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Part 1
Complex Numbers

Definition 1. A number of the form
z=x+1y
where

i=+v—1
reR
yelR

is called a complex number.

Definition 2 (Real part of a complex number). If
z2=x+1y

then x is called the real part of z, and is denoted as
r=R(z)

Definition 3 (Imaginary part of a complex number). If
z=x+1y

then y is called the imaginary part of z, and is denoted as
r=S(z)

Definition 4 (Complex conjugate). If
z=x+1y

then
Z=x—1

is called the complex conjugate of z.

Theorem 1.

2Z = |2|?



Proof.

z=x+1y
SZ=x =1y
Therefore,

2z = (z +1iy)(x — iy)
= 2% —izy +ivy +y°
:$2+y2

= |2|”

Definition 5 (Polar representation). If

x =rcost

y =rsinf
then (r, ) is called the polar representation of (x,y).
Theorem 2 (Euler’s Formula).

rcosf + irsin @ = re'

Definition 6 (Absolute value or Norm).

2| = |z +iy|

= /12 + yQ

is called the absolute value, or the norm of z.
Theorem 3.

2] < [R(2)| + 9(2)] < V22|
Proof.

vt +y? < x|+ Jyl < 207 4 292

— 2+’ <2+ y’ +2zlly| <227+ 2y

— 2* +9y* —2z||ly] >0

2
— (lzl=1lyh)" =0



Definition 7 (Argument). Let z be a complex number.
Then, 6, such that 6 € (—m, 7|, and

z=(r0)

is called the argument of z.
It is denoted as

0 = Arg(z)
If 0 ¢ (—m, |, but
z=(r,0)
then
0 = arg(2)
Theorem 4.
2" = \z|”emArg(z)

Proof.

5= |z|6iArg(z)

o2 = (|z]elArE@)”
(Izle'*)

= (|2])" (e'Are)”

|z|n6in Arg(x)

Theorem 5. Let
z=re
w = pe'?
The solutions to
w =z
are

0 27k
Y= —+—
n n

where k € {0,...,n— 1}.



Proof.
w= =z
... wn =z

Therefore,

pnemcp — 7"619

Therefore, for k € {0,...,n —

p=7/r
ne =60+ 2k
0 2rk
_+_7

Lo ==
n n

1}7



Part 11
Complex Sequences and Series

Definition 8 (Convergence of complex sequences). Let
Zn = Ty + 1Yy

The sequence {z,} is said to converge to the limit z = = + 4y, if Ve > 0, 3N,
such that VYn > N, |z, — z| < ¢, i.e. there is a circular region of radius &,
centred at z, in which z, lies.

Theorem 6. {z,} — z, i.e. {z,} converges to z if and only if all subsequences
of {zn} converge to z.

Exercise 1.

Find the limit lim Q"i
n—oo <N—1

Solution 1.

n—+1
Zn = ;
2n —1
(n+1)(2n + 1)
 4n2 41
2n>+1 . 3n
= —I— VA
dn? +1 4n? +1
Therefore,
y y 2n2+1+, 3n
im z, = lim 1
n—00 n—odn? +1  4dn? 41
1
2

Exercise 2.
Show that for

(=)™,

Zn = —2+ )
n

Jim. Arg(z,) does not exist, but Jim |2 | exists.



Solution 2.

The magnitude of z, is

_1)

]zn]—‘—2+< ) i

n
-1 2n
D
n
1
= 4+ﬁ
Therefore,

. ) 1
lim |z,| = lim /4 + —
n—o0 n—o0 n

=2

The argument of 2y, is

n

Arg(za,) = Arg <—2 + (_21)2n z>

- Jimo Arg(zon) = lim Arg (—2 + 2n>

=T

The argument of 29,1 is
(_1)2n+1
Arg(zon41) = Arg (‘2 + nZ>
. ) i
- lim Arg(z,) = lim Arg (—2 - 2n>
= -7

Therefore, as the limit of two subsequences are not equal, the limit does not
exist,.



Part III
Topology on the Complex Plane

Definition 9 (Neighbourhood of a complex number). A circular region of
radius € centred at z, is called the € neighbourhood of z.

B(z,e) = D(z,e) ={w e C:|w—z| <&}

&l

Figure 1: Neighbourhood of a complex number

Definition 10 (Interior point). Let A C C.

z € C is called an inner or interior point of A if there exists at least one
e, > 0, such that B(z,e,) C A.

The set of all interior points of A is denoted by Int(A) or A°.

Definition 11 (Exterior point). Let A C C.

z € C is called an outer or exterior point of A if there exists at least one
e, > 0, such that B(z,e,) C (C\ A). The set of all exterior points of A is
denoted by Ext(A).

Definition 12 (Edge point). Let A C C.

z € C is called an edge or boundary point of A if it is neither an inner point
of A, nor an outer point of A. The set of all boundary points of A is denoted
by 0(A).

Definition 13 (Open set). A set A C C is called an open set if A = A°, i.e.
for any point z € A, Je > 0, such that D(z,e) C A.

7



Definition 14 (Closer of a set). The closer of A is defined to be
A=A°U0A

Definition 15 (Closed set). A set A is called a closed set if 0 A C A, i.e.
A=A

Definition 16 (Connected set). A set A is called a connected set of for any
21, zn € A, there exists a polygonal path, i.e. a finite set of connected straight
lines, which connects z; and 2, and belongs to A.

Definition 17 (Domain). An open connected set is called a domain.

Definition 18 (Bound set). A set A is said to be a bound set if it is bound
inside a disk.

Exercise 3.
Describe geometrically and list the properties of the following sets.

