀ε > 0, ∃n0 ∈ N

Exercise 3.

Prove that 2 is not a limit of
{

3n+ 1
n

}
.

Solution 3.
If possible, let

lim
n→∞

3n+ 1
n

= 2

Then, ∀ε > 0, ∃n0 ∈ N, s.t.
∣∣∣∣∣3n+ 1

n
− 2

∣∣∣∣∣ < ε, ∀n ≥ n0. However,

∣∣∣∣∣3n+ 1
n
− 2

∣∣∣∣∣ = 1 + 1
n
> 1

This is a contradiction for ε = 1
2. Therefore, 2 is not a limit.

Theorem 1. If a sequence {an} has a limit L then the limit is unique.

Proof. If possible let there exist two limits L1 and L2. Therefore, ∀ε > 0,
there exist a finite number of terms in the interval (L1−ε, L1 +ε). Therefore,
there exist a finite number of terms in the interval (L2 − ε, L2 + ε). This
contradicts the definition of a limit. Therefore, the limit is unique.

Theorem 2. If a sequence {an} has limit L, then the sequence is bounded.

Theorem 3. Let

lim
n→∞

an = a

lim
n→∞

bn = b

and let c be a constant. Then,

lim c = c

lim(can) = c lim an

lim(an ± bn) = lim an ± lim bn

lim(anbn) = lim an lim bn

lim(an
bn

) = lim an
lim bn

( if lim b 6= 0)
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Theorem 4. Let {bn} be bounded and let lim an = 0. Then,

lim(anbn) = 0

Theorem 5 (Sandwich Theorem). Let {an}, {bn}, {cn} be three sequences.
If

lim an = lim bn = L

and ∃n0 ∈ N, s.t. ∀n ≥ n0, an ≤ bn ≤ cn. Then,

lim bn = L

Exercise 4.
Calculate lim

n→∞
n
√

2n + 3n

Solution 4.

n
√

3n ≤ n
√

2n + 3n ≤ n
√

3n + 3n = 3
√

2 · 3n

∴ 3 ≤ n
√

2n + 3n ≤ 3 n
√

2

Therefore, by the Sandwich Theorem, lim
n→∞

n
√

2n + 3n = 3.

Theorem 6. Any monotonically increasing sequence which is bounded from
above converges. Similarly, any monotonically decreasing sequence which is
bounded from below converges.

Exercise 5.

Prove that there exists a limit for an =
√

2 +
√

2 +
√

2 + . . .︸ ︷︷ ︸
n times

and find it.

Solution 5.

a1 =
√

2 <
√

2 +
√

2 = a2

If possible, let

an−1 < an

∴
√

2 + an−1 <
√

2 + an

∴ an < an+1
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Hence, by induction, {an} is monotonically increasing.

a1 =
√

2 ≤ 2

If possible, let

an ≤ 2 ∴
√

2 + an ≤
√

2 + 2
∴ an+1 ≤ 2

Hence, by induction, {an} is bounded from above by 2. Therefore, by , {an}
converges.

Definition 11 (Limit in a wide sense). The sequence {an} is said to converge
to +∞ if ∀M ∈ R, ∃n0 ∈ N, s.t. ∀n ≥ n0, an > M .
The sequence {an} is said to converge to −∞ if ∀M ∈ R, ∃n0 ∈ N, s.t.
∀n ≥ n0, an < M .

1.2 Sub-sequences
Definition 12 (Sub-sequence). Let {an}∞n=1 be a sequence. Let {nk}∞k=1 be a
strongly increasing sequence of natural numbers. Let {bk}∞k=1 be a sequence
such that bk = ank . Then {bk}∞k=1 is called a sub-sequence of {an}∞n=1.

Example 12.

an = 1
n

If we choose nk = k2,

bk = ank = ak2 = 1
k2

Therefore,

{bk} = 1, 1
4 ,

1
9 , . . .

Theorem 7. If the sequence {an} converges to L in a wide sense, i.e. L can
be infinite, then any sub-sequence of {an} converges to the same limit L.

Definition 13 (Partial limit). A real number a, which may be infinite, is
called a partial limit of the sequence {an} is there exists a sub-sequence of
{an} which converges to a.
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Example 13. Let

an = (−1)n

Therefore, @ lim
n→∞

an. Let

bk = ank = a2n−1

Therefore,

{bk} = −1,−1,−1, . . .
∴ lim

k→∞
bk = 1

Therefore, −1 is a partial limit of {an}.

Theorem 8 (Bolzano-Weierstrass Theorem). For any bounded sequence there
exists a subsequence which is convergent, s.t. there exists at least one partial
limit.

Definition 14 (Upper partial limit). The largest partial limit of a sequence
is called the upper partial limit. It is denoted by liman or lim sup an.

Definition 15 (Lower partial limit). The smallest partial limit of a sequence
is called the upper partial limit. It is denoted by liman or lim inf an.

Theorem 9. If the sequence {an} is bounded and

liman = liman = a

then

∃ lim an = a

1.3 Cauchy Characterisation of Convergence
Definition 16. A sequence {an} is called a Cauchy sequence if ∀ε > 0,
∃n0 ∈ N, s.t. ∀m,n ≥ n0, |an − am| < ε.

Theorem 10 (Cauchy Characterisation of Convergence). A sequence {an}
converges if and only if it is a Cauchy sequence.
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Proof. Let

lim
n→∞

an = L

Then ∀ε > 0, ∃n0 ∈ N, such that ∀n ≥ n0, |an−L| <
ε

2. Therefore if n ≥ n0

and m ≥ n0, then

|an − am| = |an − L+ L− am|
≤ |an − L|+ |L− am|

<
ε

2 + ε

2
∴ |an − am| = ε

Similarly, the converse can be proved by Theorem 9.

Theorem 11 (Another Formulation of the Cauchy Characterisation Theo-
rem). The sequence {an} converges if and only if ∀ε > 0, ∃n0 ∈ N, such that
∀n ≥ n0 and ∀p ∈ N, |an+p − an| < ε.

Exercise 6.
Prove that the sequence

an = 1
12 + 1

22 + · · ·+ 1
n2

is convergent.

Solution 6.

|an+p − an| =

∣∣∣∣∣∣ 1
12 + 1

22 + · · ·+ 1
(n+ p)2 −

(
1
12 + 1

22 + · · ·+ 1
n2

)∣∣∣∣∣∣
= 1

(n+ 1)2 + 1
(n+ 2)2 + · · ·+ 1

(n+ p)2

∴ |an+p − an| <
1

n(n+ 1) + 1
(n+ 1)(n+ 2) + · · ·+ 1

(n+ p− 1)(n+ p)

∴ |an+p − an| <
1
n
−

�
�

��1
n+ 1 +

�
�

��1
n+ 1 + · · ·+

���
���1

n+ p− 1 −
1

n+ p

∴ |an+p − an| <
1
n
− 1
n+ p

∴ |an+p − an| <
1
n
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Therefore, ∀ε > 0, ∃n0 ∈ N, s.t. ∀n ≥ n0 and ∀p ∈ N, |an+p− an| < ε, where
n0 >

1
ε

.

Exercise 7.
Prove that the sequence

an = 1
1 + 1

n
+ · · ·+ 1

n

diverges.

Solution 7.
If possible, let the sequence converge. Then, by the Cauchy Characterisation
of Convergence, ∀ε > 0, ∃n0 ∈ N, s.t. ∀n ≥ n0 and ∀p ∈ N, |an+p − an| < ε.
Therefore,

|an+p − an| =

∣∣∣∣∣∣11 + 1
2 + · · ·+ 1

n
+ 1
n+ p

−
(

1
n

+ · · ·+ 1
n

)∣∣∣∣∣∣
= 1
n+ 1 + · · ·+ 1

n+ p

≥ p · 1
n+ p

∴ |an+p − an| >
p

n+ p

If n = p,
p

n+ p
= 1

2
This contradicts the result obtained from the Cauchy Characterisation of
Convergence, for ε = 1

4.
Therefore, the sequence diverges.

2 Series
Definition 17 (Series). Given a sequence {an}, the sum a1 + · · ·+ an + . . .
is called an infinite series or series. It is denoted as ∑∞n=1 an or ∑ an.

Definition 18 (Partial sum). The partial sum of the series ∑ an is defined
as

Si = a1 + · · ·+ ai
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Definition 19 (Convergent and divergent series). If the sequence {Sn}∞n=1
converges, then the series is called convergent. Otherwise, the series is called
divergent.

Definition 20 (Sum of a series). If the sequence {Sn}∞n=1 converges to S 6=
±∞, the number S is called the sum of the series.

∞∑
n=1

an = S

Example 14.
∞∑
n=1

an =
∞∑
n=1

1
2n

Therefore,

S1 = 1
2 (1)

S2 = 1
2 + 1

22 (2)
...Sn = 1

2 + · · ·+ 1
2n (3)

= a1 (1− qn)
1− q (4)

=
1/2
(
1− 1/2n

)
1− 1/2

(5)

= 1− 1
2n (6)

lim
n→∞

Sn = 1 (7)

Therefore, the series converges.

S =
∞∑
n=1

= 1

Theorem 12. A geometric series
∞∑
n=1

a1q
n−1, a1 6= 0 converges if |q| < 1 and

then,

S =
∞∑
n=1

a1q
n−1 = a1

1− q

Definition 21 (p-series). The series
∞∑
n=1

1
np

is called the p-series.

14



Theorem 13. The p-series converges for p > 1 and diverges for p ≤ 1.

