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Part 1
Sequences and Series

1 Sequences

Definition 1 (Sequence). A sequence of real numbers is a set of numbers
which are written in some order. There are infinitely many terms in a se-
quence. It is denoted by {a,}; or {a,}.

11
Example 1. 1, TR is called the harmonic sequence.
1
Ap = —
n
11 _ . .
Example 2. 1, RSt is called the alternating harmonic sequence.
.= _1 n+1 —
an = (1)1
123
E le3. —,—,—,...
Xamp e 27 3’ 47
n
an =
n+1
23 4
E led4. -, - —,.
xample 39 37
n+1

Example 5. The Fibonacci sequence is given by

P 1 . n=12
"\ farF fae ; >3

Example 6. A geometric sequence is given by
Qp = alqnil

where ¢ is called the common ratio.



Example 7. A geometric sequence is given by
an = a1 +d(n—1)
where d is called the common difference.

Definition 2 (Equal sequences). Two sequences {a,} and {b,} are said to
be equal if a,, = b,,, Vn € N.

Definition 3 (Sequences bounded from above). {a,} is said to be bounded
from above if M € R, s.t. a, < M, Vn € N. Each such M is called an
upper bound of {a,}.

Definition 4 (Sequences bounded from below). {a,} is said to be bounded
from below if 3m € R, s.t. a, > M, Vn € N. Each such M is called an lower
bound of {a,}.

Definition 5. {a,} is said to be bounded if it is bounded from below and
bounded from above.

Example 8. The sequence a,, = n? + 2 is not bounded from above but is
bounded from below, by all m < 3.

2n—1
Example 9. { n } is bounded.
2n—1 2n 2
eV S 3

Definition 6 (Monotonic increasing sequence). A sequence {a,} is called
monotonic increasing if Ing € N, s.t. a, < api1, Yn > ng.

Definition 7 (Monotonic decreasing sequence). A sequence {a,} is called
monotonic decreasing if dng € N, s.t. a, > a,11, Vn > ny.

Definition 8 (Strongly increasing sequence). A sequence {a,} is called
monotonic increasing if Ing € N, s.t. a, < a,41, Yn > nyg.

Definition 9 (Strongly decreasing sequence). A sequence {a,} is called
monotonic decreasing if dng € N, s.t. a, > a,11, Vn > ny.



2
Example 10. The sequence {;Ln} is strongly decreasing. However, this is

1.9 25
not evident by observing the first few terms. 3 1, 3’ 1, 35
Ay > Ap+1
n? _ (n+1)>
27 > on+1
— 20> (n+1)?
= V2n>n+1
— n(vV2-1)>1
1
< n >
V2 -1
— n>3
Exercise 1.
Is a, = (—1)" monotonic?
Solution 1.
The sequence —1,1,—1,1,... is not monotonic.

1.1 Limit of a Sequence

Definition 10. Let {a,} be a given sequence. A number L is said to be the
limit of the sequence if Ve > 0, Ing € N, s.t. |a, — L| < &, ¥Yn > ny. That
is, there are infinitely many terms inside the interval and a finite number of
terms outside it.

1
Example 11. The sequence {—} tends to 0, i.e. for any open interval (—¢, ),

there are finite number of terms of the sequence outside the interval, and
therefore there are infinitely many terms inside the interval.

Exercise 2.
Prove

) n—+ 2 1
lim = —
n—soo 9n —1 2




Solution 2.
Ve >0, dng € N

Exercise 3.

1
Prove that 2 is not a limit of {371 + }

n

Solution 3.
If possible, let

.o 3dn+1
lim

n—o0 n

=2

3n+1
n

Then, Ve > 0, dng € N, s.t. -2

< &, Vn > ny. However,

3n—+1
n

1
—%—1+>1
n

1
This is a contradiction for ¢ = 7 Therefore, 2 is not a limit.

Theorem 1. If a sequence {a,} has a limit L then the limit is unique.

Proof. 1f possible let there exist two limits L; and L,. Therefore, Ve > 0,
there exist a finite number of terms in the interval (L, —¢, Ly +¢). Therefore,
there exist a finite number of terms in the interval (Ly — &, Ly + €). This
contradicts the definition of a limit. Therefore, the limit is unique. m

Theorem 2. If a sequence {a,} has limit L, then the sequence is bounded.

Theorem 3. Let

lim a, = a
n—oo
lim b, = b
n—oo

and let ¢ be a constant. Then,

limec=c
lim(ca,) = clima,,
lim(a, +b,) =lima, £ limb,
lim(a,b,) = lim a, lim b,
hm an,
) =

m by,

an
bn

lim(

(if limb # 0)



Theorem 4. Let {b,} be bounded and let lima, = 0. Then,
lim(a,b,) =0

Theorem 5 (Sandwich Theorem). Let {a,}, {bn}, {cn} be three sequences.
If

lima, =limb, = L
and Ing € N, s.t. Yn > ng, a, < b, <c,. Then,

limb, =L

Exercise 4.

Calculate nlgglo /20 + 37

Solution 4.

V3n < Yoy 3n < Y3y 3n = /2. 30
L3 < o £ 3 <332

Therefore, by the [Sandwich Theorem)] T}grgo V2" + 30 = 3.

Theorem 6. Any monotonically increasing sequence which is bounded from
above converges. Similarly, any monotonically decreasing sequence which is
bounded from below converges.

Exercise 5.

Prove that there exists a limit for a,, = \/2 +1/24+ V24 ... and find it.

n times

Solution 5.

a1=\/§<\/2+\/§=a2

If possible, let

ap—1 < Gy

L \/2+a/n71< \/2+6Ln

S < Apya



Hence, by induction, {a,} is monotonically increasing.

a; = V2 <2
If possible, let

an <2..vV2+ay, <V2+2

Ap+1 S 2

Hence, by induction, {a,} is bounded from above by 2. Therefore, by , {a,}
converges.

Definition 11 (Limit in a wide sense). The sequence {a,} is said to converge
to +o00 if VM € R, dng € N, s.t. Vn > ng, a, > M.

The sequence {a,} is said to converge to —oo if VM € R, Iny € N, s.t.
Vn > ng, a, < M.

1.2 Sub-sequences

Definition 12 (Sub-sequence). Let {a, }°, be a sequence. Let {n;}, be a
strongly increasing sequence of natural numbers. Let {b}72, be a sequence
such that by = a,,. Then {b;}2, is called a sub-sequence of {a,}° .

Example 12.
1
a, = —
n

If we choose ny, = k2,

1
bk:ank:akzzﬁ
Therefore,
11
bt=1 - —
{ k} a4797

Theorem 7. If the sequence {a,} converges to L in a wide sense, i.e. L can
be infinite, then any sub-sequence of {a,} converges to the same limit L.

Definition 13 (Partial limit). A real number a, which may be infinite, is
called a partial limit of the sequence {a,} is there exists a sub-sequence of
{a,} which converges to a.

10



Example 13. Let
a, = (=1)"
Therefore, ﬂnh_{glo a,. Let
by = Qp,, = A2n—1
Therefore,

{b} =—-1,-1,-1,...

i e =1

Therefore, —1 is a partial limit of {a,}.

Theorem 8 (Bolzano-Weierstrass Theorem). For any bounded sequence there
exists a subsequence which is convergent, s.t. there exists at least one partial
limat.

Definition 14 (Upper partial limit). The largest partial limit of a sequence
is called the upper partial limit. It is denoted by lima,, or lim sup a,,.

Definition 15 (Lower partial limit). The smallest partial limit of a sequence
is called the upper partial limit. It is denoted by lima,, or liminf a,,.

Theorem 9. If the sequence {a,} is bounded and
lima,, = lima,, = a
then

dlima, = a

1.3 Cauchy Characterisation of Convergence

Definition 16. A sequence {a,} is called a Cauchy sequence if Ve > 0,
dng € N, s.t. Vm,n > ng, |a, — an| < .

Theorem 10 (Cauchy Characterisation of Convergence). A sequence {ay,}
converges if and only if it is a Cauchy sequence.