1. A={z€C:R(2) >2,3(z) <4}
2. B={2z€C:|z—1+43i] >3}

Solution 3.

1. A is the union of the bottom half plane with respect to the line y = 4, and
the right half plane with respect to the line z = 2.

3




Therefore, as A = A° 4+ 0 A, it is a closer, unbounded set.

2. A is the complement of a disk, centred at 1 — 37, with radius 3.

3

Therefore, it is an open, unbounded set.

Exercise 4.
Prove that the upper half plane U = {z : &(2) > 0} is open.

Solution 4.

Let
z=x+1y

Therefore, as z € U, y > 0.
Therefore, consider the disk D (z, %)

9



Let we D (z, %) Therefore,

y
J— < =
w—2| <3
S (w = 2)| < w — 2]
<Y
=2
Therefore,
—2 <S(w) - 9(x) <
—2 <) —y< ]
I(w) > g >0

Therefore, as S(w) > 0, w € U. Therefore, U is open.

10



Part IV
Complex Functions

1 Complex Functions

Definition 19 (Complex function). Let A C C. f: A — C is called a
complex function, which matches z € A to f(z) € C.

Theorem 7. Any complex function f can be written as

flx+iy) = Rf(x + iy) +iSf(x + iy)
=u(x,y) +iv(z,y)

2 Limits

Definition 20 (Limit of a function). Let f be a complex function defined
on a neighbourhood of zy, but may or may not be defined at zy. Then, the
limit of f(z) at zp is defined as

w=lim 12

if Ve > 0, 30 > 0, such that Vz € Xsuch that |z — 29| <, |f(2) —w| < e.

Exercise 5.

Show that
oz 7
lim — = -
z—1 92 2
Solution 5.

Let |z — 1] < §. Therefore, for € > 0,

? 1z 1
|f<z>‘2 =12 73
= [5|l=—1
1 .
= — |z —1|
2
Therefore, for § < 2¢, ’f(z) —il<e. O

11



Theorem 8. If

f(2) = f(z +iy)
= u(z,y) +iv(z,y)

then

Zh_>n210 f(z) = uo + ivg

if and only if

lim  wu(x,y) =u
(z,y)—(20,y0) (z) 0

lim  wv(z,y) =wv
(z,y)—=(wo,y0) () 0

Theorem 9 (Limit arithmetics). If

Jim £2) =

Jim o(2) = v,

then, as long as all quantities are defined,

lim f(z) £ g(z) = wy £ ws

Z—r 20

lim f(2)g(2) = wyw

Z—20

lim f(z) _

Z—r20 g(z) w2

Exercise 6.
For the function f(z) = z?, prove

lim f(z) = f(z0)

Z—r20
= %2
Solution 6.
2
zZ = (x + iy)
= (z —iy)*
=22 —y? — 2zyi

12



Therefore, let
u(z,y) =2* —y’
U<:U7 y) = —2.’£y
Therefore,

lim  u(x,y) = 20 — yo
(z,y)—(z0,y0)

lim  v(z,y) = =220y

(z,y)—(z0,y0)

Therefore,

zlglgo f(z) = up + ivg

2 2 ,
=To  — Yo — 2ToYo!

= %>
]

Definition 21 (Infinite limit). The limit of f(z) is said to be infinite, i.e.

lim () = o0

if and only if

lim |f(2)] = o0

2520

if and only if
lim 1
270

Definition 22 (Limit at infinity). The limit of a function f(z),

=0

liny /() = v
if
|1|im f(z)=w

Alternatively, Ve > 0, 3R > 0, such that for |z| > R, |f(z) — w| < e.

13



Exercise 7.
Show that

1
lim — =0
Z—00 22

Solution 7.

Let ¢ > 0. Let R > 0, such that % <e.
Therefore, if |z| > R,

1
2

f(z) = 0] =

‘ =

?|

-

z|?
1
SR
<e€
Therefore, lim % = 0.
z—00 #

3 Continuity

Definition 23 (Continuous function). f(z) is said to be continuous at zq if

f(2) is defined at zy, and
lim f(z) = f(z0)

Z—r20

Theorem 10 (Continuity arithmetics). If

lim f(2) = f(2)

Z—r20

lim g(z) = g(z0)

Z—r 20

then, as long as all quantities are defined,

tim £(:) % 9(2) = £(20) £ 9(20)
jLII;IO f(2)g(2) = f(20)9(20)
L) S

=20g(2)  g(=0)

14



4 Differentiability

Definition 24 (Differentiable function). Let f(z) be defined in a neighbour-
hood of zy. f is said to be differentiable at z; if the limit lim f&)=f(z0)

z—20 Z—20
exists.

Theorem 11 (Differentiation arithmetics). If f(z) and g(z) are differentiable,
then, as long as all quantities are defined,

(f(z) £9(2)) = ['(2) £4'(2)
(f(2)9(2)) = f'(2)9(2) + f(2)d(2)
(f(Z)>' _ ['(2)g() = f(2)d'(2)

9(2) 9(z)

5 Cauchy-Riemann Equations

Theorem 12 (Cauchy-Riemann Equations). u(z,y) and v(z,y) are said to
be satisfying Cauchy-Riemann Equations at a point (a,b) € R?, if

uz(a,b) = vy(a,b)
uy(a, b) = —v,(a,b)

Theorem 13. Let

flz+iy) = u(z,y) +iv(z,y)

Then, u and v satisfying the |Cauchy-Riemann FEquations is a necessary
condition for f to be differentiable at (zo,yo).

Theorem 14. If f = u+iv is differentiable at zy = a+1ib, then (u,v) satisfies
the |Cauchy-Riemann Equationd at (a,b).