Theorem 14. If ∑ an converges, then

lim
n→∞

an = 0

Proof.

an = Sn − Sn−1

∴ lim
n→∞

an = lim
n→∞

Sn − lim
n→∞

Sn−1

= S − S
= 0

Theorem 15. If ∑ an and ∑ bn converge, then ∑(an± bn) and ∑ can, where
c is a constant, also converge. Also,∑

(an ± bn) =
∑

an ±
∑

bn∑
(can) = c

∑
an

2.1 Convergence Criteria
2.1.1 Leibniz’s Criteria

Definition 22 (Alternating series). The series
∞∑
n=1

(−1)n−1an, where all an >
0 or all an < 0 is called an alternating series.

Theorem 16 (Leibniz’s Criteria for Convergence). If an alternating series∑(−1)n−1an with an > 0 satisfies

1. an+1 ≤ an, i.e. {an} is monotonically decreasing.

2. lim
n→∞

an = 0

then the series (−1)n−1an converges.

Proof. Consider the even partial sums of the series
∞∑
n=1

(−1)n−1an.

S2m = (a1 − a2) + (a3 − a4) + · · ·+ (a2m−1 − a2m)

As {an} is monotonically increasing, all brackets are non-negative. Therefore,

S2m+2 ≥ S2m
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Therefore, {S2m} is increasing.
Also,

S2m = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2m−2 − a2m−1)− a2m

All brackets and a2m are non-negative. Therefore,

S2m ≤ a1

Therefore, {S2m} is bounded from above by a1. Hence,
∃ lim
m→∞

S2m = S

For S2m+1,
S2m+1 = S2m + a2m+1

∴ lim
m→∞

S2m+1 = lim
m→∞

S2m + lim
m→∞

a2m+1

= S + 0
= S

Therefore,
lim
n→∞

Sn = S

Example 15. The alternating harmonic series ∑ (−1)n−1

n
converges as an =

1
n
> 0, an decreases and lim an = 0.

2.1.2 Comparison Test

Theorem 17 (Comparison Test for Convergence). Assume ∃n0 ∈ N, such
that an ≥ 0, bn ≥ 0, ∀n ≥ n0.

1. If an ≤ bn, ∀n ≥ n0 and
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If an ≥ bn, ∀n ≥ n0 and
∞∑
n=1

bn diverges, then
∞∑
n=1

an diverges.

Theorem 18 (Another Formulation of the Comparison Test for Conver-
gence). Assume ∃n0 ∈ N, such that an ≥ 0, bn ≥ 0, ∀n ≥ n0 and

lim
n→∞

an
bn

= a > 0

where a is a finite number. Then
∞∑
n=1

an converges if and only if
∞∑
n=1

bn con-
verges.
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2.1.3 d’Alembert Criteria (Ratio Test)

Definition 23 (Absolute and conditional convergence). The series ∑ an is
said to converge absolutely if ∑ |an| converges. The series ∑ an is said to
converge conditionally if it converges but ∑ |an| diverges.

Example 16. The series ∑ (−1)n−1

n2 converges absolutely, as ∑∣∣∣∣∣(−1)n−1

n2

∣∣∣∣∣ =
∑ 1
n2 converges.

Example 17. The series ∑ (−1)n−1

n
converges conditionally, as it converges,

but ∑∣∣∣∣∣(−1)n−1

n2

∣∣∣∣∣ = ∑ 1
n

diverges.

Theorem 19. If the series ∑ an converges absolutely then it converges.

Theorem 20 (d’Alembert Criteria (Ratio Test)). 1. If

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = L < 1

then ∑
an converges absolutely.

2. If

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = L > 1

(including L =∞), then ∑
an converges diverges.

3. If L = 1, the test does not apply.

2.1.4 Cauchy Criteria (Cauchy Root Test)

Theorem 21 (Cauchy Criteria (Cauchy Root Test)). 1. If

lim n

√
|an| = L < 1

then ∑
an converges absolutely.

2. If

lim n

√
|an| = L > 1

(including L =∞), then ∑
an diverges.

3. If L = 1, the test does not apply.
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2.1.5 Integral Test

Theorem 22 (Integral Test for Series Convergence). Let f(x) be a contin-
uous, non-negative, monotonic decreasing function on [1,∞) and let an =
f(n). Then the series

∞∑
n=1

an converges if and only if the improper integral
∞∫
1
f(x) dx converges.

Exercise 8.

Does
∞∑
n=1

1
np

converge or diverge?

Solution 8.
Let

f(x) = 1
xp

with p > 0.
Therefore, f(x) is continuous, non-negative and monotonic decreasing on
[1,∞). Therefore, the Integral Test for Series Convergence is applicable.

∞∫
1

1
xp

dx = lim
t→∞

t∫
1

1
xp

dx

If p 6= 1,
∞∫
1

1
xp

= lim
t→∞

x−p+1

−p+ 1

∣∣∣∣∣
t

1

= lim
t→∞

(
t−p+1

−p+ 1 −
1

−p+ 1

)

= 1
p− 1

If p = 1,
∞∫
1

1
xp

= lim
t→∞

ln x|t1

=∞

Therefore, the series converges for p > 1 and diverges for p ≤ 1.
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Theorem 23. If the series ∑ an absolutely converges and the series ∑ bn is
obtained from ∑

an by changing the order of the terms in ∑
an then ∑

bn
also absolutely converges and ∑ bn = ∑

an.

Theorem 24. If a series converges then the series with brackets without
changing the order of terms also converges. That is, if ∑ an converges, then
any series of the form (a1 + a2) + (a3 + a4 + a5) + a6 + . . . also converges.

Theorem 25. If a series with brackets converges and the terms in the brack-
ets have the same sign, then the series without brackets also converges.

3 Power Series
Definition 24 (Power series). The series

∞∑
n=0

an(x − c)n is called a power
series.

Theorem 26 (Cauchy-Hadamard Theorem). For any power series
∞∑
n=0

an(x−
c)n there exists the limit, which may be infinity,

R = 1
lim
n→∞

n

√
|an|

and the series converges for |x − c| < R and diverges for |x − c| > R. The
end points of the interval, i.e. x = c − R and x = c + R must be separately
checked for series convergence.

Definition 25 (Radius of convergence and convergence interval). The num-
ber R is called the radius of convergence and the interval |x−c| < R is called
the convergence interval of the series. The point c is called the centre of the
convergence interval.

Theorem 27. If ∃ lim
n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣, which may be infinite, then,

R = lim
n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣
Theorem 28 (Stirling’s Approximation). For n→∞,

n! ≈
(
n

e

)n√
2πn
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3.1 Differentiation and Integration of Power Series

Theorem 29. If R is a radius of convergence of the power series
∞∑
n=0

an(x−

c)n then the function f(x) =
∞∑
n=0

an(x− c)n is differentiable on (c−R, c+R)
and the derivative is

f ′(x) =
∞∑
n=0

nan(x− c)n−1

Theorem 30. If R is a radius of convergence of the series
∞∑
n=0

an(x − c)n

then the function f(x) =
∞∑
n=0

an(x− c)n is integrable in (c−R, c+R) and

∫
f(x) dx =

∞∑
n=0

an
(x− c)n+1

n+ 1 + A

where c−R < x < c+R.

Exercise 9.

Find
x∫
0
e−t

2 dt.

Solution 9.
∀s ∈ R,

es = 1 + s

1! + s2

2! + · · ·+ sn

n! + . . .

∴ e−t
2 == 1− t2

1! + t4

2! + · · ·+ (−1)n t
2n

n! + . . .

∴
x∫

0

e−t
2 dt = x− x3

1!3 + x5

2!5 + · · ·+ (−1)n x2n−1

n!(2n+ 1 + . . .

Theorem 31. If the series A(x) =
∞∑
n=0

anx
n and B(x) =

∞∑
n=0

Bnx
n absolutely

converge for |x| < R and cn =
n∑
k=0

akbn−k, then the series C(x) =
∞∑
n=0

cnx
n

also absolutely converges for |x| < R and C(x) = A(x)B(x).
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3.2 Taylor Series

Definition 26 (Taylor series). Let f(x) be infinitely differentiable on an
open interval about a and let x be an arbitrary point in the interval. Then

the power series
∞∑
n=0

f (n)(a)
n! (x − a)n is called the Taylor series of f(x) at a.

If a = 0 then it is called the Maclaurin series of f(x) at 0.

Theorem 32. If there exists a power series which converges to f(x), i.e. if,
for |x− a| < R,

f(x) =
∞∑
n=0

an(x− a)n

then, for |x− a| < R,

f(x) =
∞∑
n=0

f (n)(a)
n! (x− a)n

that is, ∀n,

an = f (n)(a)
n!

Exercise 10.
Show that

f(x) =

0 ; x = 0
e−

1
x2 ; x 6= 0

is not equal to it’s Taylor series at a = 0.

Solution 10.
If n = 1,

f (n)(0) = lim
∆x→0

f(0 + ∆x)− f(0)
∆x

= lim
∆x→0

e
− 1

(∆x)2

∆x
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Let t = 1
∆x

∴ f ′(0) = lim
t→∞

e−t
2

1
t

= lim
t to∞

t

et2

= lim
t→∞

1
et22t

= 0

Therefore,

f ′(x) =

0 ; x = 0
e−

1
x2 ·2·x−3 ; x 6= 0

Similarly, ∀n ≥ 1, f (n)(0) = 0
Therefore, the Taylor series is not equal to f(x).

Exercise 11.
Find the Maclaurin series of f(x) = ex and prove that the series converges
to f(x) for any x ∈ R.