11



Proof. Let

lim a, = L
n—oo

Then Ve > 0, Ing € N, such that Vn > ng, |a, — L| < % Therefore if n > ng

and m > ng, then
lan — am| = |a, — L+ L — ay,
<la, — L| + |L — ay|
e €
<§+§
an —am| =¢

Similarly, the converse can be proved by Theorem [9]

]

Theorem 11 (Another Formulation of the Cauchy Characterisation Theo-
rem). The sequence {a,} converges if and only if Ve > 0, Ing € N, such that

Vn > ng and Vp € N, |anip — an| < €.

Exercise 6.
Prove that the sequence

is convergent.

Solution 6.

1 1 1 1 1
|6Ln+p—an|:12+22+"'+(n+p)2—<12+22‘|“"+nz)‘
1 1 1

Tt a2
1 1 1
RS I CF 1 ) I ey s
1 1 1 1
ey =l < T N T e =1 nap
1 1
[ an|<ﬁ_n—|—p
1
|an+p 6Ln|<ﬁ

12



Therefore, Ve > 0, Ing € N, s.t. ¥n > ng and Vp € N, |a,4, — a,| < €, where

1
ng > —. O
9

Exercise 7.
Prove that the sequence

1 1 1
a/n:7+7++*
1 n n
diverges.
Solution 7.

If possible, let the sequence converge. Then, by the (Cauchy Characterisation|
lof Convergencel Ve > 0, 3ng € N, s.t. Vn > ng and Vp € N, |a,1p — a,| <e.
Therefore,

| | el L]
an _a/nzf — “ .. J— J— j— J—
P 1 2 n n

n n-+p
1 1
:n+1 n+p
>p !
n+p
| tp an|>nf—p
If n =p,
P 1
ntp 2

This contradicts the result obtained from the [Cauchy Characterisation of]

1
Convergence, for ¢ = —.

Therefore, the sequence diverges.

2 Series

Definition 17 (Series). Given a sequence {a,}, the sum a1 + -+ a, + . ..
is called an infinite series or series. It is denoted as Y72 | a, or > ay,.

Definition 18 (Partial sum). The partial sum of the series 3" a,, is defined
as

Si=ar+---+a

13



Definition 19 (Convergent and divergent series). If the sequence {S,}>
converges, then the series is called convergent. Otherwise, the series is called
divergent.

Definition 20 (Sum of a series). If the sequence {5, }5°, converges to S #
400, the number S is called the sum of the series.

Zan =95
n=1

Example 14.

Yo=Y o
Therefore,
Sy = ; (1)
S, ; t3 @)
S, - ; +o 21 (3)
_a (11_—; ) (4)
. 5)
—1-o (0
A3g, S =1 ()

Therefore, the series converges.

S=) =1

n=1

Theorem 12. A geometric series Y. a1q" ', a; # 0 converges if |q| < 1 and

n=1
then,

00 B a
S = alqn 1 _
nz::l I—q

x 1
Definition 21 (p-series). The series Y — is called the p-series.

n=1 T

14



Theorem 13. The p-series converges for p > 1 and diverges for p < 1.

Theorem 14. If > a, converges, then

lim a, =0
n—oo

Proof.
Gp =Sy — Sp_1
g, = 000 S~ i S
=5-S
=0

]

Theorem 15. If Y a,, and > b, converge, then Y (a,£b,) and Y ca,,, where
c 1s a constant, also converge. Also,

Z(an +b,) = Zan + an
Z(can) = cZan

2.1 Convergence Criteria
2.1.1 Leibniz’s Criteria

Definition 22 (Alternating series). The series ioj (—=1)""'a,, where all a,, >
n=1

0 or all a,, < 0 is called an alternating series.

Theorem 16 (Leibniz’s Criteria for Convergence). If an alternating series
S(=1)""ta, with a, > 0 satisfies

1. apni1 < ay, i.e. {a,} is monotonically decreasing.
2. lim a, =0
n—oo

then the series (—1)""'a, converges.

o
Proof. Consider the even partial sums of the series Y (—1)""a,,.
n=1

Som = (a1 — ag) + (a3 — as) + -+ + (A2m—1 — zp)
As {a,} is monotonically increasing, all brackets are non-negative. Therefore,

Som+2 > Som

15



Therefore, {Ss,,} is increasing.
Also,

Som = a1 — (Clz - CL3) - (CL4 - a5) — (sz—z - G2m—1) — Q2m
All brackets and as,, are non-negative. Therefore,
Som < ay
Therefore, {Ss,,} is bounded from above by a;. Hence,
m—00
For S2m+17

Som+1 = Sam + A2m11

rrlzgrlm Somt1 = T%g%@ Som + %E%o A2m 41

=5+0

=9

Therefore,
lim S, =5
n—oo
]

-1 n—1
Example 15. The alternating harmonic series Y, ———— converges as a,, =
n

— >0, a, decreases and lima,, = 0.
n

2.1.2 Comparison Test

Theorem 17 (Comparison Test for Convergence). Assume Ing € N, such
that a, > 0, b, > 0, Vn > ng.

1. Ifa, <b,, Yn > ng and Y. b, converges, then Y. a, converges.
n=1 n=1

2. If ap, > b,, Yn > ngy and Y b, diverges, then Y. a, diverges.
n=1 n=1

Theorem 18 (Another Formulation of the Comparison Test for Conver-
gence). Assume Ing € N, such that a,, > 0, b, > 0, Vn > ng and

n—o0
n

limZ—":a>0

where a is a finite number. Then Y a, converges if and only if > b, con-
n=1 n=1

verges.

16



2.1.3 d’Alembert Criteria (Ratio Test)

Definition 23 (Absolute and conditional convergence). The series Y a,, is
said to converge absolutely if > |a,| converges. The series Y- a, is said to
converge conditionally if it converges but 3 |a,| diverges.

(-1

1 n—1
Example 16. The series 35 ——— )
n

converges absolutely, as > ‘(_2
n

> 2 converges.

-1 n—1
Example 17. The series > i converges conditionally, as it converges,
n
(_1)n—1 )
but > 5 = > — diverges.
n n

Theorem 19. If the series Y a, converges absolutely then it converges.

Theorem 20 (d’Alembert Criteria (Ratio Test)). 1. If

. Ap+1
11_)111 oL <1
n o

Qp

then 3" a, converges absolutely.
2. 1If

Ant1
Qn

lim =L>1
n—oo

(including L = 00), then Y a,, converges diverges.

3. If L =1, the test does not apply.

2.1.4 Cauchy Criteria (Cauchy Root Test)
Theorem 21 (Cauchy Criteria (Cauchy Root Test)). 1. If
lim{/|a,| =L <1
then > a, converges absolutely.
2. 1If
lim{/|a,| = L>1
(including L = oo ), then Y a, diverges.
3. If L =1, the test does not apply.

17



2.1.5 Integral Test

Theorem 22 (Integral Test for Series Convergence). Let f(x) be a contin-
uous, non-negative, monotonic decreasing function on [1,00) and let a, =

o]
f(n). Then the series Y. a, converges if and only if the improper integral
n=1

?Of(x) dz converges.
1

Exercise 8.

x 1
Does Y. — converge or diverge?

n=1 NP
Solution 8.
Let
1
flz) = prs
with p > 0.

Therefore, f(x) is continuous, non-negative and monotonic decreasing on
[1,00). Therefore, the [Integral Test for Series Convergence|is applicable.

1 1
/ —dx = lim | —dz
xP t—o00 P
Itp #1,
71 x P!

1
=77
Ifp=1,
71
/— = lim Inz|
TP t—00

= 0

Therefore, the series converges for p > 1 and diverges for p < 1.

18



Theorem 23. If the series Y a, absolutely converges and the series > b, is
obtained from 3 a, by changing the order of the terms in > a, then Y b,
also absolutely converges and Y b, = a,.

Theorem 24. If a series converges then the series with brackets without
changing the order of terms also converges. That is, if Y a, converges, then
any series of the form (a1 + as) + (a3 + ag + as) + ag + ... also converges.

Theorem 25. If a series with brackets converges and the terms in the brack-
ets have the same sign, then the series without brackets also converges.