Definition 25 (Analytic functions). If f = u + dv is differentiable at any
z € W, where W is a neighbourhood of 2, except maybe at 2y, then f is
said to be analytic at zy. If f is analytic at all z € W, then it is said to be
analytic in W.

15



Exercise 8.

Let f: U — C be an analytic function in U, such that f is also analytic in
U. Show that f' =0, ie. f=c.

Solution 8.

As f = u+ v is analytic, by [Cauchy-Riemann Equations| for (z,y) € U,

ug (1, y) = vy(z,y)
uy(:v, y) = _Uz(w7 y)

As f = u — iv is analytic, by [Cauchy-Riemann Equations| for (z,y) € U,

uw(x7y) = —Uy(CL’,y)
uy(z,y) = v.(,y)

Therefore,

Therefore, u and v are constant functions.

6 Harmonic Functions

Definition 26 (Laplacian). Let u be an equation in z and y.
The Laplacian is defined to be

Au = Vu

= Ugy + Uy

Definition 27 (Harmonic function). A real function in two variables, u(z,y),
which is twice differentiable, is called a harmonic function if it satisfies

AU = Ugy + Uy
=0

16



Theorem 15. Ifu and v are twice differentiable, and satisfy|Cauchy-Riemann|
then (u,v) are harmonic.

Theorem 16 (Sufficient condition for differentiability). Let f = u + v be
defined in a neighbourhood of zy = a + ib. Assume that u,, u,, v, v, exist in
this neighbourhood and are continuous at the point (a,b). If (u,v) satisfying
|Cauchy-Riemann Equations at (a,b) then f'(zq) exists.

Definition 28 (Harmonic conjugate). Let u : R* — R be a harmonic function.
Its harmonic conjugate is defined to be v : R?> — R, such that f = u + v is
analytic.

7 Analytic Functions
Definition 29. f : D — C is said to be differentiable on D C C, if f is
differentiable at any z € D.

Definition 30 (Analytic functions). If f = u + iv is differentiable at any
z € W, where W is a neighbourhood of z; except maybe at zy, then f is
said to be analytic at zy. If f is analytic at all z € W, then it is said to be
analytic in W.

Theorem 17. Let D C C be an open set. Then, f is differentiable on D if
and only if f is analytic on D.

Theorem 18. Let D C C be a domain. Assume that f is analytic on D, and
forany z € D, f'(z) =0. Then, f is constant.

Theorem 19. Let u(x,y) : R? — R be a function such that Vu = 0 in a
domain D C R2. Then, u is constant in D.

Exercise 9.
1. Prove that

o(@,y) = ((@ -1+ (y - 2)?)
is harmonic in any domain that does not include the point (1,2).

2. Find u(z,y) such that u + iv is analytic in some domain. Note: v is the
conjugate harmonic of wu.

3. Express u + iv as a function of z.

17



Solution 9.

1.
2(x — 1)
R RSV TEE
; 2(y —2)
YT (a2 (y—2)
Therefore,
2P - 2p) - -1
o (= 1)+ (y —2)2)°
2@ 1P 27 - 2y - 2)
" (= 1)+ (y —2)2)°

2. For u + v to be analytic, by [Cauchy-Riemann Equations

Uy = Uy
Uy = —Ug
Therefore,
Uy = Uy

Therefore,

u:/ 2(y — 2) e
(z—1)2+ (y — 2)?
:2(y—2)/ 1 =

-2 2 z—1
(y ) 14+ (y s
—1 - 1
= 2tan e s q(y)
Therefore,
Uy = —Vy
2(x —1) B 2 r—1 ,
‘@—»P+«y—m2‘1+gg§(‘y—2>+g@>



Therefore,

g'(y) =0
gly) =c
Therefore,
u=2tan"! <$ — 1) +c
y—2

u+iv =tan"! (5_;) +171n (@ — 1%+ (y — 2)2)

= 2iLog (—i(x — 1)+ (y — 2))
= 2i Log (—iz — 2 +1)

Exercise 10.
Prove that there is no f = u + v analytic in the unit disk, such that

zu(x,y) = yo(z,y) + 2013

Hint: Use the function zf(z).

Solution 10.
If possible, let there exist f(z) such that

zu(x,y) = yo(z,y) + 2013
Therefore, as zf(z) is analytic,

2f(2) = (z +iy)(u + )
= zu — yv +i(yu + zv)
= 2013 + i(yu + zv)

By the polar form of [Cauchy-Riemann Equations|, yu + zv is constant.
Therefore, zf(z) is constant.

Therefore, this contradicts the assumption.

Therefore, such a f does not exist.

19



8 Elementary Functions

8.1 Exponential Functions

Theorem 20.
’€z| _ e?R(z)
Proof.
|€Z| _ ’e%(z) ’eg(z)
= ’e%(z) ‘cos (3(2)) + isin (%(z))’
— N

Theorem 22. Vn € Z,
(ez)n — enz

Theorem 23. The function e* is onto with respect to C\ {0}.

8.2 Trigonometric Functions

Definition 31 (Trigonometric functions of complex numbers). Trigonometric
functions of complex numbers are defined as

cos(z) = e te 4_26—%

sin(z) = eiz;ieiz
cosh(z) = 62_1_26—2
sinh(z) = 62_26_z

20



8.3 Logarithmic Functions

Definition 32 (Power set). The set of all subsets of a set is called the power
set of the set. The power set of a set A is denoted as P(A).