Solution 11.
∀n ≥ 1, f (n)(x) = ex.
Therefore,

ex = 1 + x

1! + x2

2! + · · ·+ xn

n! + ecxn+1

(n+ 1)!

where c is between 0 and x.
Therefore, as

0 ≤ |Rn(x)| ≤ |x|n+1

(n+ 1)!

by the Sandwich Theorem

lim
n→∞

|Rn(x)| = 0

Therefore,

ex = 1 + x

1! + x2

2! + · · ·+ xn

n! + . . .
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4 Series of Real-valued Functions
Definition 27 (Sequence of functions). A sequence {fn} = f1(x), f2(x), . . .
defined on D ⊆ R is called a sequence of functions.

Definition 28 (Pointwise convergence and domain of convergence). {fn}
converges pointwise in some domain E ⊆ D if for every x ∈ E, the sequence
of {fn(x)} converges. In such a case, E is said to be a domain of convergence
of {fn}.

Exercise 12.
Find the domain of convergence of fn(x) = xn, defined on some D ⊆ R.

Solution 12.

lim
n→∞

fn(x) =


0 ; −1 < x < 1
1 ; x = 1
diverges ; x /∈ (−1, 1]

Therefore, the domain of convergence of {fn} is (−1, 1].

Exercise 13.
Let f(x) : (0,∞) → R be some function such that lim

x→∞
f(x) = 0. Let

fn(x) = f(nx). What is the domain of convergence of fn? What is the limit
function?

Solution 13.
Let x have some fixed value in (0,∞). Therefore, as lim

x→∞
f(x) = 0,

lim
n→∞

fn(x) = lim
n→∞

f(nx)

= 0

Therefore, the domain of convergence is (0,∞) and the limit function is a
constant function with value 0.

4.1 Uniform Convergence of Series of Functions
Definition 29 (Pointwise convergence of a sequence of functions). If ∀x ∈ D,
∀ε > 0, ∃N which depends on ε and x, such that ∀n ≥ N , |fn(x)−f(x)| < ε,
then ∀x ∈ D, lim

n→∞
= f(x).

23



Definition 30 (Uniform convergence of a sequence of functions). The se-
quence {fn(x)} is said to converge uniformly to f(x) in D if ∀ε > 0, ∃N =
N(ε), such that ∀n ≥ N , ∀x ∈ D, |fn(x) − f(x)| < ε. It can be denoted as
fn(x)

D−−⇒ f(x).
Theorem 33. fn(x) converges uniformly to f(x) in D if and only if lim

n→∞
sup
x∈D
|fn(x)−

f(x)| = 0.

Exercise 14.
Does fn(x) = xn converge in [0, 1]?

Solution 14.

lim
n→∞

fn(x) = lim
n→∞

xn

∴ f(x) =

0 ; 0 ≤ x < 1
1 ; x = 1

Therefore,
If x = 0,

fn(0) = 0
f(0) = 0

Therefore, ∀ε > 0, N = 1,

|0− 0| < ε

∴ |fn(0)− f(0)| < ε

If x = 1,

fn(1) = 1
f(1) = 1

Therefore, ∀ε > 0, N = 1,

|1− 1| < ε

∴ |fn(1)− f(1)| < ε

If 0 < x < 1,

|fn(x)− f(x)| = |xn − 0|
= xn

24



If possible, let |fn(x)− f(x)| = xn < ε.
Therefore,

xn < ε

∴ logx xn > logx ε
∴ n > logx ε

Therefore, for N = blogx εc+ 1, |fn(x)− f(x)| < ε.

Therefore, fn(x) converges pointwise in [0, 1].

If possible let fn(x) converge uniformly on [0, 1].
Therefore, ∀ε > 0, ∃N dependent on ε, such that |fn(x)− f(x)| < ε.
Let ε = 1

3 .
Therefore, ∃N which is dependent on ε, such that ∀n > N , ∀x ∈ [0, 1],

|fn(x)− f(x)| < 1
3

Let x = 1
2 , n = N + 1. Therefore,∣∣∣∣∣∣fn
(

1
2

)
− f

(
1
2

)∣∣∣∣∣∣ =
∣∣∣∣∣12 − 0

∣∣∣∣∣
= 1

2

∴

∣∣∣∣∣∣fn
(

1
2

)
− f

(
1
2

)∣∣∣∣∣∣ > 1
3

Therefore, |fn(x)− f(x)| > ε.
This is a contradiction. Hence, fn(x) is does not converge uniformly.

Definition 31 (Supremum). Let A ⊆ R be a bounded set. M is said to be
the supremum of A if

1. ∀x ∈ A, x ≤M , i.e. M is an upper bound of A.

2. ∀ε, ∃x ∈ A, such that x > M − ε.

That is, the supremum of A is the least upper bound of A.
The supremum may or may not be in A.

Definition 32 (Infimum). Let A ⊆ R be a bounded set. M is said to be the
infimum of A if
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1. ∀x ∈ A, x ≥M , i.e. M is an upper bound of A.

2. ∀ε, ∃x ∈ A, such that x < M − ε.
That is, the infimum of A is the greatest lower bound of A. The infimum
may or may not be in A.
Theorem 34. Every bounded set A has a supremum and an infimum.

Theorem 35. fn
E−−⇒ f if and only if

lim
n→∞

(
sup{|fn(x)− f(x)| : x ∈ E}

)
= 0

Definition 33 (Remainder of a series of functions). Let f(x) =
∞∑
k=1

uk(x).

Let the partial sums be denoted by fn(x) =
n∑
k=1

uk(x). Then

Rn(x) = f(x)− fn(x) =
∞∑

k=n+1
uk(x)

is called a remainder of the series f(x) =
∞∑
k=1

uk(x).

Definition 34 (Uniform convergence of a series of functions). If fn(x) con-
verges uniformly to f(x) on D, i.e. if lim

n→∞
Rn(x) = 0, then the series

∞∑
k=1

uk(x)
is said to converge uniformly on D..

Exercise 15.

Show that the series f(x) =
∞∑
k=1

xk−1 = 1
1−k does not converge uniformly on

(−1, 1).

Solution 15.
The series converges uniformly if and only if lim

n→∞
Rn(x) = 0.

lim
n→∞

sup
(−1,1)

|Rn(x)− 0| = lim
n→∞

sup
(−1,1)

∞∑
k=n+1

xk−1

= lim
n→∞

sup
(−1,1)

∣∣∣∣∣ xn

1− x

∣∣∣∣∣
= lim

n→∞
sup

(−1,1)

|x|n

1− x
= lim

n→∞
∞

=∞
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Therefore, the series does not converge uniformly on (−1, 1).

Exercise 16.

Show that the series f(x) =
∞∑
k=1

xk−1 = 1
1−k does not converge uniformly on(

−1
2 ,

1
2

)
.

Solution 16.
The series converges uniformly if and only if lim

n→∞
Rn(x) = 0.

lim
n→∞

sup
(− 1

2 ,
1
2)
|Rn(x)− 0| = lim

n→∞
sup

(− 1
2 ,

1
2)

∞∑
k=n+1

xk−1

= lim
n→∞

sup
(− 1

2 ,
1
2)

∣∣∣∣∣ xn

1− x

∣∣∣∣∣
= lim

n→∞
sup

(− 1
2 ,

1
2)

|x|n

1− x

= lim
n→∞

(
1
2

)n
1− 1

2

= lim
n→∞

(
1
2

)n−1

= 0

Therefore, the series converges uniformly on
(
−1

2 ,
1
2

)
.

4.2 Weierstrass M-test

Theorem 36 (Weierstrass M-test). If |uk(x)| ≤ ck on D for k ∈ {1, 2, 3, . . . }
and the numerical series

∞∑
k=1

ck converges, then the series of functions
∞∑
k=1

uk(x)
converges uniformly on D.

Exercise 17.

Show that
∞∑
k=1

1
k2 sin(kx) converges uniformly on R.
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Solution 17.

|uk(x)| =
∣∣∣∣∣ 1
k2 sin(kx)

∣∣∣∣∣
∴ |uk(x)| ≤ 1

k2

Therefore, let

ck = 1
k2

Therefore, as |uk(x)| ≤ ck, and as
∞∑
k=1

ck converges, by the Weierstrass M-test,
∞∑
k=1

1
k2 sin(kx) converges uniformly.

4.3 Application of Uniform Convergence

Theorem 37 (Continuity of a series). Let functions uk(x), k ∈ {1, 2, 3, . . . }
be defined on [a, b] and continuous at x0 ∈ [a, b]. If

∞∑
k=1

uk(x) converges

uniformly on [a, b] then the function f(x) =
∞∑
k=1

is also continuous at x0.

Theorem 38 (Changing the order of integration and infinite summation).
If the functions uk(x), k ∈ {1, 2, 3, . . . } are integrable on [a, b] and the series
∞∑
k=1

uk(x) converges uniformly on [a, b] then

b∫
a

 ∞∑
k=1

uk(x)
 dx =

∞∑
k=1

b∫
a

uk(x) dx

Exercise 18.

Solve
2π∫
0

(
∞∑
k=1

1
k2 sin(kx)

)
.

Solution 18.

