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Part I

Complex Numbers
Definition 1. A number of the form

z = x+ iy

where

i =
√
−1

x ∈ R
y ∈ R

is called a complex number.

Definition 2 (Real part of a complex number). If

z = x+ iy

then x is called the real part of z, and is denoted as

x = <(z)

Definition 3 (Imaginary part of a complex number). If

z = x+ iy

then y is called the imaginary part of z, and is denoted as

x = =(z)

Definition 4 (Complex conjugate). If

z = x+ iy

then

z = x− iy

is called the complex conjugate of z.

Theorem 1.

zz = |z|2
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Proof.

z = x+ iy

∴ z = x− iy

Therefore,

zz = (x+ iy)(x− iy)
= x2 − ixy + ixy + y2

= x2 + y2

= |z|2

Definition 5 (Polar representation). If

x = r cos θ
y = r sin θ

then (r, θ) is called the polar representation of (x, y).

Theorem 2 (Euler’s Formula).

rcosθ + ir sin θ = reiθ

Definition 6 (Absolute value or Norm).

|z| = |x+ iy|

=
√
x2 + y2

is called the absolute value, or the norm of z.

Theorem 3.

|z| ≤
∣∣<(z)

∣∣+ ∣∣=(z)
∣∣ ≤ √2|z|

Proof.√
x2 + y2 ≤ |x|+ |y| ≤

√
2x2 + 2y2

⇐⇒ x2 + y2 ≤ x2 + y2 + 2|x||y| ≤ 2x2 + 2y2

⇐⇒ x2 + y2 − 2|x||y| ≥ 0
⇐⇒

(
|x| − |y|

)2 ≥ 0
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Definition 7 (Argument). Let z be a complex number.
Then, θ, such that θ ∈ (−π, π], and

z = (r, θ)

is called the argument of z.
It is denoted as

θ = Arg(z)

If θ /∈ (−π, π], but

z = (r, θ)

then

θ = arg(z)

Theorem 4.

zn = |z|neinArg(z)

Proof.

z = |z|eiArg(z)

∴ zn =
(
|z|eiArg(z)

)n
=
(
|z|
)n (eiArg(z)

)n
= |z|neinArg(x)

Theorem 5. Let

z = reiθ

w = ρeiϕ

The solutions to

w = n
√
z

are

ϕk = θ

n
+ 2πk

n

where k ∈ {0, . . . , n− 1}.
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Proof.

w = n
√
z

∴ wn = z

Therefore,

ρneinϕ = reiθ

Therefore, for k ∈ {0, . . . , n− 1},

ρ = n
√
r

nϕ = θ + 2πk

∴ ϕ = θ

n
+ 2πk

n
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Part II

Complex Sequences and Series
Definition 8 (Convergence of complex sequences). Let

zn = xn + iyn

The sequence {zn} is said to converge to the limit z = x+ iy, if ∀ε > 0, ∃N ,
such that ∀n > N , |zn − z| < ε, i.e. there is a circular region of radius ε,
centred at z, in which zn lies.

Theorem 6. {zn} → z, i.e. {zn} converges to z if and only if all subsequences
of {zn} converge to z.

Exercise 1.
Find the limit lim

n→∞
n+i
2n−i .

Solution 1.

zn = n+ i

2n− i

= (n+ i)(2n+ i)
4n2 + 1

= 2n2 + 1
4n2 + 1 + i

3n
4n2 + 1

Therefore,

lim
n→∞

zn = lim
n→∞

2n2 + 1
4n2 + 1 + i

3n
4n2 + 1

= 1
2

Exercise 2.
Show that for

zn = −2 + (−1)n
n

i

lim
n→∞

Arg(zn) does not exist, but lim
n→∞

|zn| exists.
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Solution 2.
The magnitude of zn is

|zn| =
∣∣∣∣∣−2 + (−1)n

n
i

∣∣∣∣∣
=
√

4 + (−1)2n

n2

=
√

4 + 1
n2

Therefore,

lim
n→∞

|zn| = lim
n→∞

√
4 + 1

n2

= 2

The argument of z2n is

Arg(z2n) = Arg
(
−2 + (−1)2n

2n i

)

∴ lim
n→∞

Arg(z2n) = lim
n→∞

Arg
(
−2 + i

2n

)
= π

The argument of z2n+1 is

Arg(z2n+1) = Arg
(
−2 + (−1)2n+1

2n+ 1 i

)

∴ lim
n→∞

Arg(z2n) = lim
n→∞

Arg
(
−2− i

2n

)
= −π

Therefore, as the limit of two subsequences are not equal, the limit does not
exist.
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Part III

Topology on the Complex Plane
Definition 9 (Neighbourhood of a complex number). A circular region of
radius ε centred at z, is called the ε neighbourhood of z.