Definition 33 (Multiple valued function). A set which maps a set A to its 2 multiple valued
function gets over C

power set P(A) is called a multiple valued set. gets a complex number
as input and returns a

Definition 34 (Natural logarithmic function). The natural logarithmic func- set Oé complext .
tion over the complex plane is defined to be pimmbers as output

logw ={z:¢e* =w}
Theorem 24.
logw = In |w| 4 i arg(w)
Proof. Let
e =w
= |w|e®
where
= arg(w)
Therefore,
REHISE) — gy eif

- 65]?(2)613(2) — |w|€i0

Therefore,
P2 = |w

S(z) =0 + 27k

where k € Z.
Therefore,
In e®®) = In |w|
“R(z) = In |w|
Therefore,

logw = {z:¢e* =w}

= {In|w| + iy : y = arg(w)}

21



For any w € log z,

e¥ = el i (Arg 2 + 27k)
_ 6ln |z|6i(Arg z+27k)

]

Definition 35 (Branch of log z). A branch of log z is a continuous function
L(z) defined on a U, a connected open subset of C such that L(z) is a
logarithm of z for each z € U.

Definition 36 (Logz). Log z is defined to be
Logz =1In|z| +iArgz

As Arg z is not continuous on the negative real axis, in order to make

it continuous, the line Arg z = 7 is excluded. Hence, log 2z is continuous on
U=C\{0}UR™, and is a branch of log z.
Similarly, any other ray can be excluded in order to get a branch of log z.

Definition 37. For any o € R, Log, z is defined to be
Log,z =In|z| +iArg, =

where Arg, z = 0, such that 0 € (o, + 27| and 0 = arg 2.
Any choice of Arg, z defines a branch of logarithm.

Definition 38 (Branch cut). The boundary of the domain of a branch is
called a branch cut.

Definition 39 (Principal value). The value returned by Logz = Log__ z is
called the principal value.

Theorem 25. Log z is analytic on C\ {0} UR™.

Exercise 11.
Find the principal value of Vi.

Solution 11.

1 1logi
pv (z?) = ez logi

22



8.4 Power

Definition 40 (Power function). Let z, ¢ € C, such that z # 0. The power
multifunction as

~C = eclogz
The branch of the power multifunction for ¢ € C is defined as
LW — W log 2z

Theorem 26.

Log, z — Loggz =1 (ArgCY z — Argg z)

23



Part V
Complex Integrals

1 Complex Integrals

Definition 41 (Integral of complex functions). Let f : [a,b] — C. Let

f(t) = u(t) +iv(t)
Therefore, the integrals of u(t) and v(t) are defined as

b

/u(t) dt = lim Xn:u(ti)Axi

At—0 i1
a

where T is a splitting of [a, b], such that
a=t1<---<t,=b

and

b

/v(t) dt = Al&r_n)(]i;v(ti)Axi

a

where T is a splitting of [a, b], such that
a=t <---<t,=b

These integrals are defined when the limit exists without depending on 7.
When they exist, the integral of f(¢) is defined as

b b

/bf(t)dt:/u(t)dtJri/v(t)dt

a a

Theorem 27. All properties of real integrals are also wvalid for complex
integrals.

Theorem 28.
b b
[ wa < [1sar

24



2 Curves in C

Definition 42. A continuous function « : [a,b] — C is called a curve.

Definition 43 (Parametric representation of a curve). The curve (t) can
be represented as

V(1) = 2(t) +iy(t)

where t is a parameter.

Definition 44 (Differentiability). v is said to be differentiable if x and y are
both differentiable.

Theorem 29 (Parametric representation of a straight line). Let z1, 25 € C.
The straight line passing through z, and zs can represented parametrically as

’}/(t) =21+ t(Zg — Zl)
The slope of this line is zy — 2o.

Theorem 30 (Parametric representation of a circle). A circle with radius r,
centred at the origin, can be represented parametrically as

(t) = re"
with 0 <t < 2.
Exercise 12.

Parametrize the curve {z =z +y: % +y? = 1} starting from 2, and going
anti-clockwise twice.

Solution 12.
The curve is an ellipse centred at (0,0), with a = 2, and b = 1.

v(t) =2cost + isint
Therefore, as the curve goes anti-clockwise twice, ¢ € [0, 47].

Definition 45 (Simple curve). A curve 7 is said to be simple if it is non
self-intersecting, i.e. it is one-to-one with respect to the parameter ¢, except
maybe at the extreme values of ¢.

25



Definition 46 (Closed curve). A curve v : [a,b] — C is said to be closed, if
and only if

7(a) =~(b)
Definition 47 (Jordan curve). A closed simple curve is called a Jordan curve.
Theorem 31. A Jordan curve enclosed a region inside it.

Definition 48 (Piecewise differentiability). v is said to be piecewise differ-
entiable if there exists a splitting

a=t1<---<t,=5b

such that v is differentiable on each segment [t;,¢;.1].

3 Complex Line Integrals

Definition 49 (Complex line integral). Let 7 : [a,b] — C be a curve, and
let f: D — C, where D C C, and v ([a,b]) C D. Then, the integral

JECLE / [ (0) 40 at

If v is piecewise differentiable, then

Li+1

/ f(z)dz = z F (1)) 4() e

i

Definition 50 (Oriented contour). An oriented contour for a > 0, 2y € C,
is defined to be

Coz ={weC:lw—z|=a}
oriented anti-clockwise, starting at zo + a.

Theorem 32. Va > 0, z € C,

d
55 c —or
zZ— 20

Ca,zo

26



Proof. Let
Y(t) = 2 + ae®

with 0 <t < 27.