The series f(x) =
∞∑
k=1

1
k2 sin(kx) converges uniformly on [0, 2π]. Therefore, by

the Weierstrass M-test and uk(x) = 1
k2 (kx) are integrable on [0, 2π]. There-
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fore,

2π∫
0

f(x) dx =
2π∫
0

 ∞∑
k=1

1
k2 sin(kx)

 dx

=
∞∑
k=1

 2π∫
0

1
k2 sin(kx) dx


=
∞∑
k=1

(
−cos(2πk)

k3 + 1
k3

)

=
∞∑
k=1

0

= 0

Theorem 39 (Changing the order of differentiation and infinite summa-
tion). If the functions uk(x), k ∈ {1, 2, 3, . . . } are differentiable on [a, b] and
the derivatives are continuous on [a, b], and the series

∞∑
k=1

uk(x) converges

pointwise on [a, b] and the series
∞∑
k=1

uk
′(x) converges uniformly on [a, b],

then,  ∞∑
k=1

uk(x)
′ = ∞∑

k=1
uk
′(x)

Theorem 40 (Changing the order of integration and limit). If the functions
fn(x) are integrable on [a, b] and converge uniformly to f on [a, b], then

lim
n→∞

b∫
a

fn(x) dx =
b∫
a

lim
n→∞

fn(x) dx =
b∫
a

f(x) dx

Theorem 41 (Changing the order of differentiation and limit). If there exists
the functions fn′(x) which are continuous on [a, b], for the functions fn(x)
which ∀x ∈ [a, b], converge pointwise to f(x) on [a, b], and if fn′(x) converges
uniformly to g(x) on [a, b], then,

f ′(x) =
(

lim
n→∞

fn(x)
)′

= lim
n→∞

fn
′(x) = g(x)
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Part II

Functions of Multiple Variables
1 Limits, Continuity, and Differentiability
Definition 35 (Limit of a function of two variables). Let z = f(x, y) be
defined on some open neighbourhood about (a, b), except maybe at the point
itself. L ∈ R is said to be a limit of f(x, y) at (a, b), if ∀ε > 0, ∃d > 0, such
that 0 <

√
(x− a)2 + (y − b)2 < δ, then,

|f(x, y)− L| < ε

Exercise 19.
Does the limit lim

(x,y)→(0,0)
3x2y
x2+y2 exist?

Solution 19.
Consider the curves C1 : y = 0, and C2 : y = x3.
Therefore, as (x, y)→ (0, 0) along these curves, the limit of the function is

lim
(x,y)

C1−→(0,0)

3x2y

x2 + y2 = lim
x→0

3x2 · 0
x2 + y2

= 0

lim
(x,y)

C2−→(0,0)

3x2y

x2 + y2 = lim
x→0

3x2(x3)
x2 + (x3)2

= lim
x→0

3x5

x2 + x6

= lim
x→0

3x3

x2 + x4

= 0

If lim
(x,y)→(0,0)

3x2y
x2+y2 = 0, ∀ε > 0, ∃δ > 0 such that 0 <

√
x2 + y2 < δ, then,

|f(x, y)− L| < ε
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Therefore, checking |f(x, y)− L|,
∣∣f(x, y)− L

∣∣ =
∣∣∣∣∣ 3x2y

x2 + y2 − 0
∣∣∣∣∣

= 3x2|y|
x2 + y2

As x2

x2+y2 ≤ 1,∣∣f(x, y)− L
∣∣ ≤ 3|y|

∴
∣∣f(x, y)− L

∣∣ ≤ 3
√
y2

∴
∣∣f(x, y)− L

∣∣ ≤ 3
√
x2 + y2

Therefore, |f(x, y)− L| < ε.
Therefore, for δ ≤ ε

3 , the condition is satisfied.
Hence, the limit of the function exists and is 0.

Definition 36 (Iterative limits). The limits lim
x→a

(
lim
y→b

f(x, y)
)

and lim
y→b

(
lim
x→a

f(x, y)
)

are called the iterative limits of f(x, y).
Theorem 42. If ∃ lim

(x,y)→(a,b)
f(x, y) = L and, for some open interval about b,

∀y 6= b, ∃ lim
x→a

f(x, y) then

lim
y→b

(
lim
x→a

f(x, y)
)

= L

If ∃ lim
(x,y)→(a,b)

f(x, y) = L and, for some open interval about a, ∀x 6= a,
∃ lim
y→b

f(x, y) then

lim
x→a

(
lim
y→b

f(x, y)
)

= L

Exercise 20.
Do the iterative limits, as x→ 0, and as y → 0, of the function

f(x, y) =

(x+ y) sin 1
x+y ; x 6= 0, y 6= 0

0 ; Otherwise

exists? Does the limit of the function at (0, 0) exist?
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Solution 20.

lim
x→0

f(x, y) = lim
x→0

(x+ y) sin 1
x+ y

= lim
x→0

y sin 1
x+ y

Therefore, as sin 1
x+y oscillates between −1 and 1, the limits does not exist.

lim
y→0

f(x, y) = lim
y→0

(x+ y) sin 1
x+ y

= lim
y→0

x sin 1
x+ y

Therefore, as sin 1
x+y oscillates between −1 and 1, the limits does not exists.

Therefore, the iterative limits do not exist.

|f(x, y)− 0| = |x+ y| ·
∣∣∣∣∣sin 1

xy

∣∣∣∣∣
∴ |f(x, y)− 0| ≤ |x|+ |y|

∴ |f(x, y)− 0| ≤
√

2
√
x2 + y2

Therefore, for δ ≤ ε√
2 , the condition is satisfied.

Hence, the limit of the function exists and is 0.
Therefore, even though the iterative limits do not exist, the limit of the
function exists.
Definition 37 (Differential).

∆z = f(a+ ∆x, b+ ∆y)− f(a, b)

dz = fx(a, b) dx+ fy(a, b) dy
Definition 38 (Differentiability). The function x = f(x, y) is said to be
differentiable at (a, b) if

∆z = dz + ε1(∆x,∆y)∆x+ ε2(∆x,∆y)∆y

where

lim
(∆x,∆y)→(0,0)

ε1(∆x,∆y) = lim
(∆x,∆y)→(0,0)

ε2(∆x,∆y) = 0

Theorem 43. If f(x, y) is differentiable at (a, b) then f(x, y) is continuous
at (a, b).
Theorem 44. If ∃fx(a, b) and ∃fy(a, b) on some open neighbourhood of (a, b)
and are continuous at (a, b), then f(x, y) is differentiable at (a, b).
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2 Directional Derivatives and Gradients
Definition 39 (Directional derivative). Let x0 ∈ R, y0 ∈ R.
Let û = (a, b) be a unit vector in the xy-plane.
The directional derivative of z = f(x, y) with respect to the direction û =
(a, b) at the point (x0, y0 is defined as

Dûf(x0, y0) = lim
h→0

f(x0 + ah, y0 + bh)− f(x0, y0)
h

If the limit does not exist, the directional derivative does not exist.

Geometrically the directional derivative of z = f(x, y) is the slope of the
tangent of the curve formed due to the intersection of the curve z = f(x, y),
and the plane which passes through (x0, y0) in the direction of û and is per-
pendicular to the xy-plane.

Definition 40 (Gradient). If the functions fx(x, y) and fy(x, y) for z =
f(x, y) exist, then the vector function

∇f(x, y) =
(
fx(x, y), fy(x, y)

)
is called the gradient of f(x, y).

Theorem 45. Let z = f(x, y) be differential at (x0, y0). The function f(x, y)
has a directional derivative with respect to any direction û = (a, b) at (x0, y0)
and

Dûf(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b = ∇f(x0, y0) · û

Exercise 21.
Find the directional derivative of

f(x, y) = x3 + 4xy + y4

with respect to the direction of u = (1, 2) at any point (x, y) and at (0, 1).

Solution 21.

f(x, y) = x3 + 4xy + y4

Therefore,

fx(x, y) = 3x2 + 4y
fy(x, y) = 4x+ 4y3
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û = u

u

= (1, 2)√
5

=
(

1√
5
,

2√
5

)
Therefore,

Dûf(x, y) = 1√
5

(3x2 + 4y) + 2√
5

(4x+ 4y2)

Therefore,

Dûf(0, 1) = 4√
5

+ 8√
5

= 12√
5

Theorem 46. If z = f(x, y) is differentiable at (x0, y0), then ∃û0 = (a0, b0)
such that

max
û∈R

Dûf(x0, y0) = Dû0f(x0, y0) =
∣∣∇f(x0, y0)

∣∣
and

û0 = ∇f(x0, y0)∣∣∇f(x0, y0)
∣∣

Proof.
max
û∈R

Dûf(x0, y0) = max
û∈R
∇f(x0, y0) · û

= max
û∈R

∣∣∇f(x0, y0)
∣∣
�
��

1
|û| cos θ

=
∣∣∇f(x0, y0)

∣∣max
û∈R

cos θ

=
∣∣∇f(x0, y0)

∣∣
Theorem 47. If z = f(x, y) is differentiable at (x0, y0), then ∃û1 = (a0, b0)
such that

min
û∈R

Dûf(x0, y0) = Dû1f(x0, y0) = −
∣∣∇f(x0, y0)

∣∣
and

û1 = − ∇f(x0, y0)∣∣∇f(x0, y0)
∣∣
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Proof.

min
û∈R

Dûf(x0, y0) = min
û∈R
∇f(x0, y0) · û

= min
û∈R

∣∣∇f(x0, y0)
∣∣
�
��

1
|û| cos θ

=
∣∣∇f(x0, y0)

∣∣min
û∈R

cos θ

= −
∣∣∇f(x0, y0)

∣∣

3 Local Extrema
Theorem 48 (A necessary condition for local extrema existence). If the
function z = f(x, y) has a local extrema at the point (a, b) and ∃fx(a, b) and
∃fy(a, b) then fx(a, b) = fy(a, b) = 0

Example 18.

z = x2 + y2

Solution 21.

f(x, y) ≥ f(0, 0)

Therefore, (0, 0) is a point of local minimum.

fx = 2x
fy = 2y

Therefore,

fx(0, 0) = fy(0, 0) = 0

Example 19.

z =
√
x2 + y2
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Solution 21.

lim
∆x→0

f(0 + ∆x, 0)− f(0, 0)
∆x = lim

∆x→0

√
(∆x)2

∆x
= ±1

Therefore, the limit does not exist.