3 Power Series

n

Definition 24 (Power series). The series %% an(x — ¢)™ is called a power
n=0

series.

Theorem 26 (Cauchy-Hadamard Theorem). For any power series § an(r—
n=0
c)" there exists the limit, which may be infinity,

1
R =

A, {flan|

and the series converges for |x — ¢| < R and diverges for |v —c¢| > R. The
end points of the interval, i.e. * = c— R and v = ¢+ R must be separately
checked for series convergence.

Definition 25 (Radius of convergence and convergence interval). The num-
ber R is called the radius of convergence and the interval |z —c| < R is called
the convergence interval of the series. The point c is called the centre of the
convergence interval.

Theorem 27. If 4 lim

Jim | ——1, which may be infinite, then,

Qp+1

Qn

R = lim

n—o0

an+1

Theorem 28 (Stirling’s Approximation). For n — oo,

n n
n! ~ <> 2mn
e

19



3.1 Differentiation and Integration of Power Series

Theorem 29. If R is a radius of convergence of the power series Y. a,(x
n=0

c)" then the function f(x) = ioj an(x — )" is differentiable on (c — R,c+ R)
n=0

and the derivative s
o
= na,(z — c)" !
n=0

Theorem 30. If R is a radius of convergence of the series § an(x — )"

n=0

then the function f(x) = § an(z — )™ is integrable in (¢ — R,c+ R) and

:IZ' _ C)n—I—I

/f dx—Zan —— +A

where c — R < x < c+ R.

Exercise 9.

Find [e™!
0
Solution 9.
Vs € R,
82 n
e + 1 + o + + o +
e 2 t4 t2n
==l gt (D)
z 3 5 2n—1
ot x z n X
dt=2— —+ — ). ..
0/ gt Tt O T t

Theorem 31. If the series A(x) = § a,x" and B(x) = § Bpz™ absolutely

converge for |x| < R and ¢, = E arbn_k, then the series C(x) = § Cpx"
=0 n=0
also absolutely converges for |z| < R and C(z) = A(z)B(x).

20



3.2 Taylor Series

Definition 26 (Taylor series). Let f(x) be infinitely differentiable on an
open interval about a and let x be an arbitrary point in the interval. Then

o /0 (a)

the power series 3
~  nl

If @ = 0 then it is called the Maclaurin series of f(z) at 0.

(x — a)™ is called the Taylor series of f(z) at a.

Theorem 32. [f there exists a power series which converges to f(x), i.e. if,
for |x —a| < R,
fl@)=>_an(z—a)"

n=0

then, for |x —a| < R,

o ) (g
f) =3 W oy

n=0 n
that is, Vn,
(n)
L@
n!

Exercise 10.
Show that

0 o x=0
f(x):{eafz —

is not equal to it’s Taylor series at a = 0.

Solution 10.

Ifn=1,
() () — f(0+ Az) — f(0)
f0) = fim, Av
y e (Ai)Q
- A;crgo Az

21



0 o x=0
Ix: L a Y
S {612'2':6 ’ ;o x#0

Similarly, Vn > 1, f™(0) =0
Therefore, the Taylor series is not equal to f(z).

Exercise 11.
Find the Maclaurin series of f(z) = e* and prove that the series converges
to f(zx) for any x € R.

Solution 11.
Vn > 1, f)(z) = e
Therefore,

x  z? x? elpntl

I R T R
S TR T R T B PR T

where ¢ is between 0 and z.

Therefore, as

‘x’n—i-l
0<|R, <
< |Bo2)] < (n+1)!

by the [Sandwich Theorem|

dim R, (z)[ =0
Therefore,
¢ r  x? z"

22



4 Series of Real-valued Functions

Definition 27 (Sequence of functions). A sequence {f,} = fi(x), fa(x),. ..
defined on D C R is called a sequence of functions.

Definition 28 (Pointwise convergence and domain of convergence). {f,}
converges pointwise in some domain £ C D if for every x € F, the sequence
of { fn(x)} converges. In such a case, E is said to be a domain of convergence

of {fn}

Exercise 12.
Find the domain of convergence of f,(z) = z™, defined on some D C R.

Solution 12.

0 ;o —l<z<l
7}1_{20]071(56): 1 ; v=1
diverges ; x ¢ (—1,1]

Therefore, the domain of convergence of {f,} is (—1, 1].

Exercise 13.
Let f(x) : (0,00) — R be some function such that }Lrglof(x) = 0. Let

fo(z) = f(nz). What is the domain of convergence of f,,? What is the limit
function?

Solution 13.
Let x have some fixed value in (0,00). Therefore, as zh_g)lo f(z) =0,

lim f,(z) = lim f(nx)

n—oo n—00

=0
Therefore, the domain of convergence is (0,00) and the limit function is a

constant function with value 0.

4.1 Uniform Convergence of Series of Functions

Definition 29 (Pointwise convergence of a sequence of functions). If Va € D,
Ve > 0, N which depends on € and z, such that Yn > N, | f,(z) — f(x)| < &,
then Vz € D, lim = f(z).

23



Definition 30 (Uniform convergence of a sequence of functions). The se-
quence {f,(z)} is said to converge uniformly to f(z) in D if Ve > 0, AN =
N(e), such that Yn > N, Vz € D, |f.(z) — f(z)] < e. It can be denoted as

D

fulz) = f(2).

Theorem 33. f,(z) converges uniformly to f(x) in D if and only if li_>m sup | fn(z)—
N0 2eD

f(x)]=0.

Exercise 14.
Does f,(z) = 2™ converge in [0, 1]?

Solution 14.

n—o0 n—0o0
0 ; 0<z<1
- {00
Therefore,
If x =0,
fa(0) =0
f(0)=0

Therefore, Ve > 0, N =1,
0—-0| <e
S fn(0) = FO)] <€

Ifx=1,
fu()
f(1)

Therefore, Ve > 0, N =1,

1
1

1—1l<e

S = FD)] <€

Ifo<z<l,

() = f2)] = |2 = 0]

:l‘n

24



If possible, let |f,(x) — f(z)| = 2" < e.
Therefore,

" <e
s log, 2" > log, e

s.n>log, €

Therefore, for N = |log,e| + 1, |fu(x) — f(2)] <e.
Therefore, f,(x) converges pointwise in [0, 1].

If possible let f,(x) converge uniformly on [0, 1].

Therefore, Ve > 0, AN dependent on &, such that |f,(x) — f(z)| < e.
Let € = 3.

Therefore, 3N which is dependent on ¢, such that Vn > N, Vx € [0, 1],

1

fala) = f(@)] < 5

Let x = %, n = N + 1. Therefore,

Therefore, | f,,(z) — f(x)| > e.
This is a contradiction. Hence, f,(z) is does not converge uniformly.

Definition 31 (Supremum). Let A C R be a bounded set. M is said to be
the supremum of A if

1. V€ A, x < M, ie. M is an upper bound of A.
2. Ve, dov € A, such that x > M — ¢.

That is, the supremum of A is the least upper bound of A.
The supremum may or may not be in A.

Definition 32 (Infimum). Let A C R be a bounded set. M is said to be the
infimum of A if
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1. Ve e A, x > M, ie. M is an upper bound of A.
2. Ve, dov € A, such that v < M — ¢.

That is, the infimum of A is the greatest lower bound of A. The infimum
may or may not be in A.

Theorem 34. Every bounded set A has a supremum and an infimum.

Theorem 35. f, % f if and only if
T (sup{(fu(a) — f(2)] € FY) =0

Definition 33 (Remainder of a series of functions). Let f(x) = § ug(x).
k=1

Let the partial sums be denoted by f,(z) = i ug(x). Then
k=1
Ry(z) = f(z) = falz) = D ux(2)
k=n-+1

is called a remainder of the series f(z) = § ug ().
k=1

Definition 34 (Uniform convergence of a series of functions). If f,(x) con-
verges uniformly to f(z) on D, i.e. if lim R, (x) = 0, then the series i% ug(x)
o k=1

is said to converge uniformly on D..

Exercise 15.

Show that the series f(z) = kzzjl 2"t = 1 does not converge uniformly on
(—1,1).

