Complex Functions

Aakash Jog

2015-16

Contents

1 Lecturer Information iv
2 Recommended Reading iv
3 Additional Reading iv
I Complex Numbers 1
II Complex Sequences and Series 5
III Topology on the Complex Plane 7
IV Complex Functions 11
1 Complex Functions 11
2 Limits 11
3 Continuity 14
4 Differentiability 15
5 Cauchy-Riemann Equations 15
6 Harmonic Functions 16
7 Analytic Functions 17
(c) (i) (() (0)

This work is licensed under the Creative Commons Attribution-NonCommercialShareAlike 4.0 International License. To view a copy of this license, visit http: //creativecommons.org/licenses/by-nc-sa/4.0/
8 Elementary Functions 20
8.1 Exponential Functions 20
8.2 Trigonometric Functions 20
8.3 Logarithmic Functions 21
8.4 Power 23
V Complex Integrals 24
1 Complex Integrals 24
2 Curves in \mathbb{C} 25
3 Complex Line Integrals 26
4 Cauchy Integral Formula 32
5 Liouville's Theorem 34
6 Fundamental Theorem of Algebra 36
7 Maximum Modulus Principle 37
VI Complex Sequences and Series 42
1 Complex Series 42
2 Series of Complex Functions 42
2.1 Criteria for Uniform Convergence of Series of Functions 43
3 Power Series 43
3.1 Integration of Power Series 44
3.2 Differentiation of Power Series 44
4 Taylor Series for Complex Functions 46
5 Laurent Series 49
6 Isolated Singularity Points 51
6.1 Characterization of Isolated Singular Points 52

1 Lecturer Information

Zahi Hazan

E-mail: zahihaza@post.tau.ac.il

2 Recommended Reading

1. James Ward Brown \& Ruel V. Churchill, "Complex Variables and Applications", McGraw-Hill, Inc. 1996.
2. D. Zill, P. Shanahan, "Complex Variables with Applications", Jones and Bartlett Publishers.

3 Additional Reading

1. Saff, Edward B., and Arthur David Snider. Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002. ISBN: 0139078746.
2. Sarason, Donald. Complex Function Theory. American Mathematical Society. ISBN: 0821886223
3. Alfhors, Lars. Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. McGraw-Hill Education, 1979. ISBN: 0070006571.

Part I

Complex Numbers

Definition 1. A number of the form

$$
z=x+i y
$$

where

$$
\begin{aligned}
i & =\sqrt{-1} \\
x & \in \mathbb{R} \\
y & \in \mathbb{R}
\end{aligned}
$$

is called a complex number.
Definition 2 (Real part of a complex number). If

$$
z=x+i y
$$

then x is called the real part of z, and is denoted as

$$
x=\Re(z)
$$

Definition 3 (Imaginary part of a complex number). If

$$
z=x+i y
$$

then y is called the imaginary part of z, and is denoted as

$$
x=\Im(z)
$$

Definition 4 (Complex conjugate). If

$$
z=x+i y
$$

then

$$
\bar{z}=x-i y
$$

is called the complex conjugate of z.

Theorem 1.

$$
z \bar{z}=|z|^{2}
$$

Proof.

$$
\begin{aligned}
z & =x+i y \\
\therefore \bar{z} & =x-i y
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
z \bar{z} & =(x+i y)(x-i y) \\
& =x^{2}-i x y+i x y+y^{2} \\
& =x^{2}+y^{2} \\
& =|z|^{2}
\end{aligned}
$$

Definition 5 (Polar representation). If

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta
\end{aligned}
$$

then (r, θ) is called the polar representation of (x, y).
Theorem 2 (Euler's Formula).

$$
r \cos \theta+i r \sin \theta=r e^{i \theta}
$$

Definition 6 (Absolute value or Norm).

$$
\begin{aligned}
|z| & =|x+i y| \\
& =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

is called the absolute value, or the norm of z.

Theorem 3.

$$
|z| \leq|\Re(z)|+|\Im(z)| \leq \sqrt{2}|z|
$$

Proof.

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}} \leq|x|+|y| \leq \sqrt{2 x^{2}+2 y^{2}} \\
& \Longleftrightarrow x^{2}+y^{2} \leq x^{2}+y^{2}+2|x||y| \leq 2 x^{2}+2 y^{2} \\
& \Longleftrightarrow x^{2}+y^{2}-2|x||y| \geq 0 \\
& \Longleftrightarrow(|x|-|y|)^{2} \geq 0
\end{aligned}
$$

Definition 7 (Argument). Let z be a complex number.
Then, θ, such that $\theta \in(-\pi, \pi]$, and

$$
z=(r, \theta)
$$

is called the argument of z.
It is denoted as

$$
\theta=\operatorname{Arg}(z)
$$

If $\theta \notin(-\pi, \pi]$, but

$$
z=(r, \theta)
$$

then

$$
\theta=\arg (z)
$$

Theorem 4.

$$
z^{n}=|z|^{n} e^{i n \operatorname{Arg}(z)}
$$

Proof.

$$
\begin{aligned}
z & =|z| e^{i \operatorname{Arg}(z)} \\
\therefore z^{n} & =\left(|z| e^{i \operatorname{Arg}(z)}\right)^{n} \\
& =(|z|)^{n}\left(e^{i \operatorname{Arg}(z)}\right)^{n} \\
& =|z|^{n} e^{i n \operatorname{Arg}(x)}
\end{aligned}
$$

Theorem 5. Let

$$
\begin{aligned}
z & =r e^{i \theta} \\
w & =\rho e^{i \varphi}
\end{aligned}
$$

The solutions to

$$
w=\sqrt[n]{z}
$$

are

$$
\varphi_{k}=\frac{\theta}{n}+\frac{2 \pi k}{n}
$$

where $k \in\{0, \ldots, n-1\}$.

Proof.

$$
\begin{aligned}
w & =\sqrt[n]{z} \\
\therefore w^{n} & =z
\end{aligned}
$$

Therefore,

$$
\rho^{n} e^{i n \varphi}=r e^{i \theta}
$$

Therefore, for $k \in\{0, \ldots, n-1\}$,

$$
\begin{aligned}
\rho & =\sqrt[n]{r} \\
n \varphi & =\theta+2 \pi k \\
\therefore \varphi & =\frac{\theta}{n}+\frac{2 \pi k}{n}
\end{aligned}
$$

Part II

Complex Sequences and Series

Definition 8 (Convergence of complex sequences). Let

$$
z_{n}=x_{n}+i y_{n}
$$

The sequence $\left\{z_{n}\right\}$ is said to converge to the limit $z=x+i y$, if $\forall \varepsilon>0, \exists N$, such that $\forall n>N,\left|z_{n}-z\right|<\varepsilon$, i.e. there is a circular region of radius ε, centred at z, in which z_{n} lies.

Theorem 6. $\left\{z_{n}\right\} \rightarrow z$, i.e. $\left\{z_{n}\right\}$ converges to z if and only if all subsequences of $\left\{z_{n}\right\}$ converge to z.

Exercise 1.

Find the limit $\lim _{n \rightarrow \infty} \frac{n+i}{2 n-i}$.

Solution 1.

$$
\begin{aligned}
z_{n} & =\frac{n+i}{2 n-i} \\
& =\frac{(n+i)(2 n+i)}{4 n^{2}+1} \\
& =\frac{2 n^{2}+1}{4 n^{2}+1}+i \frac{3 n}{4 n^{2}+1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} z_{n} & =\lim _{n \rightarrow \infty} \frac{2 n^{2}+1}{4 n^{2}+1}+i \frac{3 n}{4 n^{2}+1} \\
& =\frac{1}{2}
\end{aligned}
$$

Exercise 2.

Show that for

$$
z_{n}=-2+\frac{(-1)^{n}}{n} i
$$

$\lim _{n \rightarrow \infty} \operatorname{Arg}\left(z_{n}\right)$ does not exist, but $\lim _{n \rightarrow \infty}\left|z_{n}\right|$ exists.

Solution 2.

The magnitude of z_{n} is

$$
\begin{aligned}
\left|z_{n}\right| & =\left|-2+\frac{(-1)^{n}}{n} i\right| \\
& =\sqrt{4+\frac{(-1)^{2 n}}{n^{2}}} \\
& =\sqrt{4+\frac{1}{n^{2}}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|z_{n}\right| & =\lim _{n \rightarrow \infty} \sqrt{4+\frac{1}{n^{2}}} \\
& =2
\end{aligned}
$$

The argument of $z_{2 n}$ is

$$
\begin{aligned}
\operatorname{Arg}\left(z_{2 n}\right) & =\operatorname{Arg}\left(-2+\frac{(-1)^{2 n}}{2 n} i\right) \\
\therefore \lim _{n \rightarrow \infty} \operatorname{Arg}\left(z_{2 n}\right) & =\lim _{n \rightarrow \infty} \operatorname{Arg}\left(-2+\frac{i}{2 n}\right) \\
& =\pi
\end{aligned}
$$

The argument of $z_{2 n+1}$ is

$$
\begin{aligned}
\operatorname{Arg}\left(z_{2 n+1}\right) & =\operatorname{Arg}\left(-2+\frac{(-1)^{2 n+1}}{2 n+1} i\right) \\
\therefore \lim _{n \rightarrow \infty} \operatorname{Arg}\left(z_{2 n}\right) & =\lim _{n \rightarrow \infty} \operatorname{Arg}\left(-2-\frac{i}{2 n}\right) \\
& =-\pi
\end{aligned}
$$

Therefore, as the limit of two subsequences are not equal, the limit does not exist.