B(z, ε) = D(z, ε) =
{
w ∈ C : |w − z| < ε

}

<

=

εz

Figure 1: Neighbourhood of a complex number

Definition 10 (Interior point). Let A ⊆ C.
z ∈ C is called an inner or interior point of A if there exists at least one
εz > 0, such that B(z, εz) ⊂ A.
The set of all interior points of A is denoted by Int(A) or A◦.

Definition 11 (Exterior point). Let A ⊆ C.
z ∈ C is called an outer or exterior point of A if there exists at least one
εz > 0, such that B(z, εz) ⊂ (C \ A). The set of all exterior points of A is
denoted by Ext(A).

Definition 12 (Edge point). Let A ⊆ C.
z ∈ C is called an edge or boundary point of A if it is neither an inner point
of A, nor an outer point of A. The set of all boundary points of A is denoted
by ∂(A).

Definition 13 (Open set). A set A ⊆ C is called an open set if A = A◦, i.e.
for any point z ∈ A, ∃ε > 0, such that D(z, ε) ⊂ A.
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Definition 14 (Closer of a set). The closer of A is defined to be

A = A◦ ∪ ∂ A

Definition 15 (Closed set). A set A is called a closed set if ∂ A ⊂ A, i.e.
A = A.
Definition 16 (Connected set). A set A is called a connected set of for any
z1, zn ∈ A, there exists a polygonal path, i.e. a finite set of connected straight
lines, which connects z1 and z2, and belongs to A.
Definition 17 (Domain). An open connected set is called a domain.
Definition 18 (Bound set). A set A is said to be a bound set if it is bound
inside a disk.

Exercise 3.
Describe geometrically and list the properties of the following sets.

1. A =
{
z ∈ C : <(z) ≥ 2,=(z) ≤ 4

}
2. B =

{
z ∈ C : |z − 1 + 3i| > 3

}
Solution 3.
1. A is the union of the bottom half plane with respect to the line y = 4, and

the right half plane with respect to the line x = 2.

<

=
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Therefore, as A = A◦ + ∂ A, it is a closer, unbounded set.

2. A is the complement of a disk, centred at 1− 3i, with radius 3.

1− 3i

<

=

Therefore, it is an open, unbounded set.

Exercise 4.
Prove that the upper half plane U =

{
z : =(z) > 0

}
is open.

Solution 4.
Let

z = x+ iy

Therefore, as z ∈ U , y > 0.
Therefore, consider the disk D

(
z, y2

)
.
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Let w ∈ D
(
z, y2

)
. Therefore,

|w − z| < y

2
∴
∣∣=(w − z)

∣∣ ≤ |w − z|
≤ y

2

Therefore,

−y2 ≤ =(w)−=(z) ≤ y

2
∴ −y2 ≤ =(w)− y ≤ y

2
∴ =(w) ≥ y

2 > 0

Therefore, as =(w) > 0, w ∈ U . Therefore, U is open.
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Part IV

Complex Functions
1 Complex Functions
Definition 19 (Complex function). Let A ⊆ C. f : A → C is called a
complex function, which matches z ∈ A to f(z) ∈ C.

Theorem 7. Any complex function f can be written as

f(x+ iy) = <f(x+ iy) + i=f(x+ iy)
= u(x, y) + iv(x, y)

2 Limits
Definition 20 (Limit of a function). Let f be a complex function defined
on a neighbourhood of z0, but may or may not be defined at z0. Then, the
limit of f(z) at z0 is defined as

w = lim
z→z0

f(z)

if ∀ε > 0, ∃δ > 0, such that ∀z ∈ Xsuch that |z − z0| < δ,
∣∣f(z)− w

∣∣ < ε.