Therefore,
F(t) = aie™
Therefore,
d 7 1
515 SN / — ouedt
zZ— 2 Zo + ae — z
Cazg 0
2w
= [ idt
0
= 271

Theorem 33. Line integrals are linear for all o, 5 € C, i.e.

affdziﬁ/gdz:fafiﬁgdz

Theorem 34. Let v, and 7, be two curves such that the start point of vy is
the end point of v1. Then, the curves can be composited to a curve v, + o,

and
/f(z)dz+/f(z)dz: / () dz

Y1+72

Theorem 35. Let v : [a,b] — C be a curve. Then, 7 : [—b,—a] — C has
orientation opposite to that of v, and

3(t) =~ (-1)
3(t) = =4(t)

Then,
/f(z)dz:—/f(z)dz
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Theorem 36 (Length of a curve). The length of the curve v : [a,b] — C is
given by

b

length(y) = / ()] dt

a

Exercise 13.
Find the length of the astroid given by

Y(t) = cos®t + isin®t
where 7 : [0, 27r] — C.

Solution 13.

cos®t + isin® ¢

— —3sintcos®t + 3icostsin?t

v(t)
~A(t)
LG \/9 (cos4tsin2 t + sin* t cos? t)

= 3|sint cost|\/cos? t + sin® ¢

= 3|sint cost|

Therefore,
b
length(7) = [ ()]
’ 2

= 3/|Sintcost|dt
0

12 [ sintcostdi

\w\:

o\
R o

6 | sin2tdt

I
o
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Theorem 37. Let f(z) be a function defined in a domain D including a
curve . Let M > 0, such that all values of f have |f(z)| < M, then

/f(z) dz| < M length(v)

Definition 51 (Primitive function). Let D C C. F\(z) is said to be the
primitive function of f(z) in D, if Vz € D,

Theorem 38 (Fundamental Theorem of Calculus). Let v : [a,b] — C be
piecewise continuous, and let f be continuous on v, i.e. f o~y is continuous.
Let there exist an analytic function F, defined on a domain including v, such
that Vz € 7,

F(z) = f(2)
Then,

/&@Mz:Fww»—me»

Theorem 39 (Equivalent conditions for existence of a primitive function).
Let D be a domain. Let f be continuous on D. Then, the following conditions
are equivalent.

1. f has a primitive function F in D.

2. For any closed path ~y such that v C D,
/f(z) dz=0
5

3. For any curve v such that v C D, the integral /f(z) dz depends only

S
on the edges of 7.
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Exercise 14.
Find /COS zdz where v goes from 7 to 7.
gl

Solution 14.

sin z is the primitive of cos z over C.
Therefore,

/coszdz =sini —sinw

Exercise 15.
Calculate the integral of

f(z) = (z—20)"
Vn € Z, where v = Cg 4.

Solution 15.
For 0 <t < 2m,

v(t) = 2 + Re"
- (t) = Rie™

Therefore,

27
/(z — 2p)"dz = / (zo + Re' — zo>n (Rie“) dt
0

Ny
2

_ iRTH_l /ei(n+1)t dt
0
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Therefore,

N 21 o on=—1
/<Z —2)"dz = Rl ei(n+1)t‘27r L on#£—1

o n+1 0
) 2m 5 n=-1
o ;o on#—1

Theorem 40.

b

[ PassQay= [ (PO i) + Q) i) d

5 a

where t € [a,b].

Theorem 41. If
f=u+iv

then,

/f(z)dz:/udx—vdy+i/vdx+udy
Y

v Y

Theorem 42 (Green’s Theorem). Let
F=Pdr+Qdy

such that P,, P,, Qz, Q, are continuous in the domain D,

/de+Qdy:Z/(Qm—Py)dxdy

oD

Theorem 43 (Cauchy-Goursat Theorem). Let D be a domain, such that 0D
is obtained by a finite number of curves, ie. 0D is piecewise differentiable. If
f: D — C is analytic, then

8Zf(z)dz =0
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4 Cauchy Integral Formula

Theorem 44 (Cauchy Integral Formula/Mean Value Theorem). Let C' be
a simple closed curve in positive orientation with respect to a domain, D¢,
closed by a curve C. If f is analytic in D¢, then

Fz0) = o RACARS

2w | z— 2z
C

Theorem 45 (Cauchy Differentiation Formula). Let C' be a simple closed
curve in positive orientation with respect to a domain, D¢, closed by a curve
C. If f is analytic in D¢, then

FO) () = n! /f(z)dz

T2 ) (2 — z)n !

Theorem 46. If f is analytic in D, then f is infinitely differentiable.

Proof. Let zy € D. Therefore, 3¢ > 0, such that D(zg, ) € D. Therefore, by
|Cauchy Differentiation Formula),

. o
) = g [ A
Cio e

and particularly, exists. O

Theorem 47 (Morera’s Theorem). Let D be a domain, and let f: D — C
be continuous. If [ f(z)dz =0, for any closed curve v, such thaty € D, then

5
f is analytic in D

Proof. By |[Equivalent conditions for existence of a primitive function) as

/f(z)dz =0

there exists a primitive function F for f, i.e.,

F'(z) = f(2)

for all z € D.

Therefore, as F' is differentiable in D, and as D is a domain, and hence is
open, F'is analytic.

Therefore, as F' is analytic in D, F' is infinitely differentiable, with analytic
derivatives. 0
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Theorem 48 (Cauchy Derivative Estimate). Let f be analytic in D,,,. Let
0D, be denoted as Cl, .

Let
Mg = X £ (2)]
Then, Vn € N,
'M
(n) n! R

Exercise 16.

Findf L dt.

2—cost

Solution 16.