Definition 41 (Critical point). Let the function z = f(x, y) be defined on
some open neighbourhood of (a, b). The point (a, b) is called a critical point
of z = f(x, y) if fx(a, b) = fy(a, b) = 0 or at least one of the partial derivative
fx(a, b) and fy(a, b) does not exist.

Example 20. Is (0, 0) an local extremum point of

z = f(x, y) = y2 − z2

?

Solution 21.

fx(0, 0) = 0
fy(0, 0) = 0

Therefore, (0, 0) is a critical point.
If possible let (0, 0) be a local minimum point.
Then, f(x, y) ≥ f(0, 0) in some neighbourhood of (0, 0).
Therefore,

y2 − x2 ≥ 0

For any point of the form (x, 0), this is a contradiction.
Therefore (0, 0) is not a local minimum point.
Similarly, (0, 0) is not a local maximum point.

Theorem 49 (A sufficient condition for local extrema point). Assume that
there exist second order partial derivates of z = f(x, y), they are continuous
on some open neighbourhood of (a, b) and fx(a, b) = fy(a, b) = 0. Denote

D(a, b) = fxx(a, b)fyy(a, b)−
(
fxy(a, b)

)2

1. If D(a, b) > 0 and fxx < 0 then (a, b) is a local maximum point.
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2. If D(a, b) > 0 and fxx > 0 then (a, b) is a local minimum point.

3. If D(a, b) < 0 then (a, b) is called a saddle point.

Example 21. Find all critical points of

z = f(x, y) = x4 + y4 − 4xy + 1

and classify them.

Solution 21.

fx(x, y) = 4x3 − 4y
fy(x, y) = 4y3 − 4x

For critical points,

fx(x, y) = 0
fy(x, y) = 0

Solving, (0, 0), (1, 1), (−1,−1) are critical points.

fxx(x, y) = 12x2

fxy(x, y) = −4
fyy(x, y) = 12y2

∴ D(x, y) = 144x2y2 − 16

For (0, 0),

D = −16

Therefore, (0, 0) is a saddle point.
For (1, 1),

D = 144− 16

Therefore, (1, 1) is a local minimum point.
For (−1,−1),

D = 144− 16

Therefore, (−1,−1) is a local minimum point.
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4 Global Extrema

4.1 Algorithm for Finding Maxima and Minima of a
Function

Step 1 Find all critical points of f(x, y) on the domain, excluding the end
points.

Step 2 Calculate the values of f(x, y) at the critical points.

Step 3 Calculate the values of f(x, y) at the end points of the domain.

Step 4 Select the maximum and minimum values from Step 2 and Step 3

Example 22. Find the global maxima and minima of

z = x2 − 2xy + 2y

in the domain

D =

(x, y)
∣∣∣∣∣0 ≤ x ≤ 3, 0 ≤ y ≤ −2

3x+ 2


Solution 21.

fx(x, y) = 0
∴ 2x− 2y = 0
fy(x, y) = 0

∴ −2x+ 2 = 0

Therefore, (1, 1) is a critical point in D.
The boundary of D is L1 ∪ L2 ∪ L3, where

L1 : y = 0, 0 ≤ x ≤ 3
L2 : x = 0, 0 ≤ y ≤ 2
L3 :

Therefore,
over L1,

f(x, y) = x2

∴ min
L1

f = f(0, 0) = 0

∴ max
L1

f = f(3, 0) = 9
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over L2,

f(x, y) = 2y
∴ min

L2
f = f(0, 0) = 0

∴ max
L2

f = f(0, 2) = 4

over L3,

f(x, y) = x2 − 2x
(
−2

3x+ 2
)

+ 2
(
−2

3x+ 2
)

= 7
3x

2 − 16
3 x+ 4

∴ f ′ = 14
3 x−

16
3

∴ f ′
(

8
7

)
= 0

∴ f

(
8
7 ,

26
21

)
= 0.952

∴ min
L3

f = f

(
8
7 ,

26
21

)
= 0.952

∴ max
L3

f = f(3, 0) = 9

Therefore,

∴ min
D

f = f(0, 0) = 0

∴ max
D

f = f(3, 0) = 9

5 Taylor’s Formula
Theorem 50.

f(a+ h, b+ k) =
n∑
i=0

 1
i!

(
h
∂

∂x
+ k

∂

∂y

)i
f(a, b)


+ 1

(n+ 1)!

(
h
∂

∂x
+ k

∂

∂y

)n+1

f(a+ ch, b+ ck)

where 0 < c < 1.

39



6 Vector Functions and Curves in R3

Definition 42 (Vector function). A vector function is a function with a
domain which consists of a set of real numbers, and with a domain which
consists of a set of vectors, i.e. τ(t) =

(
f(t), g(t), h(t)

)
, ∀t ∈ [a, b].

Theorem 51. If ∃ lim
t→t0

f(t), ∃ lim
t→t0

g(t), ∃ lim
t→t0

h(t), then, ∃ lim
t→t0

=
(

lim
t→t0

f(t), lim
t→t0

g(t), lim
t→t0

h(t)
)

.

Definition 43 (Continuous vector function). A vector function τ(t) is said
to be continuous at t0 if lim

t→t0
τ(t) = τ(t0).

Definition 44 (Space curve). Let f(t), g(t), h(t) be continuous functions
of [a, b]. The set of points (x, y, z), such that x = f(t), y = g(t), z = h(t),
t ∈ [a, b] is called a space curve.

7 Derivatives of Vector Functions
Definition 45 (Derivative of vector function). The derivative of r(t) =(
f(t), g(t), h(t)

)
, if it exists, is defined as

r′(t) = lim
∆t→0

r(t+ ∆t)− r(t)
∆t

Definition 46 (Tangent vector). r′(t0) is called a tangent vector to the curve
C = r(t) at P (t0).

Theorem 52. If ∃f ′(t0), ∃g′(t0), ∃h′(t0), and r(t) =
(
f(t), g(t), h(t)

)
, then,

r′(t0) =
(
f ′(t0), g′(t0), h′(t0)

)
Definition 47 (Unit tangent vector). The vector T̂ (t) = r′(t)

|r′(t)| is called the
unit tangent vector to C = r(t) at P (t0).

Definition 48 (Tangent line). A straight line passing through a point P (t)
on the curve C = r(t), in the direction r′(t), i.e. T̂ (t), is called a tangent line
to the curve at the point.

Theorem 53. Let u(t) and v(t) be vector functions, let c be a constant, and
let f(t) be a scalar function. Then,

1.
(
u(t)± v(t)

)′ = u′(t)± v′(t)

2.
(
cu(t)

)′ = cu′(t)

40



3.
(
f(t)u(t)

)′ = f ′(t)u(t) + f(t)u′(t)

4.
(
u(t) · v(t)

)′ = u′(t) · v(t) + u(t) · v′(t)

5.
(
u(t)× v(t)

)′ = u′(t)× v(t) + u(t)× v′(t)

6.
(
u
(
f(t)

))′
= f ′(t)u′

(
f(t)

)

8 Change of Variables in Double Integrals

Definition 49 (Jacobian). Let

T (u, v) = (x, y)

be an operator.
The determinant

J = ∂(x, y)
∂(u, v) =

∣∣∣∣∣xu xv
yu yv

∣∣∣∣∣
is called the Jacobian of the operator T .

Theorem 54. Let R and S be domains of the first or second kind.
Let the operator T from S to R be one-to-one and onto.
Therefore, the inverse operator T−1 exists.
Also, let T be a C1 operator, i.e. ∃xu, ∃xv, ∃yu, ∃yv, which are continuous
on S.
Let f(x, y) be a continuous function on R.
Then,

∫∫
R

f(x, y) dx dy =
∫∫
S

f
(
g(u, v), h(u, v)

)
|J | du dv

Exercise 22.
Calculate

∫∫
R

(x− y)2 sin2(x+ y) dx dy, where R is as shown.
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x

y

π 2π

π

2π

Solution 22.
The edges of the domain are

x+ y = π

x+ y = 3π
x− y = π

x− y = −π

Therefore, let

x− y = u

x+ y = v

Therefore,

x = u+ v

2
y = v − u

2
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Therefore, the domain R can be written as S = {−π ≤ u ≤ π, π ≤ v ≤ 3π}.
Therefore,

J =
(
xu xv
yu yv

)

=
(

1
2

1
2

−1
2

1
2

)

= 1
2

Therefore, ∫∫
R

f(x, y) dx dy =
∫∫
S

f
(
g(u, v), h(u, v)

)
|J | du dv

∴
∫∫
R

(x− y)2 sin2(x+ y) dx dy =
∫
S

u2 sin2 v

∣∣∣∣∣12
∣∣∣∣∣ du dv

= 1
2

π∫
−π

3π∫
π

u2 sin2 v dv du

= 1
2

π∫
−π

u2 du ·
3π∫
π

sin2 v dv

= 1
2
u3

3

∣∣∣∣∣
π

−π
·

3π∫
π

1− cos 2v
2 dv

= 1
2

2π3

3 ·
1
22π

= π4

3

8.1 Polar Coordinates
Polar coordinates are a special case of change of variables.
The operator for the change of variables is

T (r, θ) = (x, y)

where

x = r cos θ
y = r sin θ
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Therefore,

J =
∣∣∣∣∣xr xθ
yr yθ

∣∣∣∣∣
=
∣∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣
= r cos2 θ + r sin2 θ

= r

Exercise 23.
Calculate

∫∫
R
xy dx dy, R =

{
(x, y)|1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x

}
.

Solution 23.
The domain R is the region shown.

x

y

Therefore, it can be written as S =
{

(r, θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π
4

}
.