Part III

Topology on the Complex Plane

Definition 9 (Neighbourhood of a complex number). A circular region of radius ε centred at z, is called the ε neighbourhood of z.

$$
B(z, \varepsilon)=D(z, \varepsilon)=\{w \in \mathbb{C}:|w-z|<\varepsilon\}
$$

Figure 1: Neighbourhood of a complex number

Definition 10 (Interior point). Let $A \subseteq \mathbb{C}$.
$z \in \mathbb{C}$ is called an inner or interior point of A if there exists at least one $\varepsilon_{z}>0$, such that $B\left(z, \varepsilon_{z}\right) \subset A$.
The set of all interior points of A is denoted by $\operatorname{Int}(A)$ or A°.
Definition 11 (Exterior point). Let $A \subseteq \mathbb{C}$.
$z \in \mathbb{C}$ is called an outer or exterior point of A if there exists at least one $\varepsilon_{z}>0$, such that $B\left(z, \varepsilon_{z}\right) \subset(\mathbb{C} \backslash A)$. The set of all exterior points of A is denoted by $\operatorname{Ext}(A)$.

Definition 12 (Edge point). Let $A \subseteq \mathbb{C}$.
$z \in \mathbb{C}$ is called an edge or boundary point of A if it is neither an inner point of A, nor an outer point of A. The set of all boundary points of A is denoted by $\partial(A)$.

Definition 13 (Open set). A set $A \subseteq \mathbb{C}$ is called an open set if $A=A^{\circ}$, i.e. for any point $z \in A, \exists \varepsilon>0$, such that $D(z, \varepsilon) \subset A$.

Definition 14 (Closer of a set). The closer of A is defined to be

$$
\bar{A}=A^{\circ} \cup \partial A
$$

Definition 15 (Closed set). A set A is called a closed set if $\partial A \subset A$, i.e. $A=\bar{A}$.

Definition 16 (Connected set). A set A is called a connected set of for any $z_{1}, z_{n} \in A$, there exists a polygonal path, i.e. a finite set of connected straight lines, which connects z_{1} and z_{2}, and belongs to A.

Definition 17 (Domain). An open connected set is called a domain.
Definition 18 (Bound set). A set A is said to be a bound set if it is bound inside a disk.

Exercise 3.

Describe geometrically and list the properties of the following sets.

1. $A=\{z \in \mathbb{C}: \Re(z) \geq 2, \Im(z) \leq 4\}$
2. $B=\{z \in \mathbb{C}:|z-1+3 i|>3\}$

Solution 3.

1. A is the union of the bottom half plane with respect to the line $y=4$, and the right half plane with respect to the line $x=2$.

Therefore, as $A=A^{\circ}+\partial A$, it is a closer, unbounded set.
2. A is the complement of a disk, centred at $1-3 i$, with radius 3 .

Therefore, it is an open, unbounded set.

Exercise 4.

Prove that the upper half plane $U=\{z: \Im(z)>0\}$ is open.

Solution 4.

Let

$$
z=x+i y
$$

Therefore, as $z \in U, y>0$.
Therefore, consider the disk $D\left(z, \frac{y}{2}\right)$.

Let $w \in D\left(z, \frac{y}{2}\right)$. Therefore,

$$
\begin{aligned}
|w-z| & <\frac{y}{2} \\
\therefore|\Im(w-z)| & \leq|w-z| \\
& \leq \frac{y}{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& -\frac{y}{2} \leq \Im(w)-\Im(z) \leq \frac{y}{2} \\
& \therefore-\frac{y}{2} \leq \Im(w)-y \leq \frac{y}{2} \\
& \therefore \Im(w) \geq \frac{y}{2}>0
\end{aligned}
$$

Therefore, as $\Im(w)>0, w \in U$. Therefore, U is open.

Part IV

Complex Functions

1 Complex Functions

Definition 19 (Complex function). Let $A \subseteq \mathbb{C} . f: A \rightarrow \mathbb{C}$ is called a complex function, which matches $z \in A$ to $f(z) \in \mathbb{C}$.

Theorem 7. Any complex function f can be written as

$$
\begin{aligned}
f(x+i y) & =\Re f(x+i y)+i \Im f(x+i y) \\
& =u(x, y)+i v(x, y)
\end{aligned}
$$

2 Limits

Definition 20 (Limit of a function). Let f be a complex function defined on a neighbourhood of z_{0}, but may or may not be defined at z_{0}. Then, the limit of $f(z)$ at z_{0} is defined as

$$
w=\lim _{z \rightarrow z_{0}} f(z)
$$

if $\forall \varepsilon>0, \exists \delta>0$, such that $\forall z \in \mathbb{X}$ such that $\left|z-z_{0}\right|<\delta,|f(z)-w|<\varepsilon$.

Exercise 5.

Show that

$$
\lim _{z \rightarrow 1} \frac{i z}{2}=\frac{i}{2}
$$

Solution 5.

Let $|z-1|<\delta$. Therefore, for $\varepsilon>0$,

$$
\begin{aligned}
\left|f(z)-\frac{i}{2}\right| & =\left|\frac{i z}{2}-\frac{i}{2}\right| \\
& =\left|\frac{i}{2}\right||z-1| \\
& =\frac{1}{2}|z-i|
\end{aligned}
$$

Therefore, for $\delta \leq 2 \varepsilon,\left|f(z)-\frac{i}{2}\right|<\varepsilon$.

Theorem 8. If

$$
\begin{aligned}
f(z) & =f(x+i y) \\
& =u(x, y)+i v(x, y)
\end{aligned}
$$

then

$$
\lim _{z \rightarrow z_{0}} f(z)=u_{0}+i v_{0}
$$

if and only if

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0}
\end{aligned}
$$

Theorem 9 (Limit arithmetics). If

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} f(z)=w_{1} \\
& \lim _{z \rightarrow z_{0}} g(z)=w_{2}
\end{aligned}
$$

then, as long as all quantities are defined,

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} f(z) \pm g(z) & =w_{1} \pm w_{2} \\
\lim _{z \rightarrow z_{0}} f(z) g(z) & =w_{1} w_{2} \\
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)} & =\frac{w_{1}}{w_{2}}
\end{aligned}
$$

Exercise 6.

For the function $f(z)=\bar{z}^{2}$, prove

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} f(z) & =f\left(z_{0}\right) \\
& ={\overline{z_{0}}}^{2}
\end{aligned}
$$

Solution 6.

$$
\begin{aligned}
\bar{z} & =(\overline{x+i y})^{2} \\
& =(x-i y)^{2} \\
& =x^{2}-y^{2}-2 x y i
\end{aligned}
$$

Therefore, let

$$
\begin{aligned}
& u(x, y)=x^{2}-y^{2} \\
& v(x, y)=-2 x y
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=x_{0}{ }^{2}-y_{0}{ }^{2} \\
& (x, y) \rightarrow\left(x_{0}, y_{0}\right)
\end{aligned} \lim _{(x, y)=-2 x_{0} y_{0}}
$$

Therefore,

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} f(z) & =u_{0}+i v_{0} \\
& =x_{0}{ }^{2}-y_{0}{ }^{2}-2 x_{0} y_{0} i \\
& ={\overline{z_{0}}}^{2}
\end{aligned}
$$

Definition 21 (Infinite limit). The limit of $f(z)$ is said to be infinite, i.e.

$$
\lim _{z \rightarrow z_{0}} f(z)=\infty
$$

if and only if

$$
\lim _{z \rightarrow z_{0}}|f(z)|=\infty
$$

if and only if

$$
\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0
$$

Definition 22 (Limit at infinity). The limit of a function $f(z)$,

$$
\lim _{z \rightarrow \infty} f(z)=w
$$

if

$$
\lim _{|z| \rightarrow \infty} f(z)=w
$$

Alternatively, $\forall \varepsilon>0, \exists R>0$, such that for $|z|>R,|f(x)-w|<\varepsilon$.

Exercise 7.

Show that

$$
\lim _{z \rightarrow \infty} \frac{1}{z^{2}}=0
$$

Solution 7.

Let $\varepsilon>0$. Let $R>0$, such that $\frac{1}{R^{2}}<\varepsilon$.
Therefore, if $|z|>R$,

$$
\begin{aligned}
|f(z)-0| & =\left|\frac{1}{z^{2}}\right| \\
& =\frac{1}{\left|z^{2}\right|} \\
& =\frac{1}{|z|^{2}} \\
& <\frac{1}{R^{2}} \\
& <\varepsilon
\end{aligned}
$$

Therefore, $\lim _{z \rightarrow \infty} \frac{1}{z^{2}}=0$.

3 Continuity

Definition 23 (Continuous function). $f(z)$ is said to be continuous at z_{0} if $f(z)$ is defined at z_{0} and

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

Theorem 10 (Continuity arithmetics). If

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} f(z) & =f\left(z_{0}\right) \\
\lim _{z \rightarrow z_{0}} g(z) & =g\left(z_{0}\right)
\end{aligned}
$$

then, as long as all quantities are defined,

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} f(z) \pm g(z) & =f\left(z_{0}\right) \pm g\left(z_{0}\right) \\
\lim _{z \rightarrow z_{0}} f(z) g(z) & =f\left(z_{0}\right) g\left(z_{0}\right) \\
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)} & =\frac{f\left(z_{0}\right)}{g\left(z_{0}\right)}
\end{aligned}
$$

4 Differentiability

Definition 24 (Differentiable function). Let $f(z)$ be defined in a neighbourhood of $z_{0} . f$ is said to be differentiable at z_{0} if the limit $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists.

Theorem 11 (Differentiation arithmetics). If $f(z)$ and $g(z)$ are differentiable, then, as long as all quantities are defined,

$$
\begin{aligned}
(f(z) \pm g(z))^{\prime} & =f^{\prime}(z) \pm g^{\prime}(z) \\
(f(z) g(z))^{\prime} & =f^{\prime}(z) g(z)+f(z) g^{\prime}(z) \\
\left(\frac{f(z)}{g(z)}\right)^{\prime} & =\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{g(z)^{2}}
\end{aligned}
$$

5 Cauchy-Riemann Equations

Theorem 12 (Cauchy-Riemann Equations). $u(x, y)$ and $v(x, y)$ are said to be satisfying Cauchy-Riemann Equations at a point $(a, b) \in \mathbb{R}^{2}$, if

$$
\begin{aligned}
& u_{x}(a, b)=v_{y}(a, b) \\
& u_{y}(a, b)=-v_{x}(a, b)
\end{aligned}
$$

Theorem 13. Let

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

Then, u and v satisfying the Cauchy-Riemann Equations is a necessary condition for f to be differentiable at $\left(x_{0}, y_{0}\right)$.