Let
2 =¢lt
codz=dzdt
o 1 dz
——dt = _—
/2—cost /2—”512'2
-7 0Do,1
_/ 2dz
B (4—z—2"1)iz
6D071
_/ 2dz
B —i (22 —4z+1)
8Do 1
_/ 2dz
it z'(z—2+\/§) (z—z—\/§)
/ dz
=20
501 <2—2—|—\/§> <2—2—\/§)
Let
21:2+\/§

2=2-3
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Therefore, as z; € Dy, by [Cauchy Integral Formula/Mean Value Theorem]

™

1 , dz
/Q—COStdt:2Z / (z—2+\/§) (z—?—\/§>

-7 0Do 1

= 2i (2m’ (,2—21—\/§>> Lz—ﬁ

:—47r<2_\/§i2_\/§>

_27T

R

Therefore, the integral is real, which is expected, as the function is real.

Exercise 17.

Calculate [ e da

1,3

Solution 17.

coS 2 271
m dZ = 7 COSZ|Z:1

Ci,3

5 Liouville’s Theorem

Theorem 49 (Liouville’s Theorem). If f is entire and bounded, then f is
constant.

Exercise 18.
If f is entire, such that Vz € C, R (f(z)) < M, show that it is constant.
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Solution 18.
As RU@) < M,

Therefore, e%(f (=) is an entire and bounded function. Therefore, by
, /) is constant.

Let

JE —

Therefore,
f(z) =1In|c| + 27ki

Therefore, even though k& may be dependent on z, as f(z) is continuous, k
must be continuous, to ensure that there is no discontinuity in f(z). Therefore,
f(2) is constant.

Exercise 19.
Let f be entire and periodic, with two periods, 1 and i, i.e. Vz € C,

fz) = f(z+1)
= f(z+1)
Then, f is constant.

Solution 19.
Let

D={z:0<R(2) <1,0<¥(2) <1}

be a compact set.

f is continuous over D, and hence, |f] is also continuous over D.
Therefore, by Weierstrass theorem, f is bounded in D.

As the function is periodic with periods 1 and i,

fla+iy)=f(e—|z]+il—[y)

Therefore, f is bounded in C, and by [Liouville’s Theoreml, it is constant.
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6 Fundamental Theorem of Algebra

Theorem 50. 3R > 0, such that, V|z| > R,

p(2)] = D axz"
k=0
 laallzP"
- 2
Theorem 51 (Fundamental Theorem of Algebra). Any polynomial p(z), of
degree n > 1, over C has at least one root in C, i.e. Izy, such that

P(ZO) =0

Proof. 1f possible, Vz € C, let
p(z) #0

As p(z) is a polynomial, it is an entire function.
Therefore,

is also entire.

Therefore, 3R > 0, such that V|z| > R,

Let
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Therefore, V|z| > R,
[f(2)] < ma

Let the closed disk D be
D={:]: <R}

Therefore, f is continuous in D. Hence, |f] is also continuous in D.
By Weierstrass theorem, |f| is bounded in D.
Therefore, let

|f(2)] < my
Therefore, Vz € C,

|f(2)|] < max{mq, ms}

Therefore, as f(z) is entire and bounded, by |[Liouville’s Theorem) it is constant.
Therefore,

is constant. Hence, the degree of p(z) is 0.
This contradicts the assumption the condition of n > 1. Hence, p(z) has at
least one root in C. O

Theorem 52. Any polynomial of degree n > 1 has exactly n roots, not
necessarily distinct. Particularly,

o) =an [[(= = =)

where each z is a oot of p(z).

7 Maximum Modulus Principle

Theorem 53. Let f be an analytic function in a domain D, andVz € D,, . C
D, let

[f(2)] < | ()]

Then, f is constant on D, ., i.e., Vz € D, .,
f(z) = f(20)
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Proof. For p < e, let
Cp={z: |z = 20 = )

Therefore, f is analytic inside and on C,,.
Therefore, by |[Cauchy Integral Formula/Mean Value Theorem|

O[SE

2w ) z— 2
Cp

_ | 7f (0 + pe) ipelt dt

21i ) 2o+ pett — zg

|f(Zo)| =

2w

= 217r/f (Zo + peit) dt
0
2

dt

1 it
50 < 160 e

0
21

1

o [ ol
0

IN

Also,
| f(z0)| > ’f (Zo + Peit)
2m
| f(z0)| = ;ﬂ/‘f (ZO +peit) dt
0
Therefore,
2
| f(20)] = ;ﬂ/‘f (20 + pe™)| dt
. 2 | 0271'
:%!mwwz%!V@+wﬂ&

2

0= 217T/<|f(zo){—‘f(20+pe“>

)ar
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Therefore,
| f(z0)] — ’f (Zo - Peit)

Therefore, as the integral this non-negative expression is zero, the expression
must be zero. Hence,

|f(20)] = ‘f (Zo + Peit)
Similarly, by [Cauchy-Riemann Equations| if Vz € D, .,

|f(z0)] = | f(2)]
then

f(z0) = f(2)

>0

]

Theorem 54 (Maximum Modulus Principle). Let f be analytic in D and
continuous on 0D, and non-constant, then f has no local maximum in D,
and the global mazimum in D, i.e. the closer of D, must be on OD.

Exercise 20.
Find the maximum of

flz) = ¢
in {z:]z| <3}.

Solution 20.

f(#) is entire and hence analytic in Dy 3. Also, it is non-constant. Hence, by
IMaximum Modulus Principle} the global maximum must be on {z : |z] < 3}.
Let

y(t) = 3e™

where 0 <t < 2.
Therefore, Vz € 0D,

‘ 63€it

le*] =

3(cost+isint)

:‘e

3cost

‘ 631’ sint

= ‘6
— €3cost
<eé’

Therefore, z = 3 is the global maximum.
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Theorem 55 (Minimum Modulus Principle). If f is analytic in D, continuous
on 0D such thatVz € D, f(z) # 0, then show that f has a global minimum
in 0D.