Solution 15.
The series converges uniformly if and only if lim R, (x) = 0.

lim sup |R,(z)—0|= lim sup > !

— —
ne0 (11 OO (—1,1) o1
n
= lim sup
nree (_171) -z
: ="
= lim sup
nreo (_1’1) 1 -z
= lim oo
n—oo
= 00
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Therefore, the series does not converge uniformly on (—1,1).

Exercise 16.

[ee)
Show that the series f(z) = 1;::1 ol = ﬁ does not converge uniformly on

(-3.3).
Solution 16.

The series converges uniformly if and only if JgIglo R,.(z) = 0.

lim sup |R,(z)—0|=lim sup > 2!

n—)oo(_%%) n—)oo(_%7%)k:n+l
n
= lim sup <
n=o0 1 — X
(=33)
: |z
= lim sup
n=o0 1 —
(-%3)

=L
n—1
1
= lim ()
n—oo \ 2
=0

4.2 Weierstrass M-test

Theorem 36 (Weierstrass M-test). If |ug(z)| < cx on D fork € {1,2,3,...}

and the numerical series Y. ¢ converges, then the series of functions Y- ug(x)
k=1 k=1
converges uniformly on D.

Exercise 17.

Show that § & sin(kz) converges uniformly on R.
k=1
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Solution 17.

Therefore, let

1
ck:ﬁ

o0
Therefore, as |ug(x)| < ¢, and as Y. ¢ converges, by the|Weierstrass M-test],
k=1

§ k% sin(kx) converges uniformly.
k=1
4.3 Application of Uniform Convergence

Theorem 37 (Continuity of a series). Let functions ug(z), k € {1,2,3,...}

be defined on |a,b] and continuous at xo € [a,b]. If %o: uk(x) converges
k=1

18

uniformly on [a,b] then the function f(x) = is also continuous at xy.

k=1

Theorem 38 (Changing the order of integration and infinite summation).
If the functions ug(x), k € {1,2,3,...} are integrable on [a,b] and the series

§ u(x) converges uniformly on |a,b] then
k=1

b

/ (g uk(m)) dz = i/buk(x) dz

k=17

Exercise 18.

27 [ oo
Solve [ <Z kﬂ,sin(kx)).
0 \k=1

Solution 18.

The series f(x) = § 2z sin(kx) converges uniformly on [0, 27]. Therefore, by
k=1

the [Weierstrass M—t_est| and u;(z) = 75 (kx) are integrable on [0, 27]. There-
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fore,

k=1

7f(a:) dz = 7(§: l;sin(k;x)) dz

> [ cos(2mk) 1 )
— - + J—
0

Theorem 39 (Changing the order of differentiation and infinite summa-
tion). If the functions ux(x), k € {1,2,3,...} are differentiable on [a,b] and

(e8]
the derivatives are continuous on [a,b], and the series > ug(z) converges
k=1

pointwise on [a,b] and the series ioj u'(x) converges uniformly on [a,b],

k=1
then,
(i um)) =S ()
k=1 k=1

Theorem 40 (Changing the order of integration and limit). If the functions
fn(x) are integrable on [a,b] and converge uniformly to f on [a,b], then

b b b
i [ fu@)de = [ lm f(@)de = [ f(@)da

Theorem 41 (Changing the order of differentiation and limit). If there ezists
the functions f,'(x) which are continuous on [a,b], for the functions f,(z)
which ¥z € [a,b], converge pointwise to f(x) on [a,b], and if f,'(x) converges
uniformly to g(z) on |a,b], then,

£a) = (Jim fule)) = Jim £(2) = o(2)

n—oo n—0o0
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Part 11
Functions of Multiple Variables

1 Limits, Continuity, and Differentiability

Definition 35 (Limit of a function of two variables). Let z = f(z,y) be
defined on some open neighbourhood about (a,b), except maybe at the point
itself. L € R is said to be a limit of f(z,y) at (a,b), if Ve > 0, 3d > 0, such

that 0 < \/(x —a)?+ (y —b)? < 4, then,

’f(.%',y)—L‘ <é

Exercise 19.

3x2y
0) x2 +y2

Does the limit  lim exist?

(z,y)—(0,

Solution 19.

Consider the curves C : y = 0, and Cy : y = 2.
Therefore, as (z,y) — (0,0) along these curves, the limit of the function is

i 322y 3220
1Cr1n x2—|—y2_wlg(l)x2—l—y2
(z,y)—(0,0)
=0
, 3z2y 3z2(23)
im =
@y o T TV O (@)
i 3a°
= + 26
lim 37’

If lm 222 =0, Ve>0,35 > 0such that 0 < /22 + 42 < J, then,

(2,y)—(0,0) **+Y?
|f($ay) _L| <ée
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Therefore, checking |f(x,y) — L],

32y

\f(x,y)—le $2+y2 - ‘

327 |y|

x? + 12

AS ﬁ 1,

|f(2,y) — L] < 3yl
fla,y) — L] < 3y/y?
|f(z,y) — L| < 3y/2% + ¢

Therefore, |f(x,y) — L] < e.
Therefore, for § < £, the condition is satisfied.
Hence, the limit of the function exists and is 0.

Definition 36 (Iterative limits). The limits lim <lim f(z, y)) and lim (lim f(z, y))
T—a \ y—b y—b \T—a
are called the iterative limits of f(x,y).

Theorem 42. IfEI( l)m% ) f(z,y) = L and, for some open interval about b,
T,y —(a,

Vy #b, 3lim f(z,y) then

lim (}g}l f(z, y)) =L

If EI( 1)111% b)f(a:,y) = L and, for some open interval about a, Vx # a,
ac,y—)a,

= ZIIILIII) f(z,y) then

lim (iggf(%@) =L

Exercise 20.
Do the iterative limits, as x — 0, and as y — 0, of the function

(- y)sinsl ;2 £0y£0
0 ; Otherwise

f(:v,y)Z{

exists? Does the limit of the function at (0,0) exist?
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Solution 20.

. . ) 1
lim f(z,y) = lim(z +y) sin — ey
= lim y sin
z—0 xr + Y
Therefore, as sin T}ry oscillates between —1 and 1, the limits does not exist.
lim f(z, ) = lim(z + y)sin —
im f(z,y) = lim(x sin
y—0 Y y—0 4 r+y
= lim x sin
y—0 Tty

Therefore, as sin # oscillates between —1 and 1, the limits does not exists.
Therefore, the iterative limits do not exist.

|f(z,y) = 0] = |z +yl-

SAf(zy) = 0] < z| + |y

s f(ay) = 0] < V24 /a2 + 2

Therefore, for 6 < 2=, the condition is satisfied.

Hence, the limit of the function exists and is 0.

Therefore, even though the iterative limits do not exist, the limit of the
function exists.

Definition 37 (Differential).
Az = fla+Az,b+ Ay) — f(a,b)
dz = f.(a,b)dz + f,(a,b) dy

Definition 38 (Differentiability). The function x = f(z,y) is said to be
differentiable at (a,b) if

Az =dz + e (Ax, Ay) Az + e3(Az, Ay) Ay

.1|
Sl —
Ty

where

lim & (Az,Ay) = lim  e(Az,Ay) =0

(Az,Ay)—(0,0) (Az,Ay)—(0,0)

Theorem 43. If f(x,y) is differentiable at (a,b) then f(x,y) is continuous
at (a,b).

Theorem 44. If3f,(a,b) and 3f,(a,b) on some open neighbourhood of (a,b)
and are continuous at (a,b), then f(x,y) is differentiable at (a,b).
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2 Directional Derivatives and Gradients

Definition 39 (Directional derivative). Let zg € R, yo € R.

Let @ = (a,b) be a unit vector in the zy-plane.

The directional derivative of z = f(z,y) with respect to the direction @ =
(a,b) at the point (zo,yo is defined as

f(zo + ah,yo + bh) — f(xo,yo)
h

If the limit does not exist, the directional derivative does not exist.

Dif(xo,90) = }ng(l)

Geometrically the directional derivative of z = f(z,y) is the slope of the
tangent of the curve formed due to the intersection of the curve z = f(z,vy),
and the plane which passes through (xg, o) in the direction of @ and is per-
pendicular to the xy-plane.