Exercise 5.
Show that

lim
z→1

iz

2 = i

2

Solution 5.
Let |z − 1| < δ. Therefore, for ε > 0,∣∣∣∣∣f(z)− i

2

∣∣∣∣∣ =
∣∣∣∣∣iz2 − i

2

∣∣∣∣∣
=
∣∣∣∣∣ i2
∣∣∣∣∣ |z − 1|

= 1
2 |z − i|

Therefore, for δ ≤ 2ε,
∣∣∣f(z)− i

2

∣∣∣ < ε.
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Theorem 8. If

f(z) = f(x+ iy)
= u(x, y) + iv(x, y)

then

lim
z→z0

f(z) = u0 + iv0

if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0

lim
(x,y)→(x0,y0)

v(x, y) = v0

Theorem 9 (Limit arithmetics). If

lim
z→z0

f(z) = w1

lim
z→z0

g(z) = w2

then, as long as all quantities are defined,

lim
z→z0

f(z)± g(z) = w1 ± w2

lim
z→z0

f(z)g(z) = w1w2

lim
z→z0

f(z)
g(z) = w1

w2

Exercise 6.
For the function f(z) = z2, prove

lim
z→z0

f(z) = f(z0)

= z0
2

Solution 6.

z =
(
x+ iy

)2

= (x− iy)2

= x2 − y2 − 2xyi
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Therefore, let

u(x, y) = x2 − y2

v(x, y) = −2xy

Therefore,

lim
(x,y)→(x0,y0)

u(x, y) = x0
2 − y0

2

lim
(x,y)→(x0,y0)

v(x, y) = −2x0y0

Therefore,

lim
z→z0

f(z) = u0 + iv0

= x0
2 − y0

2 − 2x0y0i

= z0
2

Definition 21 (Infinite limit). The limit of f(z) is said to be infinite, i.e.

lim
z→z0

f(z) =∞

if and only if

lim
z→z0
|f(z)| =∞

if and only if

lim
z→z0

1
f(z) = 0

Definition 22 (Limit at infinity). The limit of a function f(z),

lim
z→∞

f(z) = w

if

lim
|z|→∞

f(z) = w

Alternatively, ∀ε > 0, ∃R > 0, such that for |z| > R,
∣∣f(x)− w

∣∣ < ε.
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Exercise 7.
Show that

lim
z→∞

1
z2 = 0

Solution 7.
Let ε > 0. Let R > 0, such that 1

R2 < ε.
Therefore, if |z| > R,

∣∣f(z)− 0
∣∣ =

∣∣∣∣∣ 1
z2

∣∣∣∣∣
= 1
|z2|

= 1
|z|2

<
1
R2

< ε

Therefore, lim
z→∞

1
z2 = 0.

3 Continuity
Definition 23 (Continuous function). f(z) is said to be continuous at z0 if
f(z) is defined at z0 and

lim
z→z0

f(z) = f(z0)

Theorem 10 (Continuity arithmetics). If

lim
z→z0

f(z) = f(z0)

lim
z→z0

g(z) = g(z0)

then, as long as all quantities are defined,

lim
z→z0

f(z)± g(z) = f(z0)± g(z0)

lim
z→z0

f(z)g(z) = f(z0)g(z0)

lim
z→z0

f(z)
g(z) = f(z0)

g(z0)
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4 Differentiability
Definition 24 (Differentiable function). Let f(z) be defined in a neighbour-
hood of z0. f is said to be differentiable at z0 if the limit lim

z→z0

f(z)−f(z0)
z−z0

exists.

Theorem 11 (Differentiation arithmetics). If f(z) and g(z) are differentiable,
then, as long as all quantities are defined,(

f(z)± g(z)
)′ = f ′(z)± g′(z)(

f(z)g(z)
)′ = f ′(z)g(z) + f(z)g′(z)(

f(z)
g(z)

)′
= f ′(z)g(z)− f(z)g′(z)

g(z)2

5 Cauchy-Riemann Equations
Theorem 12 (Cauchy-Riemann Equations). u(x, y) and v(x, y) are said to
be satisfying Cauchy-Riemann Equations at a point (a, b) ∈ R2, if

ux(a, b) = vy(a, b)
uy(a, b) = −vx(a, b)

Theorem 13. Let

f(x+ iy) = u(x, y) + iv(x, y)

Then, u and v satisfying the Cauchy-Riemann Equations is a necessary
condition for f to be differentiable at (x0, y0).

Theorem 14. If f = u+iv is differentiable at z0 = a+ib, then (u, v) satisfies
the Cauchy-Riemann Equations at (a, b).

Definition 25 (Analytic functions). If f = u + iv is differentiable at any
z ∈ W , where W is a neighbourhood of z0 except maybe at z0, then f is
said to be analytic at z0. If f is analytic at all z ∈ W , then it is said to be
analytic in W .
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Exercise 8.
Let f : U → C be an analytic function in U , such that f is also analytic in
U . Show that f ′ = 0, i.e. f = c.