Theorem 14. If $f=u+i v$ is differentiable at $z_{0}=a+i b$, then (u, v) satisfies the Cauchy-Riemann Equations at (a, b).

Definition 25 (Analytic functions). If $f=u+i v$ is differentiable at any $z \in W$, where W is a neighbourhood of z_{0} except maybe at z_{0}, then f is said to be analytic at z_{0}. If f is analytic at all $z \in W$, then it is said to be analytic in W.

Exercise 8.

Let $f: U \rightarrow \mathbb{C}$ be an analytic function in U, such that \bar{f} is also analytic in U. Show that $f^{\prime}=0$, i.e. $f=c$.

Solution 8.

As $f=u+i v$ is analytic, by Cauchy-Riemann Equations, for $(x, y) \in U$,

$$
\begin{aligned}
& u_{x}(x, y)=v_{y}(x, y) \\
& u_{y}(x, y)=-v_{x}(x, y)
\end{aligned}
$$

As $\bar{f}=u-i v$ is analytic, by Cauchy-Riemann Equations, for $(x, y) \in U$,

$$
\begin{aligned}
& u_{x}(x, y)=-v_{y}(x, y) \\
& u_{y}(x, y)=v_{x}(x, y)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
v_{y} & =-v_{y} \\
& =0 \\
v_{x} & =-v_{x} \\
& =0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& u_{x}(x, y)=0 \\
& u_{y}(x, y)=0
\end{aligned}
$$

Therefore, u and v are constant functions.

6 Harmonic Functions

Definition 26 (Laplacian). Let u be an equation in x and y.
The Laplacian is defined to be

$$
\begin{aligned}
\Delta u & =\nabla^{2} u \\
& =u_{x x}+u_{y y}
\end{aligned}
$$

Definition 27 (Harmonic function). A real function in two variables, $u(x, y)$, which is twice differentiable, is called a harmonic function if it satisfies

$$
\begin{aligned}
\Delta u & =u_{x x}+u_{y y} \\
& =0
\end{aligned}
$$

Theorem 15. If u and v are twice differentiable, and satisfy Cauchy-Riemann Equations, then (u, v) are harmonic.

Theorem 16 (Sufficient condition for differentiability). Let $f=u+i v$ be defined in a neighbourhood of $z_{0}=a+i b$. Assume that $u_{x}, u_{y}, v_{x}, v_{y}$ exist in this neighbourhood and are continuous at the point (a, b). If (u, v) satisfying Cauchy-Riemann Equations at (a, b) then $f^{\prime}\left(z_{0}\right)$ exists.

Definition 28 (Harmonic conjugate). Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a harmonic function. Its harmonic conjugate is defined to be $v: \mathbb{R}^{2} \rightarrow \mathbb{R}$, such that $f=u+i v$ is analytic.

7 Analytic Functions

Definition 29. $f: D \rightarrow \mathbb{C}$ is said to be differentiable on $D \subset \mathbb{C}$, if f is differentiable at any $z \in D$.

Definition 30 (Analytic functions). If $f=u+i v$ is differentiable at any $z \in W$, where W is a neighbourhood of z_{0} except maybe at z_{0}, then f is said to be analytic at z_{0}. If f is analytic at all $z \in W$, then it is said to be analytic in W.

Theorem 17. Let $D \subset \mathbb{C}$ be an open set. Then, f is differentiable on D if and only if f is analytic on D.

Theorem 18. Let $D \subseteq \mathbb{C}$ be a domain. Assume that f is analytic on D, and for any $z \in D, f^{\prime}(z)=0$. Then, f is constant.

Theorem 19. Let $u(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $\nabla u=0$ in a domain $D \subset \mathbb{R}^{2}$. Then, u is constant in D.

Exercise 9.

1. Prove that

$$
v(x, y)=\ln \left((x-1)^{2}+(y-2)^{2}\right)
$$

is harmonic in any domain that does not include the point $(1,2)$.
2. Find $u(x, y)$ such that $u+i v$ is analytic in some domain. Note: v is the conjugate harmonic of u.
3. Express $u+i v$ as a function of z.

Solution 9.

1.

$$
\begin{aligned}
& v_{x}=\frac{2(x-1)}{(x-1)^{2}+(y-2)^{2}} \\
& v_{y}=\frac{2(y-2)}{(x-1)^{2}+(y-2)^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& v_{x x}=\frac{2\left((x-1)^{2}+(y-2)^{2}\right)-(2(x-1))^{2}}{\left((x-1)^{2}+(y-2)^{2}\right)^{2}} \\
& v_{y y}=\frac{2\left((x-1)^{2}+(y-2)^{2}\right)-(2(y-2))^{2}}{\left((x-1)^{2}+(y-2)^{2}\right)^{2}}
\end{aligned}
$$

2. For $u+i v$ to be analytic, by Cauchy-Riemann Equations,

$$
\begin{aligned}
& u_{x}=v_{y} \\
& u_{y}=-v_{x}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
u_{x} & =v_{y} \\
& =\frac{2(y-2)}{(x-1)^{2}+(y-2)^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
u & =\int \frac{2(y-2)}{(x-1)^{2}+(y-2)^{2}} \mathrm{~d} x \\
& =\frac{2(y-2)}{(y-2)^{2}} \int \frac{1}{1+\left(\frac{x-1}{y-2}\right)^{2}} \mathrm{~d} x \\
& =2 \tan ^{-1}\left(\frac{x-1}{y-2}\right)+g(y)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
u_{y} & =-v_{x} \\
\therefore-\frac{2(x-1)}{(x-1)^{2}+(y-2)^{2}} & =\frac{2}{1+\frac{(x-1)^{2}}{(y-2)^{2}}}\left(-\frac{x-1}{y-2}\right)+g^{\prime}(y)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
g^{\prime}(y) & =0 \\
\therefore g(y) & =c
\end{aligned}
$$

Therefore,

$$
u=2 \tan ^{-1}\left(\frac{x-1}{y-2}\right)+c
$$

3.

$$
\begin{aligned}
u+i v & =\tan ^{-1}\left(\frac{x-1}{y-2}\right)+i \ln \left((x-1)^{2}+(y-2)^{2}\right) \\
& =2 i \log (-i(x-1)+(y-2)) \\
& =2 i \log (-i z-2+i)
\end{aligned}
$$

Exercise 10.

Prove that there is no $f=u+i v$ analytic in the unit disk, such that

$$
x u(x, y)=y v(x, y)+2013
$$

Hint: Use the function $z f(z)$.

Solution 10.

If possible, let there exist $f(z)$ such that

$$
x u(x, y)=y v(x, y)+2013
$$

Therefore, as $z f(z)$ is analytic,

$$
\begin{aligned}
z f(z) & =(x+i y)(u+i v) \\
& =x u-y v+i(y u+x v) \\
& =2013+i(y u+x v)
\end{aligned}
$$

By the polar form of Cauchy-Riemann Equations, $y u+x v$ is constant.
Therefore, $z f(z)$ is constant.
Therefore, this contradicts the assumption.
Therefore, such a f does not exist.

8 Elementary Functions

8.1 Exponential Functions

Theorem 20.

$$
\left|e^{z}\right|=e^{\Re(z)}
$$

Proof.

$$
\begin{aligned}
\left|e^{z}\right| & =\left|e^{\Re(z)}\right|\left|e^{\Im(z)}\right| \\
& =\left|e^{\Re(z)}\right||\cos (\Im(z))+i \sin (\Im(z))| \\
& =e^{\Re(z)}
\end{aligned}
$$

Theorem 21. Let z and w be complex. Then

$$
e^{z+w}=e^{z} e^{w}
$$

Theorem 22. $\forall n \in \mathbb{Z}$,

$$
\left(e^{z}\right)^{n}=e^{n z}
$$

Theorem 23. The function e^{z} is onto with respect to $\mathbb{C} \backslash\{0\}$.

8.2 Trigonometric Functions

Definition 31 (Trigonometric functions of complex numbers). Trigonometric functions of complex numbers are defined as

$$
\begin{aligned}
\cos (z) & =\frac{e^{i z}+e^{-i z}}{2} \\
\sin (z) & =\frac{e^{i z}-e^{-i z}}{2 i} \\
\cosh (z) & =\frac{e^{z}+e^{-z}}{2} \\
\sinh (z) & =\frac{e^{z}-e^{-z}}{2}
\end{aligned}
$$

8.3 Logarithmic Functions

Definition 32 (Power set). The set of all subsets of a set is called the power set of the set. The power set of a set A is denoted as $\mathrm{P}(A)$.

Definition 33 (Multiple valued function). A set which maps a set A to its power set $\mathrm{P}(A)$ is called a multiple valued set.