Therefore,

∫∫
R

xy dx dy =

π
4∫

0

2∫
1

r cos θr sin θr dr dθ

=
2∫

1

r3 dr ·

π
4∫

0

cos θ sin θ dθ

= 15
4 ·

1
4

= 15
16
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Theorem 55. Let D be a domain, written as DI in polar coordinates, i.e.,

DI =
{
(r, θ)|a ≤ r ≤ b, g1(r) ≤ θ ≤ g2(r)

}
and let f(x, y) be continuous on DI.
Then,

∫∫
DI

f(x, y) dx dy =
b∫
a

g2(r)∫
g1(r)

f(r cos θ, r sin θ)r dθ dr

Theorem 56. Let D be a domain, written as DII in polar coordinates, i.e.,

DI =
{
(r, θ)|α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)

}
and let f(x, y) be continuous on DII.
Then,

∫∫
DII

f(x, y) dx dy =
β∫
α

h2(θ)∫
h1(θ)

f(r cos θ, r sin θ)r dr dθ

Exercise 24.
Given D =

{
x2 + y2 ≤ 2x

}
, calculate

∫∫
D

(x+ y) dx dy.

Solution 24.

x2 + y2 = 2x
∴ x2 − 2x+ y2 = 0
∴ (x− 1)2 = 1

Therefore, the domain D is as shown.

−1 0 1 2 3

−2

−1

0

1

2

3

x

y
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Therefore, D can be written as
{

0 ≤ r ≤ 2 cos θ,−π
2 ≤ θ ≤ π

2

}
.

Therefore,

∫∫
D

(x+ y) dx dy =

π
2∫

−π2

2 cos θ∫
0

(r cos θ + r sin θ)r dr dθ

=

π
2∫

−π2

(cos θ + sin θ)
(
r3

3

)∣∣∣∣∣∣
z=2 cos θ

z=0

dθ

Solving,∫∫
D

(x+ y) dx dy = π

9 Change of Variables in Triple Integrals
Definition 50 (Jacobian). Let

T (u, v, w) = (x, y, z)

be an operator.
The determinant

J = ∂(x, y, z)
∂(u, v, w) =

∣∣∣∣∣∣∣∣
xu xv xw
yu yv yw
zu zv zw

∣∣∣∣∣∣∣∣
is called the Jacobian of the operator T .

Theorem 57. Let R and S be domains of the first, second, or third kind.
Let the operator T from S to R be one-to-one and onto.
Therefore, the inverse operator T−1 exists.
Also, let T be a C1 operator, i.e. ∃xu, ∃xv, ∃xw, ∃yu, ∃yv, ∃yw, ∃zu, ∃zv,
∃zw, which are continuous on S.
Let f(x, y, z) be a continuous function on R.
Then,∫∫

R

f(x, y, z) dx dy dz =
∫∫
S

f
(
x(u, v, w), y(u, v, w), z(u, v, w)

)
|J | du dv dw
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9.1 Cylindrical Coordinates

Cylindrical coordinates are a special case of change of variables.
The operator for the change of variables is

T (r, θ, z) = (x, y, z)

where

x = r cos θ
y = r sin θ
z = z

Therefore,

J =

∣∣∣∣∣∣∣∣
xr xθ xz
yr yθ yz
zr zθ zz

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣∣
= r cos2 θ + r sin2 θ

= r

Exercise 25.
Calculate the iterative integral

I =
2∫
−2

√
4−x2∫

−
√

4−x2

2∫
√
x2+y2

(
x2 + y2

)
dz dy dx

Solution 25.
The domain

{
(x, y)| − 2 ≤ x ≤ 2,−

√
4− x2 ≤ y ≤

√
4− x2

}
is a circle of ra-

dius 2.
As
√
x2 + y2 ≤ z ≤ 2, the domain E, where −2 ≤ x ≤ 2, −

√
4− x2 ≤ y ≤√

4− x2,
√
x2 + y2 ≤ z ≤ 2 is a cone, with the circular cross section of radius

x2 + y2.
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Therefore,

I =
2∫
−2

√
4−x2∫

−
√

4−x2

2∫
√
x2+y2

(
x2 + y2

)
dz dy dx

=
∫∫∫
E

(
x2 + y2

)
dx dy dz

Therefore, let DI =
{
(r, θ, z)|0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, r ≤ z ≤ 2

}
.

Therefore,

I =
2∫
−2

√
4−x2∫

−
√

4−x2

2∫
√
x2+y2

(
x2 + y2

)
dz dy dx

=
∫∫∫
E

(
x2 + y2

)
dx dy dz

=
∫∫∫
DI

r2 · r dr dθ dz

=
2π∫
0

2∫
0

2∫
r

r3 dz dr dθ

=
2π∫
0

2∫
0

r3z
∣∣∣z=2

z=r
dr dθ

=
2π∫
0

2∫
0

(
2r3 − r4

)
dr dθ

=
2π∫
0

(
r4

2 −
r5

5

)∣∣∣∣∣∣
2

0

dθ

=
2π∫
0

(
8− 32

5

)
dθ

= 8
5 · 2π

= 16π
5
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9.2 Spherical Coordinates

Spherical coordinates are a special case of change of variables.
The operator for the change of variables is

T (ρ, θ, ϕ) = (x, y, z)

where

x = ρ cos θ sinϕ
y = ρ sin θ sinϕ
z = ρ cosϕ

Therefore,

J =

∣∣∣∣∣∣∣∣
xρ xθ xϕ
yρ yθ yϕ
zρ zθ zϕ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
cos θ sin θ −r sin θ sinϕ r cos θ cosϕ
sin θ sin θ r cos θ sinϕ r sin θ cosϕ

cosϕ 0 −r sinϕ

∣∣∣∣∣∣∣∣
= −ρ2 sinϕ

Exercise 26.

Given the sphere B : x2 + y2 + z2 ≤ 1, find I =
∫∫∫
B

e(x2+y2+z2)
3
2 dx dy dz.

Solution 26.
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I =
∫∫∫
B

e(x2+y2+z2)
3
2 dx dy dz

=
π∫

0

2π∫
0

1∫
0

eρ
3
2 |J | dρ dθ dϕ

=
π∫

0

2π∫
0

1∫
0

eρ
3
2 ρ2 sinϕ dρ dθ dϕ

=
π∫

0

2π∫
0

eρ
3

3 sinϕ

∣∣∣∣∣∣
ρ=1

ρ=0

dθ dϕ

= e− 1
3

π∫
0

2π∫
0

sinϕ dθ dϕ

= e− 1
3

π∫
0

sinϕ · 2π dϕ

= 2πe− 1
3 (− cos θ)

∣∣π
0

= 4π(e− 1)
3

Exercise 27.
Calculate the volume of a body which is situated above the cone z =

√
x2 + y2

and under the sphere x2 + y2 + z2 = z.

Solution 27.

x2 + y2 + z2 = z

∴ x2 + y2 + z2 − z = 0

∴ x2 + y2 +
(
z − 1

2

)2

= 1
4

Therefore, the sphere has centre
(
0, 0, 1

2

)
and radius 1

2 .
Therefore, the cone and the sphere intersect each other at z = 1

2 . The
intersection is a circle with radius 1

2 .
Therefore, the body is made of a cone of base radius 1

2 and height 1
2 , and a

hemisphere of radius 1
2 .

In Cartesian coordinates, the sphere is x2 + y2 + z2 = z.
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Therefore, in spherical coordinates, the sphere is ρ2 = ρ cosϕ. Therefore,

V =
∫∫∫

dx dy dz

=
2π∫
0

π
4∫

0

cosϕ∫
0

ρ2 sinϕ dρ dϕ dθ

=
2π∫
0

π
4∫

0

ρ3

3 sinϕ
∣∣∣∣∣
ρ=cosϕ

ρ=0
dρ dϕ dθ

=
2π∫
0

π
4∫

0

1
3 cos3 ϕ sinϕ dϕ dθ

= 2π ·
(
−cos4 π

12

)∣∣∣∣∣∣
π
4

0

= 2π
(
− 1

48 + 1
12

)

= 2π
(

3
48

)

= π

8

10 Line Integrals of Scalar Functions
Definition 51 (Line integral of scalar functions). Let C be a curve. Let the
curve be divided into n parts, by points Pi.
Let ∆si be the length of the curve Pi−1Pi. Let Pi∗ (xi∗, yi∗, zi∗) be a point on
the curve Pi−1Pi.
Let

∆T = max {∆si}
∆xi = xi − xi−1

∆yi = yi − yi−1

∆zi = zi − zi−1

The line integral of a f(x, y, z) over C is defined as∫
C

f(x, y, z) ds = lim
∆T→0

n∑
i=1

f (xi∗, yi∗, zi∗) ∆si
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The integral∫
C

f(x, y, z) dx = lim
∆T→0

n∑
i=1

f (xi∗, yi∗, zi∗) ∆xi

is called the line integral of f(x, y, z) over C with respect to x.
This integral depends on the direction of C.
The integral∫

C

f(x, y, z) dy = lim
∆T→0

n∑
i=1

f (yi∗, yi∗, zi∗) ∆yi

is called the line integral of f(x, y, z) over C with respect to y.
This integral depends on the direction of C.
The integral∫

C

f(x, y, z) dz = lim
∆T→0

n∑
i=1

f (zi∗, yi∗, zi∗) ∆zi

is called the line integral of f(x, y, z) over C with respect to z.
This integral depends on the direction of C.

Geometrically, the line integral
∫
C
f(x, y) ds is the area under the curve z =

f(x, y) above the curve C.

Definition 52 (Smooth curve). A curve C which is parametrically given as
r(t) =

(
x(t), y(t), z(t)

)
, t : a→ b is said to be smooth if r(t) is a continuous

function on [a, b], r′(t) 6= 0 on (a, b), and r′(t)is continuous on (a, b).