Definition 40 (Gradient). If the functions f,(z,y) and f,(x,y) for z =
f(z,y) exist, then the vector function

Vi@y) = (folz,9), fo(z,y))
is called the gradient of f(x,y).

Theorem 45. Let z = f(x,y) be differential at (zo,yo). The function f(x,y)
has a directional derivative with respect to any direction @ = (a,b) at (xo,yo)
and

Dif(wo,90) = fa(z0,y0)a + fy(zo,y0)b = V f(20,90) - U

Exercise 21.
Find the directional derivative of

floy) = 2"+ day + o
with respect to the direction of @ = (1, 2) at any point (z,y) and at (0, 1).
Solution 21.

flo.y) = 2"+ day + 4
Therefore,

folz,y) = 32° + 4y

fylz,y) = 4o + 4y’

33



o
0= —
u
_(L,2)
VG
_(L 2
=\
Therefore,
Daf(z,y) 1(32+4)+ 2(4 + 49%)
of (x,y) = —=(3z —(4x
Yy \/3 Y \/3 Y
Therefore,
4 8
D;f(0,1) = —=+ —=
1
V5

Theorem 46. If z = f(x,y) is differentiable at (zo,vo), then Fiy = (ao, bo)
such that

max Dy f (0, o) = Du, f (20, y0) = |V f (20, yo)|

ueR
and
o = V f(o, Yo)
IV f (20, y0)]
Proof.

max D;f(xo,y0) = max V f(zo, o) - G

1
= Iggﬁqvf(ifo,yoﬂﬁrcos&
= |Vf($oay0)|rglgﬂi<cose
- ‘vf<'r07y0>’
O

Theorem 47. If z = f(x,y) is differentiable at (zo,yo), then Fiy = (ag, bo)
such that

%En% Daf(xo0,Y0) = Duy f(20,%0) = — |V f(z0, yo)|

and

6= — V f(zo,%0)
fvf(l’o,yoﬂ
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Proof.
Iflflelél Daf(xo,y0) = 151611}{} V£ (o, yo) - U
1
= min |V f (a0, yo) | il cos 6

= |V f(x0,y0)| lglelél cos

= |Vf($07yo)‘

3 Local Extrema

Theorem 48 (A necessary condition for local extrema existence). If the
function z = f(x,y) has a local extrema at the point (a,b) and 3f,(a,b) and

3f,(a,b) then f,(a,b) = f,(a,b) =0

Example 18.
z=z"+y°
Solution 21.

f(z,y) = f(0,0)

Therefore, (0,0) is a point of local minimum.

fe=2x
f y — 2y
Therefore,

£.(0,0) = £,(0,0) =0

Example 19.

S
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Solution 21.

. f(0+ Az,0)— f(0,0) . (Ax)?
lim = lim
Axz—0 Al’ Ax—0 A:E
=41

Therefore, the limit does not exist.

Definition 41 (Critical point). Let the function z = f(z,y) be defined on
some open neighbourhood of (a,b). The point (a, b) is called a critical point
of z = f(x,y) if fz(a,b) = f,(a,b) = 0 or at least one of the partial derivative
fz(a,b) and fy(a,b) does not exist.

Example 20. Is (0,0) an local extremum point of

2= flay) =yt =

Solution 21.
f2(0,0)=0
fy(O, 0)=0

Therefore, (0,0) is a critical point.

If possible let (0,0) be a local minimum point.

Then, f(x,y) > f(0,0) in some neighbourhood of (0, 0).
Therefore,

v —22>0

For any point of the form (z,0), this is a contradiction.
Therefore (0,0) is not a local minimum point.
Similarly, (0,0) is not a local maximum point.

Theorem 49 (A sufficient condition for local extrema point). Assume that
there exist second order partial derivates of z = f(x,y), they are continuous
on some open neighbourhood of (a,b) and f.(a,b) = f,(a,b) = 0. Denote

2
D(a,, b) = fxx(a7 b)fyy(av b) - (fzy(aa b))
1. If D(a,b) > 0 and f,. <0 then (a,b) is a local maximum point.
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2. If D(a,b) >0 and f., > 0 then (a,b) is a local minimum point.
3. If D(a,b) <0 then (a,b) is called a saddle point.
Example 21. Find all critical points of
2= f(z,y) =2 +y* — 4oy + 1
and classify them.

Solution 21.

fo(z,y) = 42® — 4y
fy(z,y) = 4y° — da

For critical points,

fx(xay) =0
fy(x,y) =0

Solving, (0,0), (1,1), (—1,—1) are critical points.

foo(,y) = 122
f:ry(xay> =—4
foy(z,y) = 12y2
o D(z,y) = 1442%)* — 16
For (0,0),
— 16
Therefore, (0,0) is a saddle point.
For (1,1),
D =144 -16
Therefore, (1,1) is a local minimum point.
For (—1,—-1),
D =144 -16

Therefore, (—1,—1) is a local minimum point.
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4 Global Extrema
4.1 Algorithm for Finding Maxima and Minima of a
Function

Step 1 Find all critical points of f(z,y) on the domain, excluding the end
points.

Step 2 Calculate the values of f(z,y) at the critical points.

Step 3 Calculate the values of f(x,y) at the end points of the domain.

Step 4 Select the maximum and minimum values from [Step 2| and [Step 3|

Example 22. Find the global maxima and minima of
2 =12 —2zy+ 2y

in the domain

2
D = {(:U,y) 0<x<3,0<y< —395—1—2}
Solution 21.
S 2x—2y=20
fy(xay) =0
So—2x+2=0

Therefore, (1,1) is a critical point in D.
The boundary of D is Ly U Ly U L3, where

Li:y=00<2<3
Ly:x=0,0<y<2
LgZ

Therefore,
over Ly,

fla,y) =2
.'.Iriilnf = f(0,0) =0

mLaxf = f(3,0)=9
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over Lo,

flzy) =2y
c.min f = f(0,0) =0

HlLaXf = f(0,2) =4

over Ls,

floy)=2"—22 <—§x+2> +2<—§x+2>

7 16

14 16
. ! R
S 373

Therefore,

.'.mDinf = £(0,0) =0
comax f = f(3,0) =9

5 Taylor’s Formula

Theorem 50.

flathb+k) = @-zo(i!<h8:c+kay> f(a,b))

1 ) ) n+1
TR S h,b+ ck
+<n+1)! <hax+kay> f(a+ ch,b+ ck)

where 0 < ¢ < 1.
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6 Vector Functions and Curves in R?

Definition 42 (Vector function). A vector function is a function with a
domain which consists of a set of real numbers, and with a domain which
consists of a set of vectors, i.e. 7(t) = (f(t), g(t), h(t)), Vt € [a,b].

. . . . . . . \
Theorem 51. ]fatlg% f(t), EItILI% g(1), Elthg% h(t), then, 3 }LI% = <}LI% f(t), lim g(t), lim A(t)

t—to t—to y
Definition 43 (Continuous vector function). A vector function 7(¢) is said

to be continuous at t if lim 7(¢) = 7(to).
t—to

Definition 44 (Space curve). Let f(t), g(t), h(t) be continuous functions
of [a,b]. The set of points (z,y, z), such that z = f(t), y = g(t), z = h(t),
t € [a,b] is called a space curve.

7 Derivatives of Vector Functions

Definition 45 (Derivative of vector function). The derivative of 7(t) =
(f(t),g(t),h(t)), if it exists, is defined as

o T(t + At) — 7(t)
TO=Im T A

Definition 46 (Tangent vector). 7(to) is called a tangent vector to the curve
C =T7(t) at P(ty).

Theorem 52. If 3f'(ty), 3¢’ (to), IN'(to), and 7(t) = (f(t), g(t), h(t)), then,
7 (to) = (f'(t0), 9'(to), 1 (t0))

Definition 47 (Unit tangent vector). The vector T(t) = Z& is called the

unit tangent vector to C' = r(t) at P(ty).