Definition 34 (Natural logarithmic function). The natural logarithmic function over the complex plane is defined to be

A multiple valued function gets over \mathbb{C} gets a complex number as input and returns a set of complex
numbers as output.

$$
\log w=\left\{z: e^{z}=w\right\}
$$

Theorem 24.

$$
\log w=\ln |w|+i \arg (w)
$$

Proof. Let

$$
\begin{aligned}
e^{z} & =w \\
& =|w| e^{i \theta}
\end{aligned}
$$

where

$$
\theta=\arg (w)
$$

Therefore,

$$
\begin{aligned}
e^{\Re(z)+i \Im(z)} & =|w| e^{i \theta} \\
\therefore e^{\Re(z)} e^{i \Im(z)} & =|w| e^{i \theta}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& e^{\Re(z)}=|w| \\
& \Im(z)=\theta+2 \pi k
\end{aligned}
$$

where $k \in \mathbb{Z}$.
Therefore,

$$
\begin{aligned}
& \ln e^{\Re(z)}=\ln |w| \\
& \therefore \Re(z)=\ln |w|
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\log w & =\left\{z: e^{z}=w\right\} \\
& =\{\ln |w|+i y: y=\arg (w)\}
\end{aligned}
$$

For any $w \in \log z$,

$$
\begin{aligned}
e^{w} & =e^{\ln |z|}+i(\operatorname{Arg} z+2 \pi k) \\
& =e^{\ln |z|} e^{i(\operatorname{Arg} z+2 \pi k)} \\
& =|z| e^{i \operatorname{Arg} z} \\
& =z
\end{aligned}
$$

Definition 35 (Branch of $\log z$). A branch of $\log z$ is a continuous function $\mathrm{L}(z)$ defined on a U, a connected open subset of \mathbb{C} such that $\mathrm{L}(z)$ is a logarithm of z for each $z \in U$.
Definition $36(\log z) . \log z$ is defined to be
$\log z=\ln |z|+i \operatorname{Arg} z$
As $\operatorname{Arg} z$ is not continuous on the negative real axis, in order to make it continuous, the line $\operatorname{Arg} z=\pi$ is excluded. Hence, $\log z$ is continuous on $U=\mathbb{C} \backslash\{0\} \cup \mathbb{R}^{-}$, and is a branch of $\log z$.
Similarly, any other ray can be excluded in order to get a branch of $\log z$.

Definition 37. For any $\alpha \in \mathbb{R}, \log _{\alpha} z$ is defined to be

$$
\log _{\alpha} z=\ln |z|+i \operatorname{Arg}_{\alpha} z
$$

where $\operatorname{Arg}_{\alpha} z=\theta$, such that $\theta \in(\alpha, \alpha+2 \pi]$ and $\theta=\arg z$.
Any choice of $\operatorname{Arg}_{\alpha} z$ defines a branch of logarithm.
Definition 38 (Branch cut). The boundary of the domain of a branch is called a branch cut.
Definition 39 (Principal value). The value returned by $\log z=\log _{-\pi} z$ is called the principal value.
Theorem 25. $\log z$ is analytic on $\mathbb{C} \backslash\{0\} \cup \mathbb{R}^{-}$.

Exercise 11.

Find the principal value of \sqrt{i}.
Solution 11.

$$
\begin{aligned}
\operatorname{pv}\left(i^{\frac{1}{2}}\right) & =e^{\frac{1}{2} \log i} \\
& =e^{\frac{1}{2}(\ln |i|+i \operatorname{Arg} i)} \\
& =e^{\frac{1}{2} i \frac{\pi}{2}} \\
& =e^{i \frac{\pi}{4}}
\end{aligned}
$$

8.4 Power

Definition 40 (Power function). Let $z, c \in \mathbb{C}$, such that $z \neq 0$. The power multifunction as

$$
z^{c}=e^{c \log z}
$$

The branch of the power multifunction for $c \in \mathbb{C}$ is defined as

$$
z^{w}=e^{w \log z}
$$

Theorem 26.

$$
\log _{\alpha} z-\log _{\beta} z=i\left(\operatorname{Arg}_{\alpha} z-\operatorname{Arg}_{\beta} z\right)
$$

Part V

Complex Integrals

1 Complex Integrals

Definition 41 (Integral of complex functions). Let $f:[a, b] \rightarrow \mathbb{C}$. Let

$$
f(t)=u(t)+i v(t)
$$

Therefore, the integrals of $u(t)$ and $v(t)$ are defined as

$$
\int_{a}^{b} u(t) \mathrm{d} t=\lim _{\Delta t \rightarrow 0} \sum_{i=1}^{n} u\left(t_{i}\right) \Delta x_{i}
$$

where T is a splitting of $[a, b]$, such that

$$
a=t_{1}<\cdots<t_{n}=b
$$

and

$$
\int_{a}^{b} v(t) \mathrm{d} t=\lim _{\Delta t \rightarrow 0} \sum_{i=1}^{n} v\left(t_{i}\right) \Delta x_{i}
$$

where T is a splitting of $[a, b]$, such that

$$
a=t_{1}<\cdots<t_{n}=b
$$

These integrals are defined when the limit exists without depending on T.
When they exist, the integral of $f(t)$ is defined as

$$
\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} u(t) \mathrm{d} t+i \int_{a}^{b} v(t) \mathrm{d} t
$$

Theorem 27. All properties of real integrals are also valid for complex integrals.

Theorem 28.

$$
\left|\int_{a}^{b} f(t) \mathrm{d} t\right| \leq \int_{a}^{b}|f(t)| \mathrm{d} t
$$

2 Curves in \mathbb{C}

Definition 42. A continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$ is called a curve.
Definition 43 (Parametric representation of a curve). The curve $\gamma(t)$ can be represented as

$$
\gamma(t)=x(t)+i y(t)
$$

where t is a parameter.

Definition 44 (Differentiability). γ is said to be differentiable if x and y are both differentiable.

Theorem 29 (Parametric representation of a straight line). Let $z_{1}, z_{2} \in \mathbb{C}$. The straight line passing through z_{1} and z_{2} can represented parametrically as

$$
\gamma(t)=z_{1}+t\left(z_{2}-z_{1}\right)
$$

The slope of this line is $z_{1}-z_{2}$.
Theorem 30 (Parametric representation of a circle). A circle with radius r, centred at the origin, can be represented parametrically as

$$
\gamma(t)=r e^{i t}
$$

with $0 \leq t \leq 2 \pi$.

Exercise 12.

Parametrize the curve $\left\{z=x+i y: \frac{x^{2}}{4}+y^{2}=1\right\}$ starting from 2, and going anti-clockwise twice.

Solution 12.

The curve is an ellipse centred at $(0,0)$, with $a=2$, and $b=1$.

$$
\gamma(t)=2 \cos t+i \sin t
$$

Therefore, as the curve goes anti-clockwise twice, $t \in[0,4 \pi]$.
Definition 45 (Simple curve). A curve γ is said to be simple if it is non self-intersecting, i.e. it is one-to-one with respect to the parameter t, except maybe at the extreme values of t.

Definition 46 (Closed curve). A curve $\gamma:[a, b] \rightarrow \mathbb{C}$ is said to be closed, if and only if

$$
\gamma(a)=\gamma(b)
$$

Definition 47 (Jordan curve). A closed simple curve is called a Jordan curve.
Theorem 31. A Jordan curve enclosed a region inside it.
Definition 48 (Piecewise differentiability). γ is said to be piecewise differentiable if there exists a splitting

$$
a=t_{1}<\cdots<t_{n}=b
$$

such that γ is differentiable on each segment $\left[t_{i}, t_{i+1}\right]$.

3 Complex Line Integrals

Definition 49 (Complex line integral). Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve, and let $f: D \rightarrow \mathbb{C}$, where $D \subseteq \mathbb{C}$, and $\gamma([a, b]) \subset D$. Then, the integral

$$
\int_{\gamma} f(z) \mathrm{d} z=\int_{a}^{b} f(\gamma(t)) \dot{\gamma}(t) \mathrm{d} t
$$

If γ is piecewise differentiable, then

$$
\int_{\gamma} f(z) \mathrm{d} z=\sum_{i=1}^{n} \int_{x_{i}}^{x_{i+1}} f(\gamma(t)) \dot{\gamma}(t) \mathrm{d} t
$$

Definition 50 (Oriented contour). An oriented contour for $\alpha>0, z_{0} \in \mathbb{C}$, is defined to be

$$
C_{\alpha, z_{0}}=\left\{w \in \mathbb{C}:\left|w-z_{0}\right|=\alpha\right\}
$$

oriented anti-clockwise, starting at $z_{0}+\alpha$.
Theorem 32. $\forall \alpha>0, z_{0} \in \mathbb{C}$,

$$
\oint_{C_{\alpha, z_{0}}} \frac{\mathrm{~d} z}{z-z_{0}}=2 \pi i
$$

Proof. Let

$$
\gamma(t)=z_{0}+\alpha e^{i t}
$$

with $0 \leq t \leq 2 \pi$.
Therefore,

$$
\dot{\gamma}(t)=\alpha i e^{i t}
$$

Therefore,

$$
\begin{aligned}
\oint_{C_{\alpha, z_{0}}} \frac{\mathrm{~d} z}{z-z_{0}} & =\int_{0}^{2 \pi} \frac{1}{z_{0}+\alpha e^{i t}-z_{0}} \alpha i e^{i t} \mathrm{~d} t \\
& =\int_{0}^{2 \pi} i \mathrm{~d} t \\
& =2 \pi i
\end{aligned}
$$

Theorem 33. Line integrals are linear for all $\alpha, \beta \in \mathbb{C}$, i.e.

$$
\alpha \int_{\gamma} f \mathrm{~d} z \pm \beta \int_{\gamma} g \mathrm{~d} z=\int_{\gamma} \alpha f \pm \beta g \mathrm{~d} z
$$

Theorem 34. Let γ_{1} and γ_{2} be two curves such that the start point of γ_{2} is the end point of γ_{1}. Then, the curves can be composited to a curve $\gamma_{1}+\gamma_{2}$, and

$$
\int_{\gamma_{1}} f(z) \mathrm{d} z+\int_{\gamma_{2}} f(z) \mathrm{d} z=\int_{\gamma_{1}+\gamma_{2}} f(z) \mathrm{d} z
$$

Theorem 35. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve. Then, $\bar{\gamma}:[-b,-a] \rightarrow \mathbb{C}$ has orientation opposite to that of γ, and

$$
\begin{aligned}
& \bar{\gamma}(t)=\gamma(-t) \\
& \bar{\gamma}(t)=-\dot{\gamma}(t)
\end{aligned}
$$

Then,

$$
\int_{\bar{\gamma}} f(z) \mathrm{d} z=-\int_{\gamma} f(z) \mathrm{d} z
$$

Theorem 36 (Length of a curve). The length of the curve $\gamma:[a, b] \rightarrow \mathbb{C}$ is given by

$$
\operatorname{length}(\gamma)=\int_{a}^{b}|\dot{\gamma}(t)| \mathrm{d} t
$$

Exercise 13.