Proof. As f(z) # 0, let

1
9(2) = ==
RANE
Therefore, by [Maximum Modulus Principle, ¢g(z) has a global maximum in
0D, which corresponds to the global minimum of f(z). O

Exercise 21.

Let D be a bounded domain and f be a non-constant, analytic function in
D, the closer of D, such that Vz € 0D,

f(2)] =1
Prove that dzy € D, such that
f(z0) =0

Solution 21.
By Maximum Modulus Principle| Vz € D,

[f(2) <1
If possible, Vz € D, let
fz) #0
Therefore, by [Minimum Modulus Principle,
[f(2) =1
Therefore,
f)=1

Therefore, by [Cauchy-Riemann Equations, f is constant.
This contradicts that f is non-constant. Therefore, 9z € D, such that

f(20) =0
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Exercise 22.
Let f be analytic on

D={z:|z| <1}

a and on 0D.
Assuming Vz € D,

7@ < |f ()

show that f is constant.

Solution 22.
Let 0 <r < 1. Let

D, ={z:1]z| <r}
Therefore,

D,2 = {z Dz < r2}
Therefore, as 0 < r < 1,

D,. C D,

As 7)< |7 ()]

by [Maximum Modulus Principle,

max |f(2)] < rgﬁg{f(Z)f
As D, C D,,

max |f(2)] < max|f(2)|

T

Therefore,
max|f(2)] = max|f(2)]

Therefore, the maximum |f(z)| on D, is at a point in the interior of D,.
Therefore, by [Maximum Modulus Principle] f is constant on D,.. Therefore,
as 0 <r <1, f is constant on D.
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Part VI
Complex Sequences and Series

1 Complex Series

Definition 52 (Convergence of complex series). The complex series Y- z,, is
said to converge to L, if and only if

N
v, S = fim 2 =
=L
Theorem 56. If

then,
00 00 00
n=0 n=0 n=0

Definition 53 (Absolute convergence of complex series). The series Y z, is
n=1
said to converge absolutely, if

o0
Z |2n| < 00
n=1

2 Series of Complex Functions

Theorem 57. If a series converges converges absolutely, then it also con-
verges.

Definition 54 (Pointwise convergence of series of functions). Let f,, : Q@ — C,
o0

where 2 C C. The series Y. f, is said to converge pointwise to f € €, if
n=0

Vz €,

i_ojo ful2) = £(2)
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Definition 55 (Uniform convergence of series of functions). Let f, : Q — C,

where €2 C C. The series ioj fn is said to converge uniformly to f € €1, if
n=0

lim sup S (z) — ()] = 0

N—0oo Q)

where

Sn(z) = Zozn

2.1 Criteria for Uniform Convergence of Series of Func-
tions

Theorem 58 (Weierstrass M-test). Let f, : Q@ — C, where Q C C. Let
M, > 0 be a sequence which converges, such that, Vz € €2,

|[fa(2)] < M,

Then fn(z) converges uniformly in €.

3 Power Series

Definition 56 (Power series). A series of the form io: an(z — 20)™ is called a

n
power series. All a,, are called the coefficients, and zy is called the centre.

Theorem 59. A power series
f(z) =2 an(z = 2)"
n=0
converges in a disk {z : |z — 2| < R} and diverges in {z : |z — 29| > R}, where

. 1
7 = dm sl

Also, the series converges uniformly in the set {z : |z — 2| < R'}, VR, such

that 0 < R’ < R.
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3.1 Integration of Power Series

Theorem 60. Let

[e.o]

Z Z—ZO

be convergent in D, g.

Let T" be a curve in D, g.

Let g(z) : T' — C be continuous in T
Then,

[ srrra: = i an | 9(2)(z = z0)"

r

Theorem 61. Let

[e.o]

f(z) =" an(z — z)"

n=0

be convergent in D, g.
Let I' be a curve in D, g.

F/f(z zgan/z_zo dz

T

I
o

then f is analytic in D,, g.

3.2 Differentiation of Power Series

Theorem 62. Let

[e.o]

Z Z—Zo

Then, in D, g,

oo
= Z na,(z — ZO)"_l
n=1

where

1_1. 1
L= i ol
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Theorem 63. All functions of the form -1, which converge uniformly, are

nz’
analytic.

Definition 57 (Riemann zeta function). The Riemann zeta function is
defined to be

(=3

z
n=1 n

Exercise 23.

Show that ((z), the Riemann zeta function is analytic in {z : ®(z) > 1}.

Solution 23.

—_

Let € > 0.
Let

1

n1+€

M, =

Therefore, for z € {z : R(2) > 1+ ¢}, as {Mn = #} converges, and as

1 1
— <
n? — n1+5

by the [Weierstrass M-test] ((z) converges in {z : %(z) > 1 + }. As this holds
for all e > 0, {(z) is also analytic in {z : R(z) > 1}.
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4 Taylor Series for Complex Functions

Theorem 64 (Taylor Series for Complex Functions). Let f be analytic in
D., r. Then,

flz) = i an(z — z)"

n=0
where
Uy = J (=)
n!
1
BRI
27 (z — zo)"*!
oD
where R’ < R.

Theorem 65 (First Uniqueness Theorem). Let f and g be analytic functions
in a domain D, such that for zo € D, Vn € N,

™ (z0) = g™ ()

Then,

mn D.