Definition 48 (Tangent line). A straight line passing through a point P(t)
on the curve C' = r(t), in the direction 7(t), i.e. T'(t), is called a tangent line
to the curve at the point.

Theorem 53. Let u(t) and v(t) be vector functions, let ¢ be a constant, and
let f(t) be a scalar function. Then,

1. (u(t) £o(t) =a'(t) £7(t)
2. (ca(t)) = cw'(t)
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8 Change of Variables in Double Integrals

Definition 49 (Jacobian). Let

T(u’ U) = (377 y)

be an operator.
The determinant

Ty Ty
Yu Yo

is called the Jacobian of the operator T

Theorem 54. Let R and S be domains of the first or second kind.

Let the operator T from S to R be one-to-one and onto.

Therefore, the inverse operator T exists.

Also, let T be a O operator, i.e. Ix,, Iy, Iyu, Iy, which are continuous
on S.

Let f(z,y) be a continuous function on R.

Then,

J[ f@wydzdy = [[ 1 (g, v), hlu, 0)) 1] dude
R S

Exercise 22.

Calculate [[(z — y)?sin?(z + y) dz dy, where R is as shown.
R
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Solution 22.

The edges of the domain are

r+y=m
r+y=3m
rT—Yy=m
rT—Yy=-"7

Therefore, let

rT—y=u

r+y=v

Therefore,

U+ v
2
v— U
2

xr =

y:
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Therefore, the domain R can be written as S = {—7 <u < 7m,7 <wv < 3rw}.
Therefore,

J = Ty Ty
Yu Yo
1)
2 2
— 1
2
1
2

N[ =

Therefore,

J[ f@yyazdy = [[ 1 (9w v),h(w,0) |17 dudo
R S

dudov

1
" //(m—y)Qsin2($+y)dxdy:/u251n2v 5

R

s

S
1 3
= 5//UQSiH21)dUdU

1 ™ 3
zi/uzdu-/sinzvdv
1 w3 F1—cos2w
- v «/7dv
2 3 ! 2
1273 1
= o
23 2
_
3

8.1 Polar Coordinates

Polar coordinates are a special case of change of variables.
The operator for the change of variables is

T(r,0) = (x,y)
where

z =rcosf

y =rsinf
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Therefore,

Ty To
Yr Yo

cosf@ —rsinf
sinff  rcos@

J:

= rcos®f + rsin®0

=r

Exercise 23.
Calculate [[zydxdy, R = {(:E,y)|1 <+ <4,0<y< x}
R

Solution 23.

The domain R is the region shown.

Y

-

7

Therefore, it can be written as S = {(r, NH1<r<20<0<
Therefore,

3

NE

4

2
//mydmdy://rcos@rsin@rdrd@
R 01

r3dr- [ cosfsinfdé

\w
O —

o | =

SlGe5"

44



Theorem 55. Let D be a domain, written as Dy in polar coordinates, i.e.,
Dy = {(r,0)la<r <bgi(r) <0< go(r)}

and let f(x,y) be continuous on Dy.
Then,

b g2(r)

Zl/f(x,y)ddeZ/ / f(rcosf,rsinf)rdddr

a gi(r)

Theorem 56. Let D be a domain, written as Dy in polar coordinates, i.e.,
Dy = {(r,0)|a <0 < 8,h(0) <r < hy(0)}

and let f(x,y) be continuous on Diy.

Then,
B h2(0)
//f(:c,y)da:dy:/ / f(rcos@,rsin@)rdrdb
Dy a hy(6)

Exercise 24.
Given D = {x2 +y? < Qx}, calculate [[(z + y)dxdy.
D

Solution 24.

22 +y* =22
st —2r 4yt =0
S(r—=1)=1

Therefore, the domain D is as shown.

Yy
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Therefore, D can be written as {0 <r<2cosf,—5 <6< g}
Therefore,
% 2cos @
//(x+y)dxdy:/ / (rcos® + rsin)rdrdb
D -z 0
5 7»3 z=2cos
:/(0089+Sin9)<3> de

2=0

_
2

Solving,

//(m—l—y)dxdy:ﬂ

9 Change of Variables in Triple Integrals
Definition 50 (Jacobian). Let
T(u,v,w) = (x,y, 2)

be an operator.
The determinant

a l.’ y7 z ‘Tu xv ww
J = a(> =Y Yo Yuw
(0, w) Zu Zo Zw

is called the Jacobian of the operator T

Theorem 57. Let R and S be domains of the first, second, or third kind.
Let the operator T from S to R be one-to-one and onto.

Therefore, the inverse operator T~ exists.

Also, let T be a C' operator, i.e. 3x,, vy, ITw, e, o, IWw, Izu, I2s,
dzy, which are continuous on S.

Let f(x,y,2) be a continuous function on R.
Then,

//f(x,y,z)dxdydz://f(x(u,v,w),y(u,v,w),z(u,U,w))|J| du dv dw
R S
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9.1 Cylindrical Coordinates

Cylindrical coordinates are a special case of change of variables.
The operator for the change of variables is

T(r,0,z)=(x,y,2)

where
z =rcosf
y =rsinf
z=2z
Therefore,
Ty Ty T,
J=\y Yo Y-
Zr 20 2

cos® —rsinf 0
= |sinf rcosf@ 0
0 0 1

= rcos’ @ + rsin’6

=T

Exercise 25.

Calculate the iterative integral

2
1:/
)

4—zx2 2
/ <x2 + y2) dzdydx
[

Solution 25.

The domain {(:r;,y)\ —2<x<2 —V/i—-22<y<Vi-— x2} is a circle of ra-
dius 2.

As 2?2 + 9?2 < 2z < 2, the domain E, where —2 < 2 <2, —y4—22 <y <
V4 — a2, /2% + y? < 2 < 21is a cone, with the circular cross section of radius
2% + 92
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Therefore,

2
/ (:L‘2 + y2) dzdydx
2+

://<x2+y2)dxdydz
E

Therefore, let Dy = {(r,6,2)[0 <r <2,0<60 <27m,r <z <2},
Therefore,

2 V4—22 2
:./“ L/ ‘/’ (4 + y?) de dy da
-2 _ 4— LEQ $2 +y2

N———

drdydz

/E// (x2+y2
= //rQ-rdrdez

—7/2/7“ dzdrdf

~drdd

o
3

3

3

Il
\M o\gg o\w o\
VR
o
|
‘*3
at
~—

32
o2

|
— ol co @
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9.2 Spherical Coordinates

Spherical coordinates are a special case of change of variables.
The operator for the change of variables is

T(p,0,¢) = (v,y,2)

where

x = pcosfsiny
y = psinfsin g

2 = pCcosy

Therefore,

T, Ty Ty
J = Yo Yo Yo
2y 29 Zp

cosfsinf —rsinfsing 1rcosfcosp
= [sinfsinf rcosfsinp rsinfcosy
CoS ¢ 0 —rsinp

= —p2 sin

Exercise 26.

3
Given the sphere B : 2% +y?> + 22 <1, find I = [[/ (=P +2%)% g dydz.
B

Solution 26.
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Exercise 27.

Calculate the volume of a body which is situated above the cone z = /2 + y?
and under the sphere 22 + y? + 2% = 2.

Solution 27.

x2—|—y2—|—z2:z
Sty —2=0

2
1 1
. 2 2 = —
R s ] +<z 2) 1

Therefore, the sphere has centre (0, 0, %) and radius %

Therefore, the cone and the sphere intersect each other at z = 1. The

intersection is a circle with radius % i
Therefore, the body is made of a cone of base radius % and height %, and a
hemisphere of radius %

In Cartesian coordinates, the sphere is 2% 4 y? + 22 = 2.
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Therefore, in spherical coordinates, the sphere is p?> = pcos ¢. Therefore,

V= ///dxdydz

2w 4 cos ¢

= //p sin pdpdy db

p=Ccos

dpdydd

p sin
3 p=0

cos® psin p dy df

10 Line Integrals of Scalar Functions

Definition 51 (Line integral of scalar functions). Let C' be a curve. Let the
curve be divided into n parts, by points P;.
Let As; be the length of the curve P;_1 P;. Let B;" (x;*, y;*, ;") be a point on
the curve P,_1 P,.
Let

AT = max {As;}

Al’z’ =T — Tij—1

Ayi = yi — Yi1

AZi = Z; — Zi—1

The line integral of a f(x,y, z) over C is defined as

C/f(w,y, s = Jim S0 50 B,
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The integral

n

Alggol;f(xi Uit 27 Ay

/f(fﬂ,y,Z)de=
C

is called the line integral of f(z,y, z) over C with respect to .
This integral depends on the direction of C'.
The integral

/f(ﬂl?,y,z) dy = lim > f(y", 4" z") Ay
c

AT—0 =1

is called the line integral of f(x,y, z) over C' with respect to y.
This integral depends on the direction of C'
The integral

C/f(x,y,z> de = Jim 3o (o ) A

is called the line integral of f(z,y, z) over C' with respect to z.