Find the length of the astroid given by

$$
\gamma(t)=\cos ^{3} t+i \sin ^{3} t
$$

where $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$.

Solution 13.

$$
\begin{aligned}
\gamma(t) & =\cos ^{3} t+i \sin ^{3} t \\
\therefore \dot{\gamma}(t) & =-3 \sin t \cos ^{2} t+3 i \cos t \sin ^{2} t \\
\therefore|\dot{\gamma}(t)| & =\sqrt{9\left(\cos ^{4} t \sin ^{2} t+\sin ^{4} t \cos ^{2} t\right)} \\
& =3|\sin t \cos t| \sqrt{\cos ^{2} t+\sin ^{2} t} \\
& =3|\sin t \cos t|
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\text { length }(\gamma) & =\int_{a}^{b}|\dot{\gamma}(t)| \mathrm{d} t \\
& =3 \int_{0}^{2 \pi}|\sin t \cos t| \mathrm{d} t \\
& =12 \int_{0}^{\frac{\pi}{2}} \sin t \cos t \mathrm{~d} t \\
& =6 \int_{0}^{\frac{\pi}{2}} \sin 2 t \mathrm{~d} t \\
& =6
\end{aligned}
$$

Theorem 37. Let $f(z)$ be a function defined in a domain D including a curve γ. Let $\exists M>0$, such that all values of f have $|f(z)| \leq M$, then

$$
\left|\int_{\gamma} f(z) \mathrm{d} z\right| \leq M \text { length }(\gamma)
$$

Definition 51 (Primitive function). Let $D \subset \mathbb{C} . F(z)$ is said to be the primitive function of $f(z)$ in D, if $\forall z \in D$,

$$
F^{\prime}(z)=f(z)
$$

Theorem 38 (Fundamental Theorem of Calculus). Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be piecewise continuous, and let f be continuous on γ, i.e. $f \circ \gamma$ is continuous. Let there exist an analytic function F, defined on a domain including γ, such that $\forall z \in \gamma$,

$$
F^{\prime}(z)=f(z)
$$

Then,

$$
\int_{\gamma} f(z) \mathrm{d} z=F(\gamma(b))-F(\gamma(a))
$$

Theorem 39 (Equivalent conditions for existence of a primitive function). Let D be a domain. Let f be continuous on D. Then, the following conditions are equivalent.

1. f has a primitive function F in D.
2. For any closed path γ such that $\gamma \subset D$,

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

3. For any curve γ such that $\gamma \subset D$, the integral $\int_{\gamma} f(z) \mathrm{d} z$ depends only on the edges of γ.

Exercise 14.

Find $\int_{\gamma} \cos z \mathrm{~d} z$ where γ goes from π to i.

Solution 14.

$\sin z$ is the primitive of $\cos z$ over \mathbb{C}.
Therefore,

$$
\begin{aligned}
\int_{\gamma} \cos z \mathrm{~d} z & =\sin i-\sin \pi \\
& =\frac{e^{i^{2}}-e^{-i^{2}}}{2 i}-0 \\
& =\frac{e^{-1}-e}{2 i} \\
& =i \frac{-\frac{1}{e}+e}{2}
\end{aligned}
$$

Exercise 15.

Calculate the integral of

$$
f(z)=\left(z-z_{0}\right)^{n}
$$

$\forall n \in \mathbb{Z}$, where $\gamma=C_{R, z_{0}}$.

Solution 15.

For $0 \leq t \leq 2 \pi$,

$$
\begin{aligned}
\gamma(t) & =z_{0}+R e^{i t} \\
\therefore \dot{\gamma}(t) & =R i e^{i t}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{\gamma}\left(z-z_{0}\right)^{n} \mathrm{~d} z & =\int_{0}^{2 \pi}\left(z_{0}+R e^{i t}-z_{0}\right)^{n}\left(R i e^{i t}\right) \mathrm{d} t \\
& =i R^{n+1} \int_{0}^{2 \pi} e^{i(n+1) t} \mathrm{~d} t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{\gamma}\left(z-z_{0}\right)^{n} \mathrm{~d} z & =\left\{\begin{array}{lll}
2 \pi i & ; & n=-1 \\
\left.\frac{R^{n+1}}{n+1} e^{i(n+1) t}\right|_{0} ^{2 \pi} & ; & n \neq-1
\end{array}\right. \\
& =\left\{\begin{array}{lll}
2 \pi i & ; & n=-1 \\
0 & ; & n \neq-1
\end{array}\right.
\end{aligned}
$$

Theorem 40.

$$
\int_{\gamma} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{a}^{b}(P(\gamma(t)) \dot{x}(t)+Q(\gamma(t)) \dot{y}(t)) \mathrm{d} t
$$

where $t \in[a, b]$.
Theorem 41. If

$$
f=u+i v
$$

then,

$$
\int_{\gamma} f(z) \mathrm{d} z=\int_{\gamma} u \mathrm{~d} x-v \mathrm{~d} y+i \int_{\gamma} v \mathrm{~d} x+u \mathrm{~d} y
$$

Theorem 42 (Green's Theorem). Let

$$
F=P \mathrm{~d} x+Q \mathrm{~d} y
$$

such that $P_{x}, P_{y}, Q_{x}, Q_{y}$ are continuous in the domain D,

$$
\int_{\partial D} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D}\left(Q_{x}-P_{y}\right) \mathrm{d} x \mathrm{~d} y
$$

Theorem 43 (Cauchy-Goursat Theorem). Let D be a domain, such that ∂D is obtained by a finite number of curves, ie. ∂D is piecewise differentiable. If $f: \bar{D} \rightarrow \mathbb{C}$ is analytic, then

$$
\int_{\partial D} f(z) \mathrm{d} z=0
$$

4 Cauchy Integral Formula

Theorem 44 (Cauchy Integral Formula/Mean Value Theorem). Let C be a simple closed curve in positive orientation with respect to a domain, D_{C}, closed by a curve C. If f is analytic in D_{C}, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} \mathrm{~d} z
$$

Theorem 45 (Cauchy Differentiation Formula). Let C be a simple closed curve in positive orientation with respect to a domain, D_{C}, closed by a curve C. If f is analytic in D_{C}, then

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
$$

Theorem 46. If f is analytic in D, then f is infinitely differentiable.
Proof. Let $z_{0} \in D$. Therefore, $\exists \varepsilon>0$, such that $D\left(z_{0}, \varepsilon\right) \in D$. Therefore, by Cauchy Differentiation Formula,

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C_{z_{0}, \varepsilon}} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} x
$$

and particularly, exists.
Theorem 47 (Morera's Theorem). Let D be a domain, and let $f: D \rightarrow \mathbb{C}$ be continuous. If $\int f(z) \mathrm{d} z=0$, for any closed curve γ, such that $\gamma \in D$, then f is analytic in $\stackrel{\gamma}{D}$

Proof. By Equivalent conditions for existence of a primitive function, as

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

there exists a primitive function F for f, i.e.,

$$
F^{\prime}(z)=f(z)
$$

for all $z \in D$.
Therefore, as F is differentiable in D, and as D is a domain, and hence is open, F is analytic.
Therefore, as F is analytic in D, F is infinitely differentiable, with analytic derivatives.

Theorem 48 (Cauchy Derivative Estimate). Let f be analytic in $D_{z_{0}, r}$. Let $\partial D_{z_{0}, r}$ be denoted as $C_{z_{0}, r}$.
Let

$$
M_{R}=\max _{z \in C_{z_{0}}, R}|f(z)|
$$

Then, $\forall n \in \mathbb{N}$,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}}
$$

Exercise 16.

Find $\int_{-\pi}^{\pi} \frac{1}{2-\cos t} \mathrm{~d} t$.

Solution 16.

Let

$$
\begin{aligned}
z & =e^{i t} \\
\therefore \mathrm{~d} z & =i z \mathrm{~d} t
\end{aligned}
$$

$$
\int_{-\pi}^{\pi} \frac{1}{2-\cos t} \mathrm{~d} t=\int_{\partial D_{0,1}} \frac{1}{2-\frac{z+z^{-1}}{2}} \frac{\mathrm{~d} z}{i z}
$$

$$
=\int_{\partial D_{0,1}} \frac{2 \mathrm{~d} z}{\left(4-z-z^{-1}\right) i z}
$$

$$
=\int_{\partial D_{0,1}} \frac{2 \mathrm{~d} z}{-i\left(z^{2}-4 z+1\right)}
$$

$$
=\int_{\partial D_{0,1}} \frac{2 \mathrm{~d} z}{i(z-2+\sqrt{3})(z-2-\sqrt{3})}
$$

$$
=2 i \int_{\partial D_{0,1}} \frac{\mathrm{~d} z}{(z-2+\sqrt{3})(z-2-\sqrt{3})}
$$

Let

$$
\begin{aligned}
& z_{1}=2+\sqrt{3} \\
& z_{2}=2-\sqrt{3}
\end{aligned}
$$

Therefore, as $z_{1} \in D_{0,1}$, by Cauchy Integral Formula/Mean Value Theorem,

$$
\begin{aligned}
\int_{-\pi}^{\pi} \frac{1}{2-\cos t} \mathrm{~d} t & =2 i \int_{\partial D_{0,1}} \frac{\mathrm{~d} z}{(z-2+\sqrt{3})(z-2-\sqrt{3})} \\
& =\left.2 i\left(2 \pi i\left(\frac{1}{z-2-\sqrt{3}}\right)\right)\right|_{z=2-\sqrt{3}} \\
& =-4 \pi\left(\frac{1}{2-\sqrt{3}-2-\sqrt{3}}\right) \\
& =\frac{2 \pi}{\sqrt{3}}
\end{aligned}
$$

Therefore, the integral is real, which is expected, as the function is real.