Theorem 58. If f(x, y, z) is continuous and C is smooth, then

∫
C

f(x, y, z) ds =
b∫
a

f
(
x(t), y(t), z(t)

)√(
x′(t)

)2 +
(
y′(t)

)2 +
(
z′(t)

)2 dt

Theorem 59. If f(x, y, z) is continuous and C is smooth, then

∫
C

f(x, y, z) dx =
b∫
a

f
(
x(t), y(t), z(t)

)
x′(t) dt

∫
C

f(x, y, z) dy =
b∫
a

f
(
x(t), y(t), z(t)

)
y′(t) dt
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∫
C

f(x, y, z) dz =
b∫
a

f
(
x(t), y(t), z(t)

)
z′(t) dt

Exercise 28.
Calculate

∫
C
y dx+ z dy + x dz for C as shown.

x

y

z

(2, 0, 0)

(3, 4, 5)

(3, 4, 0)

Solution 28.

C = C1 ∪ C2

Therefore, for t : 0→ 1,

C1 : r(t) = (2 + 1 · t, 0 + 4 · t, 0 + 5 · t)
C2 : r(t) = (3 + 0 · t, 4 + 0 · t, 5− 5 · t)
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Therefore,∫
C

y dx+ z dy + x dz =
∫
C1

y dx+ z dy + x dz +
∫
C2

y dx+ z dy + x dz

=
1∫

0

(
y1(t)x1

′(t) + z1(t)y1
′(t) + x1(t)z1

′(t)
)

dt

+
1∫

0

(
y2(t)x2

′(t) + z2(t)y2
′(t) + x2(t)z2

′(t)
)

dt

=
1∫

0

(
4t+ 5t · 4 + (2 + t) · 5

)
dt

+
1∫

0

(
4 · 0 + (5− 5t) · 0 + 3 · (−5)

)
dt

=
1∫

0

(29t− 5) dt

=
(

29t
2

2 − 5t
)∣∣∣∣∣∣

1

0

= 19
2

11 Line Integrals of Vector Functions
Definition 53 (Line integral of scalar functions). Let C be a curve. Let the
curve be divided into n parts, by points Pi.
Let ∆si be the length of the curve Pi−1Pi. Let Pi∗ (xi∗, yi∗, zi∗) be a point on
the curve Pi−1Pi.
Let

∆T = max {∆si}
∆xi = xi − xi−1

∆yi = yi − yi−1

∆zi = zi − zi−1

The line integral of a f(x, y, z) over C is defined as∫
C

F (x, y, z) · T̂ (x, y, z) ds = lim
∆T→0

n∑
i=1

(
F (xi∗, yi∗, zi∗) · T̂ (xi∗, yi∗, zi∗)

)
∆si

54



Theorem 60. If C : r(t) =
(
x(t), y(t), z(t)

)
, t : a→ b, then

W =
∫
C

F · T̂ ds

=
b∫
a

(
F
(
r(t)

))
· r′(t) dt

=
∫
C

F · dr

=
b∫
a

(
P
(
r(t)

)
x′(t) +Q

(
r(t)

)
y′(t) +R

(
r(t)

)
z′(t)

)
dt

=
∫
C

P dx+Q dy +R dz

Theorem 61 (Fundamental Theorem of Line Integrals). Let C be a smooth
curve in R2 or R3 given parametrically by r(t), t : a → b. Let f be a
continuous function of (x, y) or (x, y, z), on C, and ∇f be a continuous
vector function in a connected domain D which contains C. Then

W =
∫
C

∇f · T̂ ds

= f
(
r(b)

)
− f

(
r(a)

)
= f(B)− f(A)

Definition 54 (Simple curve). A curve C is called a simple curve if it does
not intersect itself.

Definition 55 (Connected domain). A domain D ⊂ R2 is called connected
if for any two points from D, the is a path C which connects the points and
remains in D.

Definition 56 (Simple connected domain). A connected domain D ⊂ R2

is called simple connected if any simple closed curve from D contains inside
itself only points in D.

Definition 57 (Curve with positive orientation). A simple closed curve C is
called a curve with a positive orientation, or with anti-clockwise orientation
if the domain D bounded by C always remains on the left when we circulate
over C by r(t), t : a→ b.
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12 Surface Integrals of Scalar Functions
Definition 58 (Parametic representation of surfaces). Let the surface S be
given by

r(u, v) =
(
f(u, v), g(u, v), h(u, v)

)
The equations

x = f(u, v)
y = g(u, v)
z = h(u, v)

are called the parametric equations of S

Exercise 29.
Write a parametric representation of the sphere x2 + y2 + z2 = 1.

Solution 29.
In spherical coordinates, with ρ = 1,

x = sinϕ cos θ
y = sinϕ sin θ
z = cosϕ

Definition 59. If a smooth surface S is given by r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
,

u, v ∈ D and r(u, v) is one-to-one, then the surface area of S is

A =
∫∫
D

|ru × rv| du dv

where

ru = (xu, yu, zu)
rv = (xv, yv, zv)

Exercise 30.
Find the surface area of the sphere x2 + y2 + z2 = 1.
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Solution 30.
In spherical coordinates, with ρ = 1,

x = sinϕ cos θ
y = sinϕ sin θ
z = cosϕ

Therefore,
r(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)

Therefore,
rθ = (− sinϕ sin θ, sinϕ cos θ, 0)
rϕ = (cosϕ cos θ, cosϕ sin θ,− sinϕ)

Therefore,

rθ × rϕ =

∣∣∣∣∣∣∣∣
î ĵ k̂

− sinϕ sin θ sinϕ cos θ 0
cosϕ cos θ cosϕ sin θ − sinϕ

∣∣∣∣∣∣∣∣
= î

(
− sin2 ϕ cos θ

)
− ĵ

(
sin2 ϕ sin θ

)
+ k̂

(
− sinϕ cosϕ sin2 θ − sinϕ cosϕ cos2 θ

)
Therefore,∣∣∣rθ × rϕ∣∣∣ =

√
sin4 ϕ cos2 θ + sin4 ϕ sin2 θ + sin2 ϕ cos2 ϕ

=
√

sin4 ϕ+ sin2 ϕ cos2 ϕ

=
√

sin2 ϕ

= sinϕ
Therefore,

A =
∫∫
D

sinϕ dθ dϕ

=
2π∫
0

π∫
0

sinϕ dϕ dθ

= 2π (− cosϕ)
∣∣π
0

= 2π(1 + 1)
= 4π
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Definition 60. Let S be a surface. Let the surface be divided into small
surfaces Sij.
Let Pij∗ (xij∗, yij∗, zij∗) be a point on Sij. Let the area of Sij be ∆Sij.
Let

∆T = max{∆Sij}

The surface integral of the function f(x, y, z) on the surface S is defined as∫∫
S

f(x, y, z) dS = lim
∆T→0

n∑
i=1

m∑
j=1

f
(
xij
∗, yij

∗, zij
∗
)

∆Sij

if it exists and does not depend on the division and Pij
∗.

Theorem 62. If S is smooth and given by z = g(x, y), (x, y) ∈ D, then∫∫
S

f(x, y, z) dS =
∫∫
D

f
(
x, y, g(x, y)

)√
1 + (gx)2 + (gy)2 dx dy

Theorem 63. If S is smooth and given parametrically by r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
,

(u, v) ∈ D, then∫∫
S

f(x, y, z) dS =
∫∫
D

f
(
r(u, v)

)
|ru × rv| du dv

Exercise 31.
Find

∫∫
S
x2 dS where S : x2 + y2 + z2 = 1.

Solution 31.
In spherical coordinates with ρ = 1,

x = cos θ sinϕ
y = sin θ sinϕ
z = cosϕ

Therefore,

r(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)

Therefore,

rθ = (− sinϕ sin θ, sinϕ cos θ, 0)
rϕ = (cosϕ cos θ, cosϕ sin θ,− sinϕ)
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Therefore,

rθ × rϕ =

∣∣∣∣∣∣∣∣
î ĵ k̂

− sinϕ sin θ sinϕ cos θ 0
cosϕ cos θ cosϕ sin θ − sinϕ

∣∣∣∣∣∣∣∣
= î

(
− sin2 ϕ cos θ

)
− ĵ

(
sin2 ϕ sin θ

)
+ k̂

(
− sinϕ cosϕ sin2 θ − sinϕ cosϕ cos2 θ

)
Therefore,∣∣∣rθ × rϕ∣∣∣ =

√
sin4 ϕ cos2 θ + sin4 ϕ sin2 θ + sin2 ϕ cos2 ϕ

=
√

sin4 ϕ+ sin2 ϕ cos2 ϕ

=
√

sin2 ϕ

= sinϕ

Therefore,∫∫
S

x2 dS =
∫∫
D

(cos θ sinϕ)2 sinϕ dθ dϕ

=
2π∫
0

π∫
0

sin3 ϕ cos2 θ dϕ dθ

=
π∫

0

sin3 ϕ dϕ
2π∫
0

cos2 θ dθ

=
π∫

0

(
1− cos2 ϕ

)
sinϕ dϕ

2π∫
0

1 + cos 2θ
2 dθ

=
π∫

0

(
sinϕ− cos2 ϕ sinϕ

)
dϕ

 θ
2 + sin 2θ

4

∣∣∣∣∣
π

0


=
− cosϕ+ cos3 ϕ

3

∣∣∣∣∣
π

0

 π
=
(1− 1

3

)
−
(
−1 + 1

3

) π
= 4π

3
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13 Surface Integrals of Vector Functions
Definition 61 (Oriented surface). If a normal vector n(x, y, z) to the surface
S is continuously changing on S then S is said to be an oriented surface.