This integral depends on the direction of C'

Geometrically, the line integral [ f(z,y)ds is the area under the curve z =
c

f(z,y) above the curve C.

Definition 52 (Smooth curve). A curve C' which is parametrically given as
7(t) = (z(t),y(t),2(t)), t : @ — b is said to be smooth if 7(¢) is a continuous
function on [a, b], 7(t) # 0 on (a,b), and 7(t)is continuous on (a,b).

Theorem 58. If f(x,y, z) is continuous and C' is smooth, then

[ fayyds = [ F @@y, 20) V@0)’ + /(0 + (1) at
C a

Theorem 59. If f(z,y, 2) is continuous and C' is smooth, then
b
[ fayyde = [ £ @)y, 2(0) (8) dt
C a

b

[ fay )y = [ f @)y, 20) y (@) dt

a
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Exercise 28.

Calculate [ydz + zdy + z dz for C' as shown.
c

(3,4,0)

(2,0,0)

Solution 28.

C=C,UC,
Therefore, for ¢t : 0 — 1,

Cli
CQI

() =@2+1-t,0+4-£,0+5-1)

T
T(t)=(B+0-t,440-t,5—5-1)
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Therefore,

/ydx+zdy+xdz: /ydx+zdy+xdz+/ydx—|—zdy+xdz
C C Cy

(y1 ()1 (t) + 21 (O)ya' (¢) + xl(t)zl'(t)) dt
+ (yz(t)xz’(t) + zo(t)yo (1) + :cz(t)zz’(t)) dt

(4t +5t-4+(2+1t)-5)dt

(4-04+(5—>5t)-0+3-(=5))dt

oY~ o—__ o Y— o _

- /1(2975 —5)dt

t2
= (29— —5¢
2 >

0

|

11 Line Integrals of Vector Functions

Definition 53 (Line integral of scalar functions). Let C' be a curve. Let the
curve be divided into n parts, by points F;.

Let As; be the length of the curve P;_1 P;. Let P;* (z;*,y;*, 2;*) be a point on
the curve P,_; P,.

Let

AT = max {As;}
A.Cl,’i =T; — Ti—1
Ay; = yi — yi1
AZZ‘ = Z; — Zi—1

The line integral of a f(x,y, z) over C' is defined as

n

/F(x, y,2)-T(x,y,z)ds = lim > (F (%, yi* 2% - T (2, i z,*)) As;
c

AT—0 %
=1

o4



Theorem 60. If C :7(t) = (x(t),y(t), 2(t)), t : a — b, then

W:/F-Tds
C

(F (7(t))) - 7 (¢) dt

F-dr

(P () 2'(t) + Q (F(1) ¥/ (1) + R (7(1)) 2'(t)) dt

QY o — . O~ o —_

Pdxr+Qdy+ Rdz

Theorem 61 (Fundamental Theorem of Line Integrals). Let C' be a smooth
curve in R? or R given parametrically by 7(t), t : a — b. Let f be a
continuous function of (z,y) or (z,y,z), on C, and Vf be a continuous
vector function in a connected domain D which contains C. Then

Definition 54 (Simple curve). A curve C' is called a simple curve if it does
not intersect itself.

Definition 55 (Connected domain). A domain D C R? is called connected
if for any two points from D, the is a path C' which connects the points and
remains in D.

Definition 56 (Simple connected domain). A connected domain D C R?
is called simple connected if any simple closed curve from D contains inside
itself only points in D.

Definition 57 (Curve with positive orientation). A simple closed curve C is
called a curve with a positive orientation, or with anti-clockwise orientation
if the domain D bounded by C always remains on the left when we circulate
over C' by 7(t),t : a — .
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12 Surface Integrals of Scalar Functions

Definition 58 (Parametic representation of surfaces). Let the surface S be
given by

(u,v) = (f(u,v), g(u, v), h(u, v))

The equations

x = f(u,v)
Y= g<uvv)
z = h(u,v)

are called the parametric equations of S

Exercise 29.
Write a parametric representation of the sphere 22 + y? + 22 = 1.

Solution 29.
In spherical coordinates, with p =1,

x = sin pcosf
y = sinpsinf

Z=cosp

Definition 59. If a smooth surface S is given by 7(u,v) = (z(u, v), y(u, v), z(u,v)),
u,v € D and T(u,v) is one-to-one, then the surface area of S is

A://Vu X 7| dudv
D

where

Ty = (wua Yu, Zu)

Ty = (J;v; Yo, Zv)

Exercise 30.
Find the surface area of the sphere x2 + 3% + 2% = 1.
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Solution 30.
In spherical coordinates, with p =1,

x = sinpcosf

y = sinysind
Z = cos
Therefore,

7(0, @) = (sin ¢ cos B, sin ¢ sin 0, cos )
Therefore,
79 = (—singsin b, sin p cos 0, 0)

T, = (cos g cos B, cos psinf, —sin p)

Therefore,
f 7 k
Tg X T, = |—sinpsinf sinpcosf 0
cospcosf cospsinf —singp
= 1 (— sin? o cos 9)
—J (sin2 @ sin 9)
+k (— sin ¢ cos p sin? § — sin ¢ cos ¢ cos? 9)
Therefore,

‘79 X m‘ = \/sin4 @ cos? f + sin? psin? 6 + sin? p cos? ¢

— \/ sin® ¢ + sin? ¢ cos?
= y/sin? ¢
=siny
Therefore,
A= //singpd@dgp
D

2r
://singpdgode
00

=21 (—cos )|y
—or(1+1)
=47
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Definition 60. Let S be a surface. Let the surface be divided into small
surfaces .Sj;.

Let P,j" (x:ij*,yij*, z:5") be a point on S;;. Let the area of S;; be AS;;.

Let

AT = max{AS;;}

The surface integral of the function f(z,y,z) on the surface S is defined as

é/f(mayaz) ds = AI%IEO;;JC (xij*ayij*vzij*) ASZ]

if it exists and does not depend on the division and P;;".

Theorem 62. If S is smooth and given by z = g(x,y), (x,y) € D, then

J[ f@p a8 = [[ £ @y, g(,) 1+ (00 + (9, dudy
S D

Theorem 63. If S is smooth and given parametrically by 7(u,v) = (z(u,v), y(u,v), z(u, v)),
(u,v) € D, then

//f(x,y,z) s = //f(?(u,v)) 170 X 7ol dudo
S D

Exercise 31.

Find [[22dS where S : 2% +y? + 22 = 1.
S

Solution 31.
In spherical coordinates with p =1,

x = cosfsin g

y = sinfsin ¢
2z =cosp
Therefore,

7(0, @) = (sin ¢ cos #, sin ¢ sin 0, cos p)
Therefore,
T9 = (—singsin b, sin ¢ cos 0, 0)

T, = (cospcos B, cos psin b, —sin )
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Therefore,

A A A

1 ¥ k
Tg X Ty, = |—sinpsinf sinycosd 0
cospcosf cospsinfd —singp
= 1 (— sin? ¢ cos 9)
i(sm gpsm@)
k

+ (— sin ¢ cos p sin? § — sin ¢ cos ¢ cos? 9)

Therefore,

‘Fe X Fso‘ = \/sin4 @ cos? 0 + sin psin?  + sin? p cos? @

= \/ sin* ¢ + sin? ¢ cos?
= y/sin? ¢
=sinp
Therefore,
//:U2 ds = //(cosﬁsingp)2 sin p df dy
s
2r
.3 2
//sm pcos”Adepdl
0 0

—/sm gpdg@/cos 6do

1 2
(1—COS gp) smgpdgp/WdH

0 n sin 26
2 4

)

(sm @ — cos® psin go) de (
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13 Surface Integrals of Vector Functions

Definition 61 (Oriented surface). If a normal vector 7i(z, y, ) to the surface
S is continuously changing on S then S is said to be an oriented surface.