Exercise 17.

Calculate $\int_{C_{1,3}} \frac{\cos z}{(z-i)^{3}} \mathrm{~d} z$.

Solution 17.

$$
\begin{aligned}
\int_{C_{1,3}} \frac{\cos z}{(z-i)^{2+1}} \mathrm{~d} z & =\left.\frac{2 \pi i}{2} \cos z\right|_{z=1} \\
& =-i \pi \cos (i) \\
& =-i \pi \frac{e^{-1}+e^{1}}{2} \\
& =-i \pi \cosh (1)
\end{aligned}
$$

5 Liouville's Theorem

Theorem 49 (Liouville's Theorem). If f is entire and bounded, then f is constant.

Exercise 18.

If f is entire, such that $\forall z \in \mathbb{C}, \Re(f(z))<M$, show that it is constant.

Solution 18.

As $e^{\Re(f(x))}<M$,

$$
\begin{aligned}
\left|e^{f(z)}\right| & =e^{\Re(f(z))} \\
\therefore\left|e^{f(z)}\right| & <e^{M}
\end{aligned}
$$

Therefore, $e^{\Re(f(z))}$ is an entire and bounded function. Therefore, by Liouville's Theorem, $e^{f(z)}$ is constant.
Let

$$
e^{f(z)}=c
$$

Therefore,

$$
f(z)=\ln |c|+2 \pi k i
$$

Therefore, even though k may be dependent on z, as $f(z)$ is continuous, k must be continuous, to ensure that there is no discontinuity in $f(z)$. Therefore, $f(z)$ is constant.

Exercise 19.

Let f be entire and periodic, with two periods, 1 and i, i.e. $\forall z \in \mathbb{C}$,

$$
\begin{aligned}
f(z) & =f(z+1) \\
& =f(z+i)
\end{aligned}
$$

Then, f is constant.

Solution 19.

Let

$$
D=\{z: 0 \leq \Re(z) \leq 1,0 \leq \Im(z) \leq 1\}
$$

be a compact set.
f is continuous over D, and hence, $|f|$ is also continuous over D.
Therefore, by Weierstrass theorem, f is bounded in D.
As the function is periodic with periods 1 and i,

$$
\begin{aligned}
f(x+i y) & =f(x-\lfloor x\rfloor+i(y-\lfloor y\rfloor)) \\
\therefore f(D) & =f(\mathbb{C})
\end{aligned}
$$

Therefore, f is bounded in \mathbb{C}, and by Liouville's Theorem, it is constant.

6 Fundamental Theorem of Algebra

Theorem 50. $\exists R>0$, such that, $\forall|z|>R$,

$$
\begin{aligned}
|\rho(z)| & =\left|\sum_{k=0}^{n} a_{k} z^{k}\right| \\
& \geq \frac{\left|a_{n}\right||z|^{n}}{2}
\end{aligned}
$$

Theorem 51 (Fundamental Theorem of Algebra). Any polynomial $p(z)$, of degree $n \geq 1$, over \mathbb{C} has at least one root in \mathbb{C}, i.e. $\exists z_{0}$, such that

$$
p\left(z_{0}\right)=0
$$

Proof. If possible, $\forall z \in \mathbb{C}$, let

$$
p(z) \neq 0
$$

As $p(z)$ is a polynomial, it is an entire function.
Therefore,

$$
f(z)=\frac{1}{p(z)}
$$

is also entire.
Therefore, $\exists R>0$, such that $\forall|z|>R$,

$$
\begin{aligned}
|p(z)| & \geq \frac{\left|a_{n}\right||z|^{n}}{2} \\
\therefore|p(z)| & \geq \frac{\left|a_{n}\right| R^{n}}{2}
\end{aligned}
$$

Therefore, $\forall|z|>R$,

$$
\begin{aligned}
& |f(z)|
\end{aligned}=\frac{1}{|p(z)|} \frac{1}{} \begin{aligned}
& |f(z)|
\end{aligned} \frac{1}{\frac{\left|a_{n}\right| R^{n}}{2}}
$$

Let

$$
\begin{aligned}
m_{1} & =\frac{1}{\frac{\left|a_{n}\right| R^{n}}{2}} \\
& =\frac{2}{\left|a_{n}\right| R^{n}}
\end{aligned}
$$

Therefore, $\forall|z|>R$,

$$
|f(z)| \leq m_{1}
$$

Let the closed disk D be

$$
D=\{z:|z| \leq R\}
$$

Therefore, f is continuous in D. Hence, $|f|$ is also continuous in D.
By Weierstrass theorem, $|f|$ is bounded in D.
Therefore, let

$$
|f(z)| \leq m_{2}
$$

Therefore, $\forall z \in \mathbb{C}$,

$$
|f(z)| \leq \max \left\{m_{1}, m_{2}\right\}
$$

Therefore, as $f(z)$ is entire and bounded, by Liouville's Theorem, it is constant. Therefore,

$$
p(z)=\frac{1}{f(z)}
$$

is constant. Hence, the degree of $p(z)$ is 0 .
This contradicts the assumption the condition of $n \geq 1$. Hence, $p(z)$ has at least one root in \mathbb{C}.

Theorem 52. Any polynomial of degree $n \geq 1$ has exactly n roots, not necessarily distinct. Particularly,

$$
p(z)=a_{n} \prod_{k=1}^{n}\left(z-z_{k}\right)
$$

where each z_{k} is a root of $p(z)$.

7 Maximum Modulus Principle

Theorem 53. Let f be an analytic function in a domain D, and $\forall z \in D_{z_{0}, \varepsilon} \subset$ D, let

$$
|f(z)| \leq\left|f\left(z_{0}\right)\right|
$$

Then, f is constant on $D_{z_{0}, \varepsilon}$, i.e., $\forall z \in D_{z_{0}, \varepsilon}$,

$$
f(z)=f\left(z_{0}\right)
$$

Proof. For $\rho<\varepsilon$, let

$$
C_{\rho}=\left\{z:\left|z-z_{0}\right|=\rho\right\}
$$

Therefore, f is analytic inside and on C_{ρ}.
Therefore, by Cauchy Integral Formula/Mean Value Theorem

$$
\begin{aligned}
\left|f\left(z_{0}\right)\right| & =\left|\frac{1}{2 \pi i} \int_{C_{\rho}} \frac{f(z)}{z-z_{0}} \mathrm{~d} z\right| \\
& =\left|\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+\rho e^{i t}\right)}{z_{0}+\rho e^{i t}-z_{0}} i \rho e^{i t} \mathrm{~d} t\right|
\end{aligned}
$$

$$
=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i t}\right) \mathrm{d} t\right|
$$

$|f(z)| \leq\left|f\left(z_{0}\right)\right|$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i t}\right)\right| \mathrm{d} t \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| \mathrm{d} t
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left|f\left(z_{0}\right)\right| & \geq\left|f\left(z_{0}+\rho e^{i t}\right)\right| \\
\therefore\left|f\left(z_{0}\right)\right| & \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i t}\right)\right| \mathrm{d} t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|f\left(z_{0}\right)\right| & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i t}\right)\right| \mathrm{d} t \\
\therefore \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| \mathrm{d} t & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i t}\right)\right| \mathrm{d} t \\
\therefore 0 & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}+\rho e^{i t}\right)\right|\right) \mathrm{d} t
\end{aligned}
$$

Therefore,

$$
\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}-\rho e^{i t}\right)\right| \geq 0
$$

Therefore, as the integral this non-negative expression is zero, the expression must be zero. Hence,

$$
\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+\rho e^{i t}\right)\right|
$$

Similarly, by Cauchy-Riemann Equations, if $\forall z \in D_{z_{0}, \varepsilon}$,

$$
\left|f\left(z_{0}\right)\right|=|f(z)|
$$

then

$$
f\left(z_{0}\right)=f(z)
$$

Theorem 54 (Maximum Modulus Principle). Let f be analytic in D and continuous on ∂D, and non-constant, then f has no local maximum in D, and the global maximum in \bar{D}, i.e. the closer of D, must be on ∂D.

Exercise 20.

Find the maximum of

$$
f(z)=e^{z}
$$

in $\{z:|z| \leq 3\}$.

Solution 20.

$f(z)$ is entire and hence analytic in $D_{0,3}$. Also, it is non-constant. Hence, by Maximum Modulus Principle, the global maximum must be on $\{z:|z|<3\}$. Let

$$
\gamma(t)=3 e^{i t}
$$

where $0 \leq t \leq 2 \pi$.
Therefore, $\forall z \in \partial D$,

$$
\begin{aligned}
\left|e^{z}\right| & =\left|e^{3 e^{i t}}\right| \\
& =\left|e^{3(\cos t+i \sin t)}\right| \\
& =\left|e^{3 \cos t}\right|\left|e^{3 i \sin t}\right| \\
& =e^{3 \cos t} \\
& \leq e^{3}
\end{aligned}
$$

Therefore, $z=3$ is the global maximum.

Theorem 55 (Minimum Modulus Principle). If f is analytic in D, continuous on ∂D such that $\forall z \in D, f(z) \neq 0$, then show that f has a global minimum in ∂D.

Proof. As $f(z) \neq 0$, let

$$
g(z)=\frac{1}{f(z)}
$$

Therefore, by Maximum Modulus Principle, $g(z)$ has a global maximum in ∂D, which corresponds to the global minimum of $f(z)$.

Exercise 21.