Theorem 64. If a surface is given by F (x, y, z) = k, then ∇F is a normal
vector to the surface at a point on it.

Definition 62 (Surface with positive orientation). A surface S is said to
have positive orientation if n̂ is positive.
A closed surface S is said to have positive orientation if n̂ is directed outwards.

Definition 63 (Surface Integral of Vector Functions). If

F (x, y, z) =
(
P (x, y, z), Q(x, y, z), R(x, y, z)

)
is a continuous vector function on S with orientation n̂, then the surface
integral of F over S is∫∫

S

F · dS =
∫∫
S

F · n̂ dS

This integral is also called the flux of F through S in direction n̂.

Theorem 65. Let

F (x, y, z) =
(
P (x, y, z), Q(x, y, z), R(x, y, z)

)

If S : z = g(x, y), (x, y) ∈ D, then,∫∫
S

F · dS =
∫∫
S

F · n̂ dS

=
∫∫
D

(
−Pgx −Qgy +R

)
dx dy

for S with positive orientation, and∫∫
S

F · dS =
∫∫
S

F · n̂ dS

= −
∫∫
D

(
−Pgx −Qgy +R

)
dx dy
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for S with negative orientation.
If S is given parametrically as

r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
for (u, v) ∈ D, then

∫∫
S

F · dS =
∫∫
S

F · n̂ dS

=
∫∫
D

F · (ru × rv) du dv

If S is closed and given parametrically, it can be solved as above.
If S is closed and not given parametrically, it can be divided into surfaces
of the first kind, and each of the integrals over the smaller surfaces can be
solved as above.

Exercise 32.
Given

F = (x, y, z)

Calculate
∫∫
S
F · n̂ dS, where S : x2 + y2 + z2 = 1.

Solution 32.
The surface S is given by

x2 + y2 + z2 = 1

∴ z = ±
√

1− x2 − y2

Therefore, let

S1 = −
√

1− x2 − y2

S2 =
√

1− x2 − y2
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Therefore,∫∫
S

F · n̂ dS =
∫∫
S1

F · n̂ dS +
∫∫
S2

F · n̂ dS

= −
∫∫
D

(
−P (g1)x −Q(g1)y +R

)
dx dy

+
∫∫
D

(
−P (g1)x −Q(g1)y +R

)
dx dy

= 2
∫∫
D

(
x

x√
1− x2 − y2 + y

y√
1− x2 − y2 +

√
1− x2 − y2

)
dA

= 2
∫∫
D

1√
1− x2 − y2 dx dy

= 2
1∫

0

2π∫
0

1
1− r2 r dθ dr

= 2
1∫

0

r√
1− r2

dr
2π∫
0

dθ

= 4π
(
−
√

1− r2
)∣∣∣∣1

0

= 4π

Exercise 33.
Given

F = (x, y, z)

Calculate
∫∫
S
F · n̂ dS, where S : x2 + y2 + z2 = 1, using parametric represen-

tation.

Solution 33.
S is given parametrically by

r(θ, ϕ) =
(
x(θ, ϕ), y(θ, ϕ), z(θ, ϕ)

)
where

x(θ, ϕ) = cos θ sinϕ
y(θ, ϕ) = sin θ sinϕ
z(θ, ϕ) = cosϕ
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with D : {0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}.
Therefore,

rθ × rϕ =
(
− cos θ sin2 ϕ,− sin θ sin2 ϕ,− sinϕ cosϕ

)
If θ = π

2 , ϕ = π
2 ,

rθ × rϕ = (0,−1, 0)

However, the positive normal to S at that point is positively directed.
Therefore,∫∫

S

F · n̂ dS = −
∫∫
D

F ·
(
rθ × rϕ

)
dθ dϕ

= −
∫∫
D

(
− cos2 θ sin3 ϕ− sin2 θ sin3 ϕ− cos2 ϕ sinϕ

)
dθ dϕ

=
∫∫
D

(
sin3 ϕ+ cos2 ϕ sinϕ

)
dθ dϕ

=
∫∫
D

sinϕ dθ dϕ

=
2π∫
0

π∫
0

sinϕ dϕ dθ

=
2π∫
0

dθ
π∫

0

sinϕ dϕ

= 2π (− cosϕ)
∣∣π
0

= 4π

14 Green’s Theorem
Definition 64 (Curl/Rotor). If

F (x, y, z) =
(
P (x, y, z), Q(x, y, z), R(x, y, z)

)
then

curlR = ∇× F

=

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣∣∣
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Definition 65 (Divergence). If

F (x, y, z) =
(
P (x, y, z), Q(x, y, z), R(x, y, z)

)
then

divR = ∇ · F

= ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z

Theorem 66. If a vector field F (x, y, z) is defined on R3, if there exist
continuous first order partial derivatives of P , Q, R, and if curlF = 0, then
F is a conservative vector field.
In this case, ∃f(x, y, z), such that F = ∇f .

Theorem 67 (Green’s Theorem). Let C be a piecewise smooth, simple, and
closed curve in R2 with positive orientation. Let D be a domain bounded
by C. If there exist continuous first order partial derivatives of P (x, y) and
Q(x, y) in an open domain which contains D, then

W =
∫
C

F · T̂ ds

=
∫
C

P dx+Q dy

=
∫∫
D

(Qx − Py) dA

=
∫∫
D

curlF · k̂ dA

=
∫∫
D

divF dA

15 Stoke’s Theorem
Definition 66 (Curve with positive orientation). Let S be an oriented sur-
face with normal n̂ and let C be a curve bounding S. C is called a curve with
positive orientation with respect to S if, as we walk on C in this direction
and with our head in the direction of n̂, the surface S is always on our left.
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Theorem 68 (Stoke’s Theorem). Let S be a piecewise smooth surface with
normal n̂ and let S be bounded by a curve C which is piecewise smooth, sim-
ple, closed and with positive orientation with respect to S. Let F (x, y, z) =(
P (x, y, z), Q(x, y, z), R(x, y, z)

)
be a vector field such that there exist con-

tinuous first order partial derivatives of P , Q, R in an open domain of R3

which contains S. Then

∫
C

F · T̂ ds =
∫∫
S

curlF · n̂ dS

Stoke’s Theorem is a generalization of Green’s Theorem.

Exercise 34.

Verify Stoke’s Theorem when F =
(
−y2, x, z2

)
and C is the intersecton like

between the plane y + z = 2 and the culinder x2 + y2 = 1. The direction of
C is clockwise, when seen from above.

Solution 34.

Let S be the circular surface enclosed by C.
As C is clockwise, when seen from above, n̂ is negative.
Let

x = cos t
y = sin t

Therefore, as y + z = 2,

z = 2− sin t

where, t : 2π → 0.
t goes from 2π to 0 and not from 0 to 2π, as C is directed clockwise, when
seen from above.
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Therefore, the LHS is,

∫
C

F · T̂ dS =
0∫

2π

(
Px′(t) +Qy′(t) +Rz′(t)

)
dt

=
0∫

2π

(
− sin2 t · − sin t+ cos t · cos t+ (2− sin t)2 · − cos t

)
dt

=
0∫

2π

((
1− cos2 t

)
sin t+ 1 + cos 2t

2 − (2− sin t)2 cos t
)

dt

= − cos t+ cos3 t

3 + t

2 + sin 2t
4 + (2− sin t)3

3

∣∣∣∣∣
0

2π

= −π

curlF = ∇× F

=

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
−y2 x z2

∣∣∣∣∣∣∣∣∣∣
= (0− 0)̂i− (0− 0)ĵ + (1 + 2y)k̂
= (1 + 2y)k̂
= P̃ î+ Q̃ĵ + R̃k̂
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As C is clockwise, when seen from above, n̂ is negative.
Therefore, the RHS is,∫∫

S

curlF · n̂ dS = −
∫∫
D

(
−P̃ gx − Q̃qy + R̃

)
dA

= −
∫∫
D

R̃ dA

= −
∫∫
D

(1 + 2y) dA

= −
1∫

0

2π∫
0

(1 + 2r sin θ)r dθ dr

= −
1∫

0

2π∫
0

r dθ dr −
2π∫
0

2r2 sin θ dθ dr

= −
1∫

0

r dr
2π∫
0

dθ

= −π

16 Gauss’ Theorem
Theorem 69. Let E be a body bounded by a surface S, with a positive ori-
entation of S. Let

F = (P,Q,R)

be a vector field such that there exist continuous first order partial derivatives
of P , Q, and Q, in some open domain which contains E. Then,∫∫

S

F · n̂ dS =
∫∫∫
E

divF dV

Exercise 35.
Find

∫∫
S
F · n̂ dS where

F =
(
xy, y2 + exz

2
, sin xy

)
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and S is a lateral surface of a body E which is bounded by the parabolic
cylinder z = 1− x2 and the planes z =, y = 0, and y + z = 2.

Solution 35.∫∫
S

F · n̂ dS =
∫∫∫
E

divF dV

=
∫∫∫
E

(y + 2y + 0) dV

= 3
∫∫∫
EII

y dV

= 3
∫∫
D

 2−z∫
0

y dy

 dA

= 3
∫∫
D

y2

2

∣∣∣∣∣
y=2−z

y=0
dA

= 3
2

∫∫
D

(2− z)2 dA

= 3
2

1∫
−1

1−x2∫
0

(2− z)2 dz dx

= 3
2

1∫
−1

−(2− z)3

3

∣∣∣∣∣
z=1−x2

z=0

= 3
2

1∫
−1

(
8
3 −

(1− x2)3

3

)
dx

= 1
2

1∫
−1

(
8− (1 + x2)3

)
dx

=
1∫

0

(
8− (1 + x2)3

)
dx

= 184
35
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