Solution 8.
As f = u+ iv is analytic, by Cauchy-Riemann Equations, for (x, y) ∈ U ,

ux(x, y) = vy(x, y)
uy(x, y) = −vx(x, y)

As f = u− iv is analytic, by Cauchy-Riemann Equations, for (x, y) ∈ U ,

ux(x, y) = −vy(x, y)
uy(x, y) = vx(x, y)

Therefore,

vy = −vy
= 0

vx = −vx
= 0

Therefore,

ux(x, y) = 0
uy(x, y) = 0

Therefore, u and v are constant functions.

6 Harmonic Functions
Definition 26 (Laplacian). Let u be an equation in x and y.
The Laplacian is defined to be

∆u = ∇2u

= uxx + uyy

Definition 27 (Harmonic function). A real function in two variables, u(x, y),
which is twice differentiable, is called a harmonic function if it satisfies

∆u = uxx + uyy

= 0

16



Theorem 15. If u and v are twice differentiable, and satisfy Cauchy-Riemann
Equations, then (u, v) are harmonic.

Theorem 16 (Sufficient condition for differentiability). Let f = u + iv be
defined in a neighbourhood of z0 = a+ ib. Assume that ux, uy, vx, vy exist in
this neighbourhood and are continuous at the point (a, b). If (u, v) satisfying
Cauchy-Riemann Equations at (a, b) then f ′(z0) exists.

Definition 28 (Harmonic conjugate). Let u : R2 → R be a harmonic function.
Its harmonic conjugate is defined to be v : R2 → R, such that f = u+ iv is
analytic.

7 Analytic Functions
Definition 29. f : D → C is said to be differentiable on D ⊂ C, if f is
differentiable at any z ∈ D.

Definition 30 (Analytic functions). If f = u + iv is differentiable at any
z ∈ W , where W is a neighbourhood of z0 except maybe at z0, then f is
said to be analytic at z0. If f is analytic at all z ∈ W , then it is said to be
analytic in W .

Theorem 17. Let D ⊂ C be an open set. Then, f is differentiable on D if
and only if f is analytic on D.

Theorem 18. Let D ⊆ C be a domain. Assume that f is analytic on D, and
for any z ∈ D, f ′(z) = 0. Then, f is constant.

Theorem 19. Let u(x, y) : R2 → R be a function such that ∇u = 0 in a
domain D ⊂ R2. Then, u is constant in D.

Exercise 9.
1. Prove that

v(x, y) = ln
(
(x− 1)2 + (y − 2)2

)
is harmonic in any domain that does not include the point (1, 2).

2. Find u(x, y) such that u+ iv is analytic in some domain. Note: v is the
conjugate harmonic of u.

3. Express u+ iv as a function of z.
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Solution 9.
1.

vx = 2(x− 1)
(x− 1)2 + (y − 2)2

vy = 2(y − 2)
(x− 1)2 + (y − 2)2

Therefore,

vxx =
2
(
(x− 1)2 + (y − 2)2

)
−
(
2(x− 1)

)2(
(x− 1)2 + (y − 2)2)2

vyy =
2
(
(x− 1)2 + (y − 2)2

)
−
(
2(y − 2)

)2(
(x− 1)2 + (y − 2)2)2

2. For u+ iv to be analytic, by Cauchy-Riemann Equations,

ux = vy

uy = −vx

Therefore,

ux = vy

= 2(y − 2)
(x− 1)2 + (y − 2)2

Therefore,

u =
ˆ 2(y − 2)

(x− 1)2 + (y − 2)2 dx

= 2(y − 2)
(y − 2)2

ˆ 1
1 +

(
x−1
y−2

)2 dx

= 2 tan−1
(
x− 1
y − 2

)
+ g(y)

Therefore,

uy = −vx

∴ − 2(x− 1)
(x− 1)2 + (y − 2)2 = 2

1 + (x−1)2

(y−2)2

(
−x− 1
y − 2

)
+ g′(y)

18



Therefore,

g′(y) = 0
∴ g(y) = c

Therefore,

u = 2 tan−1
(
x− 1
y − 2

)
+ c

3.

u+ iv = tan−1
(
x− 1
y − 2

)
+ i ln

(
(x− 1)2 + (y − 2)2

)
= 2iLog

(
−i(x− 1) + (y − 2)

)
= 2iLog (−iz − 2 + i)

Exercise 10.
Prove that there is no f = u+ iv analytic in the unit disk, such that

xu(x, y) = yv(x, y) + 2013

Hint: Use the function zf(z).