Let D be a bounded domain and f be a non-constant, analytic function in \bar{D}, the closer of D, such that $\forall z \in \partial D$,

$$
|f(z)|=1
$$

Prove that $\exists z_{0} \in D$, such that

$$
f\left(z_{0}\right)=0
$$

Solution 21.

By Maximum Modulus Principle, $\forall z \in D$,

$$
|f(z)| \leq 1
$$

If possible, $\forall z \in D$, let

$$
f(z) \neq 0
$$

Therefore, by Minimum Modulus Principle,

$$
|f(z)| \geq 1
$$

Therefore,

$$
|f(z)|=1
$$

Therefore, by Cauchy-Riemann Equations, f is constant.
This contradicts that f is non-constant. Therefore, $\exists z_{0} \in D$, such that

$$
f\left(z_{0}\right)=0
$$

Exercise 22.

Let f be analytic on

$$
D=\{z:|z|<1\}
$$

a and on ∂D.
Assuming $\forall z \in D$,

$$
|f(z)| \leq\left|f\left(z^{2}\right)\right|
$$

show that f is constant.

Solution 22.

Let $0<r<1$. Let

$$
D_{r}=\{z:|z| \leq r\}
$$

Therefore,

$$
D_{r^{2}}=\left\{z:|z| \leq r^{2}\right\}
$$

Therefore, as $0<r<1$,

$$
D_{r^{2}} \subset D_{r}
$$

As $|f(z)| \leq\left|f\left(z^{2}\right)\right|$, by Maximum Modulus Principle

$$
\max _{D_{r}}|f(z)| \leq \max _{D_{r^{2}}}|f(z)|
$$

As $D_{r^{2}} \subset D_{r}$,

$$
\max _{D_{r^{2}}}|f(z)| \leq \max _{D_{r}}|f(z)|
$$

Therefore,

$$
\max _{D_{r}}|f(z)|=\max _{D_{r^{2}}}|f(z)|
$$

Therefore, the maximum $|f(z)|$ on D_{r} is at a point in the interior of D_{r}. Therefore, by Maximum Modulus Principle, f is constant on D_{r}. Therefore, as $0<r<1, f$ is constant on D.

Part VI

Complex Sequences and Series

1 Complex Series

Definition 52 (Convergence of complex series). The complex series $\sum z_{n}$ is said to converge to L, if and only if

$$
\begin{aligned}
\lim _{N \rightarrow \infty} S_{N} & =\lim _{N \rightarrow \infty} \sum_{n=0}^{N} z_{n} \\
& =L
\end{aligned}
$$

Theorem 56. If

$$
z_{n}=x_{n}+i y_{n}
$$

then,

$$
\sum_{n=0}^{\infty} z_{n}=\sum_{n=0}^{\infty} x_{n}+i \sum_{n=0}^{\infty} y_{n}
$$

Definition 53 (Absolute convergence of complex series). The series $\sum_{n=1}^{\infty} z_{n}$ is said to converge absolutely, if

$$
\sum_{n=1}^{\infty}\left|z_{n}\right|<\infty
$$

2 Series of Complex Functions

Theorem 57. If a series converges converges absolutely, then it also converges.

Definition 54 (Pointwise convergence of series of functions). Let $f_{n}: \Omega \rightarrow \mathbb{C}$, where $\Omega \subseteq \mathbb{C}$. The series $\sum_{n=0}^{\infty} f_{n}$ is said to converge pointwise to $f \in \Omega$, if $\forall z \in \Omega$,

$$
\sum_{n=0}^{\infty} f_{n}(z)=f(z)
$$

Definition 55 (Uniform convergence of series of functions). Let $f_{n}: \Omega \rightarrow \mathbb{C}$, where $\Omega \subseteq \mathbb{C}$. The series $\sum_{n=0}^{\infty} f_{n}$ is said to converge uniformly to $f \in \Omega$, if

$$
\lim _{N \rightarrow \infty} \sup _{z \in \Omega}\left|S_{N}(z)-f(z)\right|=0
$$

where

$$
S_{N}(z)=\sum_{n=0}^{N} z_{n}
$$

2.1 Criteria for Uniform Convergence of Series of Functions

Theorem 58 (Weierstrass M-test). Let $f_{n}: \Omega \rightarrow \mathbb{C}$, where $\Omega \subseteq \mathbb{C}$. Let $M_{n} \geq 0$ be a sequence which converges, such that, $\forall z \in \Omega$,

$$
\left|f_{n}(z)\right| \leq M_{n}
$$

Then $f_{n}(z)$ converges uniformly in Ω.

3 Power Series

Definition 56 (Power series). A series of the form $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is called a power series. All a_{n} are called the coefficients, and z_{0} is called the centre.

Theorem 59. A power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

converges in a disk $\left\{z:\left|z-z_{0}\right|<R\right\}$ and diverges in $\left\{z:\left|z-z_{0}\right|>R\right\}$, where

$$
\frac{1}{R}=\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{\frac{1}{n}}
$$

Also, the series converges uniformly in the set $\left\{z:\left|z-z_{0}\right|<R^{\prime}\right\}, \forall R^{\prime}$, such that $0<R^{\prime}<R$.

3.1 Integration of Power Series

Theorem 60. Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

be convergent in $D_{z_{0}, R}$.
Let Γ be a curve in $D_{z_{0}, R}$.
Let $g(z): \Gamma \rightarrow \mathbb{C}$ be continuous in Γ.
Then,

$$
\int_{\Gamma} g(z) f(z) \mathrm{d} z=\sum_{n=0}^{\infty} a_{n} \int_{\Gamma} g(z)\left(z-z_{0}\right)^{n} \mathrm{~d} z
$$

Theorem 61. Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

be convergent in $D_{z_{0}, R}$.
Let Γ be a curve in $D_{z_{0}, R}$.
If

$$
\begin{aligned}
\int_{\Gamma} f(z) \mathrm{d} z & =\sum_{n=0}^{\infty} a_{n} \int_{\Gamma}\left(z-z_{0}\right)^{n} \mathrm{~d} z \\
& =0
\end{aligned}
$$

then f is analytic in $D_{z_{0}, R}$.

3.2 Differentiation of Power Series

Theorem 62. Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

Then, in $D_{z_{0}, R}$,

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}
$$

where

$$
\frac{1}{R}=\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{\frac{1}{n}}
$$

Theorem 63. All functions of the form $\frac{1}{n^{z}}$, which converge uniformly, are analytic.

Definition 57 (Riemann zeta function). The Riemann zeta function is defined to be

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

Exercise 23.

Show that $\zeta(z)$, the Riemann zeta function is analytic in $\{z: \Re(z)>1\}$.

Solution 23.

$$
\begin{aligned}
\zeta(z) & =\left|\sum_{n=1}^{\infty} \frac{1}{n^{z}}\right| \\
& \leq \sum_{n=1}^{\infty}\left|\frac{1}{n^{z}}\right| \\
& \leq \sum_{n=1}^{\infty}\left|\frac{1}{n^{x+i y}}\right| \\
& \leq \sum_{n=1}^{\infty}\left|\frac{1}{n^{x} n^{i y}}\right| \\
& \leq \sum_{n=1}^{\infty} \frac{1}{n^{x}}
\end{aligned}
$$

Let $\varepsilon>0$.
Let

$$
M_{n}=\frac{1}{n^{1+\varepsilon}}
$$

Therefore, for $z \in\{z: \Re(z)>1+\varepsilon\}$, as $\left\{M_{n}=\frac{1}{n^{1+\varepsilon}}\right\}$ converges, and as

$$
\frac{1}{n^{z}} \leq \frac{1}{n^{1+\varepsilon}}
$$

by the Weierstrass M-test, $\zeta(z)$ converges in $\{z: \Re(z) \geq 1+\varepsilon\}$. As this holds for all $\varepsilon>0, \zeta(z)$ is also analytic in $\{z: \Re(z)>1\}$.

4 Taylor Series for Complex Functions

Theorem 64 (Taylor Series for Complex Functions). Let f be analytic in $D_{z_{0}, R}$. Then,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where

$$
\begin{aligned}
a_{n} & =\frac{f^{(n)}\left(z_{0}\right)}{n!} \\
& =\frac{1}{2 \pi i} \int_{\partial D_{z_{0}, R^{\prime}}} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
\end{aligned}
$$

where $R^{\prime}<R$.
Theorem 65 (First Uniqueness Theorem). Let f and g be analytic functions in a domain D, such that for $z_{0} \in D, \forall n \in \mathbb{N}$,

$$
f^{(n)}\left(z_{0}\right)=g^{(n)}\left(z_{0}\right)
$$

Then,

$$
f(z)=g(z)
$$

in D.
Theorem 66 (Second Uniqueness Theorem). Let f and g be analytic functions in a domain D. Let there exist $\left\{z_{n}\right\}_{n=1}^{\infty} \subset D$ which converges to $z_{0} \in D$, such that $\forall n$,

$$
f\left(z_{n}\right)=g\left(z_{n}\right)
$$

Then,

$$
f(z)=g(z)
$$

in D.
Proof. As f and g are analytic in D, they are continuous in D. Therefore,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f\left(z_{n}\right)=f\left(z_{0}\right) \\
& \lim _{n \rightarrow \infty} g\left(z_{n}\right)=g\left(z_{0}\right)
\end{aligned}
$$

As $\forall n$,

$$
f\left(z_{n}\right)=g\left(z_{n}\right)
$$

Let

$$
\begin{aligned}
& f\left(z_{0}\right)=a_{0} \\
& g\left(z_{0}\right)=a_{0}
\end{aligned}
$$

Therefore, let

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{f\left(z_{n}\right)-f\left(z_{0}\right)}{z_{n}-z_{0}} & =f^{\prime}\left(z_{0}\right) \\
& =a_{1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{g\left(z_{n}\right)-g\left(z_{0}\right)}{z_{n}-z_{0}} & =f^{\prime}\left(z_{0}\right) \\
& =a_{1}
\end{aligned}
$$

Similarly, let

$$
\begin{aligned}
f^{\prime \prime}\left(z_{0}\right) & =\frac{f\left(z_{n}\right)-a_{0}-a_{1}\left(z_{n}-z_{0}\right)}{\left(z_{n}-z_{0}\right)^{2}} \\
& =a_{2} \\
g^{\prime \prime}\left(z_{0}\right) & =\frac{g\left(z_{n}\right)-a_{0}-a_{1}\left(z_{n}-z_{0}\right)}{\left(z_{n}-z_{0}\right)^{2}} \\
& =a_{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{f\left(z_{n}\right)-\sum_{k=0}^{N} a_{k}\left(z_{n}-z_{0}\right)^{k}}{\left(z_{n}-z_{0}\right)^{N+1}} & \\
& =\frac{f^{(N+1)}\left(z_{0}\right)}{(N+1)!} \\
& =a_{N+1} \\
\frac{g\left(z_{n}\right)-\sum_{k=0}^{N} a_{k}\left(z_{n}-z_{0}\right)^{k}}{\left(z_{n}-z_{0}\right)^{N+1}} & \\
& =\frac{g^{(N+1)}\left(z_{0}\right)}{(N+1)!} \\
& =a_{N+1}
\end{aligned}
$$

Therefore the Taylor series coefficients of f and g are equal. Therefore,

$$
f=g
$$

in D.