Theorem 64. If a surface is given by F(x,y,z) =k, then VF is a normal
vector to the surface at a point on it.

Definition 62 (Surface with positive orientation). A surface S is said to
have positive orientation if n is positive.
A closed surface S is said to have positive orientation if 7 is directed outwards.

Definition 63 (Surface Integral of Vector Functions). If

F(x7 y7 Z) = (P(‘,L‘7 y? Z)’ Q(x’ y7 Z)7 R<m7 y? Z))

is a continuous vector function on S with orientation n, then the surface
integral of F' over S is

//F-d?:/ F-ndS

s s
This integral is also called the flux of F through S in direction 7.

Theorem 65. Let

F(z,y,2) = (P(x,y,2),Q(z,y,2), R(x,y, 2))

IfS:z= g(x,y), (iL‘,y) € D, then,

é/F-dSzé/F-ﬁdS
=£/ (~Pg. — Qg, + R) dzdy

for S with positive orientation, and

//F-dS:é/F-ﬁdS

S
= —// (—Pgr —ng—i-R) dz dy
D
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for S with negative orientation.
If S is given parametrically as

7(u,v) = (x(u,v),y(u,v), z(u,v))

for (u,v) € D, then

{F-dS://F-ﬁdS

S
://F-(Tuxﬁ,)dudv
D

If S is closed and given parametrically, it can be solved as above.

If S is closed and not given parametrically, it can be divided into surfaces
of the first kind, and each of the integrals over the smaller surfaces can be
solved as abowve.

Exercise 32.

Given
F=(z,y,2)
Calculate [[ F -ndS, where S : 22 + > + 22 = 1.
S

Solution 32.
The surface S is given by

P =1
Soz=dy 11— 2?2 — 9P

Therefore, let
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Therefore,

//F AdS = //F ndS+//F A ds
//( Q(g1)y R)dxdy

" //( P(g1): — Q(g1)y + R) da dy

Exercise 33.
Given

F=(z,y,2)
Calculate [[ F -7 dS, where S : 22 + 9% + 2% = 1, using parametric represen-
S

tation.

Solution 33.
S is given parametrically by

(0, 0) = (x(0,9),y(0,¢),2(0,¢))
where

x(0,p) = cosfsin p
y(0, ) =sinfsin ¢
2(0,¢p) = cos
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with D : {0 <0 <27, 0<¢ <7}
Therefore,

To X Ty = (— cos 0 sin? o, — sin #sin? o, — sin ¢ cos 4,0)
Ifo=75,0=73,

7o x Ty, = (0,—1,0)

However, the positive normal to S at that point is positively directed.
Therefore,

J[Fias =~ [[F- (70 x7,) 00y

S D

= — // (— cos? B sin® p — sin? #sin® ¢ — cos? @ sin ga) dfdyp
D
= // (Sin3 ¢ + cos? psin gp) df de

D
= //singpd@d@

/singpdgo de
0

I
\;\\3 O\[:\‘; )

d@/singpdg@
0

7 (= cosp)lg

I
~ N o

3

14 Green’s Theorem

Definition 64 (Curl/Rotor). If

F(x,y,2) = (P(z,y,2),Q(x,y,2), R(z,y, 2))
then
curlR=V x F

N %3‘ Q =
@g‘ng:>
oy %" QO =
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Definition 65 (Divergence). If

F(‘T;’ y? Z) = (P(x7 y’ Z)7 Q(x’ y? Z)’ R(CC, y? Z))

then
divR=V-F
_oP 0@ oR
- dx  dy Oz

Theorem 66. If a vector field F(x,y,z) is defined on R3, if there exist
continuous first order partial derivatives of P, Q, R, and if curl F = 0, then
F is a conservative vector field.

In this case, 3f(x,y, z), such that F =V f.

Theorem 67 (Green’s Theorem). Let C' be a piecewise smooth, simple, and
closed curve in R? with positive orientation. Let D be a domain bounded
by C. If there exist continuous first order partial derivatives of P(x,y) and
Q(x,y) in an open domain which contains D, then

W:/F-Tds
C

Pdx + Qdy

Q
T

(Qz — B)dA

curl F - kdA

=
=

el
o
b

UQ UQU

15 Stoke’s Theorem

Definition 66 (Curve with positive orientation). Let S be an oriented sur-
face with normal 7 and let C' be a curve bounding S. C'is called a curve with
positive orientation with respect to S if, as we walk on C in this direction
and with our head in the direction of 7, the surface S is always on our left.
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Theorem 68 (Stoke’s Theorem). Let S be a piecewise smooth surface with
normal 7. and let S be bounded by a curve C which is piecewise smooth, sim-
ple, closed and with positive orientation with respect to S. Let F(x,y,2) =
(P(x,y,2),Q(x,y,2), R(z,y,2)) be a vector field such that there exist con-
tinuous first order partial derivatives of P, Q, R in an open domain of R3
which contains S. Then

/F-Tds://curlf-ﬁds
c S

[Stoke’s Theorem| is a generalization of |Green’s Theorem.

Exercise 34.

Verify |Stoke’s Theorem| when F = (—yz, x, 22) and C' is the intersecton like

between the plane y + z = 2 and the culinder 2% 4+ y?> = 1. The direction of
C is clockwise, when seen from above.

Solution 34.

Let S be the circular surface enclosed by C'.
As C' is clockwise, when seen from above, 7 is negative.
Let

T = cost

Yy =sint

Therefore, as y + 2z = 2,

z=2—sint

where, t : 27 — 0.
t goes from 27 to 0 and not from 0 to 2m, as C' is directed clockwise, when
seen from above.
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Therefore, the LHS is,

(Pa'(t) + Qu'(t) + RZ/(1)) dt

(—sith-—sint+cost-cost+ (2 —sint)?- —Cost) dt

1 2t
—/( — cos? t 51nt—i-+(;os—(2—sint)zcost> dt

cost t sin2t (2 —sint)3

= —cost Z
I R
= -7
curl F =V x F
)k
_|9 9 9
or 0Oy 0z
P Q R
7k
_|9 9 9
or 0Oy 0z
2 oz 2
=(0—0)i—(0—0)]+ (1+2y)k
= (1+2y)k

= Pi+Qj + Rk
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As C' is clockwise, when seen from above, 7 is negative.
Therefore, the RHS is,

//curlﬁﬁdsz—// (~Pg. — Qq, + R) dA
S D
:—é/RdA

:—//(1+2y)dA

1 27
:—//(1+2rsin9)rd6dr

00

1 27 2
:—//rder—/%zsin@d@dr

00 0

1 2
:—/rdr/dﬁ

0 0
= -7

16 Gauss’ Theorem

Theorem 69. Let E be a body bounded by a surface S, with a positive ori-
entation of S. Let

F=(P,Q,R)

be a vector field such that there exist continuous first order partial derivatives
of P, Q, and Q, in some open domain which contains E. Then,

//F-ﬁdS:///dideV

S E

Exercise 35.
Find [[ F -7 dS where
S

F = (:Uy, y* + 6“2, sin xy)
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and S is a lateral surface of a body E which is bounded by the parabolic
cylinder z = 1 — 2% and the planes z =, y =0, and y + 2z = 2.

Solution 35.
7 nas- [ffawpar
S —/E//(y+2y+0)dv
s fffar

][] o
zgé/yjzzzm
zgé/@—z)QdA
2/11 10/122—2 dzdz
:2_/1_(2—32) Z_O
SN
:;/11( —(1—|—x2)3>dx
:0/1< —(1+:c2)3)dx
184
T35
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