Theorem 66 (Second Uniqueness Theorem). Let f and g be analytic func-
tions in a domain D. Let there exist {z,}2°, C D which converges to zy € D,
such that Vn,

fzn) = g(2n)
Then,

in D.
Proof. As f and g are analytic in D, they are continuous in D. Therefore,

lim f(zn) = f(z())

n—o0

lim g(zn) = 9(20)

n—oo
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As Vn,

f(zn) = g(zn)
Let

f(z0) = ao

9(z0) = ao
Therefore, let

f(zn) = f(20)

I = f
i f'(20)
= al
Therefore,
lim g(zn) B 9(20) _ f/(ZO)
n—oo Zn —_ ZO

—= al
Similarly, let

f(zn) —ao — a1(zn — 20)

f'(20) =

(2n — 20)?
g a2
I . g(/zn) — Qg — al(zn - ZO)
9" (20) = (2 — 20)?
oy a2
Therefore,
N k
f(zn) — = ar(zn — 20)
(Zn _ Zo)N+1
f(NH)(Zo)
(N +1)!
= an41
N k
9(zn) — = ar(zn — 20)
(Zn _ ZO)N—H
_ g(NH)(Zo)
(N +1)!
= an41

47



Therefore the Taylor series coefficients of f and g are equal. Therefore,
f=y
in D.

Exercise 24.
Let f(z) be analytic in Dy, such that Vn € N > 2,

Find f(z).

Solution 24.
VneN> 2

Therefore,

1
n

The limit of the sequence is

1
lim — =0
n~>oon

Therefore, the sequences converges to 0.
Let

g(z) =z
)

Therefore, by the [Second Uniqueness Theorem),
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5 Laurent Series

Theorem 67 (Laurent Theorem). Let f be analytic in an annulus r <
|z — 20| < R. Let C be a simple closed curve around zy, with positive
orientation, inside the annulus. Then, f has a unique Laurent series around
20, which converges to f in this ring, i.e.,

where

and

r = lim sup {/|c,|
1 i
o = Jim sup {f[c|

Exercise 25.

1

&= he 9

Find the Laurent series of f(z) around z = 0.
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Solution 25.

f is analytic everywhere except at z =1 and z = 2.
For |z| < 1, converting to partial fractions,

1 1 n -1

(2—1)(2—2) z—1 z-2
B 1 1 1
o 1-z 21-%
__§Z+1 (3
B 2= \2
:_ZOZ +Z2n+1
=)

= on+1

1 1 1 1 1

1 Z

(z=1(z—2) 2z1—- 21—5
100 1 >

1 _1,
(z—=1)(z—1) 2z—-1 2z-2
1111
—zl—% zl—%
rE1 o1& (2)
—Zn—OZn Zn:O z
00 oo2n71
"Ly A e
e 1
=> (1-21) =
n=1 2"



6 Isolated Singularity Points

Definition 58 (Isolated singular point). A point zj is said to be an isolated
singular point of f(z) is f is analytic in a perforated neighbourhood of zy, i.e.
if 3¢ > 0 such that f is analytic in D, . \ {20}

Exercise 26.

Find all isolated singular points of

L f(2) =2
2. f(z) = =
3. f(z) = Logz

Solution 26.

Therefore, Ve > 0 around z = 0, f is analytic. Therefore, z = 0 is an
isolated singular point for f(z).

Therefore, Ve > 0 around z = 0, f is analytic. Therefore, z = 0 is an
isolated singular point for f(z).

f(z) = Log z

As Log z is not defined on a ray in C, f is not analytic on Dy .. Therefore,
z = 0 is not an isolated singular point.
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6.1 Characterization of Isolated Singular Points

Definition 59 (Characterization of isolated singular points). Let 2z be an
isolated singular point of f. Therefore, by |Laurent Theorem| f has a Laurent
series around zy with » = 0, which converges in the ring 0 < |z — 29| < R.

1. zp is said to be a removable isolated singular point, if Vn < 0, ¢, = 0.
2. 2y is said to be a pole on order N, if Vn < —N, ¢, =0, and C_y # 0.

3. z is said to be a principle removable isolated singular point, if Vn < 0,

cn # 0.

Definition 60 (Residue). Let f have an isolated singular point at z = 0.
The residue of f at z is defined to be the coefficient c¢_q,
It is denoted as

c_1 = Resf(z)

“am [ 10

where c_; is a Laurent coefficient of f.

Definition 61. For any z; € C such that f(z9) = 0, the order of the zero is
defined to be n € N, such that

F™#0
and
¥ (z) =0

where £k =0,...,n — 1.
A pole of order 1 is said to be a single pole.

Exercise 27.
Find the order of the zero at z = 0 for

1. f(z) =zsinz
2. f(z)=1—cosz
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Solution 27.

1.
f(z) = zsinz
- f(0) =
Therefore,
f'(z) =sinz+ zcos z
2 F(0)=0
Therefore,

f"(z) = cosz 4 cosz — zsin z

S f(0) =2
#0
Therefore, the order of the zero at z = 0 is 2.
2.
f(z)=1—cosz
- f0) =
Therefore,
f(z) =sinz
f(0)=0
Therefore,

Therefore, the order of the zero at z = 0 is 2.

Exercise 28.

Let f(z) and g(z) be functions analytic at zy. Let zg be a zero of order m
for f(z), and n for g(z). Then, prove that zy is a zero of order m + n for the
function f(z)g(2).
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Solution 28.
As zj is a zero of order m with respect to f(z),

f(2) = (2 = 20)"ha(2)

where hq(z) is an analytic function, such that

hy(z0) # 0

As zj is a zero of order n with respect to g(z),

9(2) = (2 = 20)"ha(2)

where hy(2) is an analytic function, such that

ha(zo) # 0

Therefore,

f(2)g(2) = (2 — 20)"h1(2) (2 — 20)"ha(2)
= (2= 20)"""h1(2)ha(2)

Therefore, z is a zero of order m + n for the function f(2)g(z).
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