Exercise 24.

Let $f(z)$ be analytic in $D_{0,1}$, such that $\forall n \in \mathbb{N} \geq 2$,

$$
f\left(\frac{1}{n}\right)=\frac{1}{n}
$$

Find $f(z)$.
Solution 24.
$\forall n \in \mathbb{N} \geq 2$,

$$
\left|\frac{1}{n}\right| \leq 1
$$

Therefore,

$$
\left\{\frac{1}{n}\right\} \subset D_{0,1}
$$

The limit of the sequence is

$$
\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Therefore, the sequences converges to 0 .
Let

$$
\begin{aligned}
g(z) & =z \\
\therefore g\left(\frac{1}{n}\right) & =\frac{1}{n}
\end{aligned}
$$

Therefore, by the Second Uniqueness Theorem,

$$
\begin{aligned}
f(z) & =g(z) \\
& =z
\end{aligned}
$$

5 Laurent Series

Theorem 67 (Laurent Theorem). Let f be analytic in an annulus $r<$ $\left|z-z_{0}\right|<R$. Let C be a simple closed curve around z_{0}, with positive orientation, inside the annulus. Then, f has a unique Laurent series around z_{0}, which converges to f in this ring, i.e.,

$$
\begin{aligned}
f(z) & =\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \\
& =\sum_{n=1}^{\infty} \frac{c_{n}}{\left(z-z_{0}\right)^{n}}+\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
\end{aligned}
$$

where

$$
c_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
$$

and

$$
\begin{aligned}
r & =\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|c_{n}\right|} \\
\frac{1}{R} & =\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|c_{n}\right|}
\end{aligned}
$$

Exercise 25.

$$
f(z)=-\frac{1}{(z-1)(z-2)}
$$

Find the Laurent series of $f(z)$ around $z=0$.

Solution 25.

f is analytic everywhere except at $z=1$ and $z=2$.
For $|z|<1$, converting to partial fractions,

$$
\begin{aligned}
-\frac{1}{(z-1)(z-2)} & =\frac{1}{z-1}+\frac{-1}{z-2} \\
& =-\frac{1}{1-z}+\frac{1}{2} \frac{1}{1-\frac{z}{2}} \\
& =-\sum_{n=0}^{\infty} z^{n}+\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{2} \\
& =-\sum_{n=0}^{\infty} z^{n}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2^{n+1}}-1\right) z^{n}
\end{aligned}
$$

For $1<|z|<2$, converting to partial fractions,

$$
\begin{aligned}
-\frac{1}{(z-1)(z-2)} & =\frac{1}{z} \frac{1}{1-\frac{1}{z}}+\frac{1}{2} \frac{1}{1-\frac{z}{2}} \\
& =\frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{z^{n}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{1}{z^{n}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}
\end{aligned}
$$

For $2<|z|$, converting to partial fractions,

$$
\begin{aligned}
-\frac{1}{(z-1)(z-1)} & =\frac{1}{z-1}+\frac{-1}{z-2} \\
& =\frac{1}{z} \frac{1}{1-\frac{1}{z}}-\frac{1}{z} \frac{1}{1-\frac{2}{z}} \\
& =\frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{z^{n}}-\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{2} \\
& =\sum_{n=1}^{\infty} \frac{1}{z^{n}}-\sum_{n=1}^{\infty} \frac{2^{n-1}}{z^{n}} \\
& =\sum_{n=1}^{\infty}\left(1-2^{n-1}\right) \frac{1}{z^{n}}
\end{aligned}
$$

6 Isolated Singularity Points

Definition 58 (Isolated singular point). A point z_{0} is said to be an isolated singular point of $f(z)$ is f is analytic in a perforated neighbourhood of z_{0}, i.e. if $\exists \varepsilon>0$ such that f is analytic in $D_{z_{0}, \varepsilon} \backslash\left\{z_{0}\right\}$.

Exercise 26.

Find all isolated singular points of

1. $f(z)=\frac{1}{z}$
2. $f(z)=\frac{\sin z}{z}$
3. $f(z)=\log z$

Solution 26.

1.

$$
f(z)=\frac{1}{z}
$$

Therefore, $\forall \varepsilon>0$ around $z=0, f$ is analytic. Therefore, $z=0$ is an isolated singular point for $f(z)$.
2.

$$
f(z)=\frac{\sin z}{z}
$$

Therefore, $\forall \varepsilon>0$ around $z=0, f$ is analytic. Therefore, $z=0$ is an isolated singular point for $f(z)$.
3.

$$
f(z)=\log z
$$

As $\log z$ is not defined on a ray in \mathbb{C}, f is not analytic on $D_{0, \varepsilon}$. Therefore, $z=0$ is not an isolated singular point.

6.1 Characterization of Isolated Singular Points

Definition 59 (Characterization of isolated singular points). Let z_{0} be an isolated singular point of f. Therefore, by Laurent Theorem f has a Laurent series around z_{0} with $r=0$, which converges in the ring $0<\left|z-z_{0}\right|<R$.

1. z_{0} is said to be a removable isolated singular point, if $\forall n<0, c_{n}=0$.
2. z_{0} is said to be a pole on order N, if $\forall n<-N, c_{n}=0$, and $C_{-N} \neq 0$.
3. z_{0} is said to be a principle removable isolated singular point, if $\forall n<0$, $c_{n} \neq 0$.

Definition 60 (Residue). Let f have an isolated singular point at $z=0$. The residue of f at z_{0} is defined to be the coefficient c_{-1}, of $\frac{1}{z-z_{0}}$. It is denoted as

$$
\begin{aligned}
c_{-1} & =\operatorname{Res}_{f}\left(z_{0}\right) \\
& =\frac{1}{2 \pi i} \int_{C} f(z) \mathrm{d} z
\end{aligned}
$$

where c_{-1} is a Laurent coefficient of f.
Definition 61. For any $z_{0} \in \mathbb{C}$ such that $f\left(z_{0}\right)=0$, the order of the zero is defined to be $n \in \mathbb{N}$, such that

$$
f^{(n)} \neq 0
$$

and

$$
f^{(k)}\left(z_{0}\right)=0
$$

where $k=0, \ldots, n-1$.
A pole of order 1 is said to be a single pole.

Exercise 27.

Find the order of the zero at $z=0$ for

1. $f(z)=z \sin z$
2. $f(z)=1-\cos z$

Solution 27.

1.

$$
\begin{aligned}
f(z) & =z \sin z \\
\therefore f(0) & =0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f^{\prime}(z) & =\sin z+z \cos z \\
\therefore f^{\prime}(0) & =0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f^{\prime \prime}(z) & =\cos z+\cos z-z \sin z \\
\therefore f^{\prime \prime}(0) & =2 \\
& \neq 0
\end{aligned}
$$

Therefore, the order of the zero at $z=0$ is 2 .
2.

$$
\begin{aligned}
f(z) & =1-\cos z \\
\therefore f(0) & =0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f^{\prime}(z) & =\sin z \\
\therefore f^{\prime}(0) & =0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f^{\prime \prime}(z) & =\cos z \\
\therefore f^{\prime \prime}(0) & =1
\end{aligned}
$$

Therefore, the order of the zero at $z=0$ is 2 .

Exercise 28.

Let $f(z)$ and $g(z)$ be functions analytic at z_{0}. Let z_{0} be a zero of order m for $f(z)$, and n for $g(z)$. Then, prove that z_{0} is a zero of order $m+n$ for the function $f(z) g(z)$.

Solution 28.

As z_{0} is a zero of order m with respect to $f(z)$,

$$
f(z)=\left(z-z_{0}\right)^{m} h_{1}(z)
$$

where $h_{1}(z)$ is an analytic function, such that

$$
h_{1}\left(z_{0}\right) \neq 0
$$

As z_{0} is a zero of order n with respect to $g(z)$,

$$
g(z)=\left(z-z_{0}\right)^{n} h_{2}(z)
$$

where $h_{2}(z)$ is an analytic function, such that

$$
h_{2}\left(z_{0}\right) \neq 0
$$

Therefore,

$$
\begin{aligned}
f(z) g(z) & =\left(z-z_{0}\right)^{m} h_{1}(z)\left(z-z_{0}\right)^{n} h_{2}(z) \\
& =\left(z-z_{0}\right)^{m+n} h_{1}(z) h_{2}(z)
\end{aligned}
$$

Therefore, z_{0} is a zero of order $m+n$ for the function $f(z) g(z)$.