Solution 10.
If possible, let there exist f(z) such that

xu(x, y) = yv(x, y) + 2013

Therefore, as zf(z) is analytic,

zf(z) = (x+ iy)(u+ iv)
= xu− yv + i(yu+ xv)
= 2013 + i(yu+ xv)

By the polar form of Cauchy-Riemann Equations, yu+ xv is constant.
Therefore, zf(z) is constant.
Therefore, this contradicts the assumption.
Therefore, such a f does not exist.
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8 Elementary Functions

8.1 Exponential Functions

Theorem 20.

|ez| = e<(z)

Proof.

|ez| =
∣∣∣e<(z)

∣∣∣ ∣∣∣e=(z)
∣∣∣

=
∣∣∣e<(z)

∣∣∣ ∣∣∣cos
(
=(z)

)
+ i sin

(
=(z)

)∣∣∣
= e<(z)

Theorem 21. Let z and w be complex. Then

ez+w = ezew

Theorem 22. ∀n ∈ Z,

(ez)n = enz

Theorem 23. The function ez is onto with respect to C \ {0}.

8.2 Trigonometric Functions

Definition 31 (Trigonometric functions of complex numbers). Trigonometric
functions of complex numbers are defined as

cos(z) = eiz + e−iz

2

sin(z) = eiz − e−iz

2i

cosh(z) = ez + e−z

2

sinh(z) = ez − e−z

2
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8.3 Logarithmic Functions
Definition 32 (Power set). The set of all subsets of a set is called the power
set of the set. The power set of a set A is denoted as P(A).

Definition 33 (Multiple valued function). A multiple valued
function gets over C
gets a complex number
as input and returns a
set of complex
numbers as output.

A set which maps a set A to its
power set P(A) is called a multiple valued set.

Definition 34 (Natural logarithmic function). The natural logarithmic func-
tion over the complex plane is defined to be

logw = {z : ez = w}

Theorem 24.

logw = ln |w|+ i arg(w)

Proof. Let

ez = w

= |w|eiθ

where

θ = arg(w)

Therefore,

e<(z)+i=(z) = |w|eiθ

∴ e<(z)ei=(z) = |w|eiθ

Therefore,

e<(z) = |w|
=(z) = θ + 2πk

where k ∈ Z.
Therefore,

ln e<(z) = ln |w|
∴ <(z) = ln |w|

Therefore,

logw = {z : ez = w}
=
{
ln |w|+ iy : y = arg(w)

}
21



For any w ∈ log z,
ew = eln |z| + i (Arg z + 2πk)

= eln |z|ei(Arg z+2πk)

= |z|eiArg z

= z

Definition 35 (Branch of log z). A branch of log z is a continuous function
L(z) defined on a U , a connected open subset of C such that L(z) is a
logarithm of z for each z ∈ U .
Definition 36 (Log z). Log z is defined to be

Log z = ln |z|+ iArg z
As Arg z is not continuous on the negative real axis, in order to make

it continuous, the line Arg z = π is excluded. Hence, log z is continuous on
U = C \ {0} ∪ R−, and is a branch of log z.
Similarly, any other ray can be excluded in order to get a branch of log z.

Definition 37. For any α ∈ R, Logα z is defined to be
Logα z = ln |z|+ iArgα z

where Argα z = θ, such that θ ∈ (α, α + 2π] and θ = arg z.
Any choice of Argα z defines a branch of logarithm.
Definition 38 (Branch cut). The boundary of the domain of a branch is
called a branch cut.
Definition 39 (Principal value). The value returned by Log z = Log−π z is
called the principal value.
Theorem 25. Log z is analytic on C \ {0} ∪ R−.

Exercise 11.
Find the principal value of

√
i.

Solution 11.

pv
(
i

1
2

)
= e

1
2 Log i

= e
1
2(ln |i|+iArg i)

= e
1
2 i
π
2

= ei
π
4
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8.4 Power
Definition 40 (Power function). Let z, c ∈ C, such that z 6= 0. The power
multifunction as

zc = ec log z

The branch of the power multifunction for c ∈ C is defined as

zw = ew log z

Theorem 26.

Logα z − Logβ z = i
(
Argα z − Argβ z

)
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Part V

Complex Integrals
1 Complex Integrals
Definition 41 (Integral of complex functions). Let f : [a, b]→ C. Let

f(t) = u(t) + iv(t)

Therefore, the integrals of u(t) and v(t) are defined as

bˆ
a

u(t) dt = lim
∆t→0

n∑
i=1

u(ti)∆xi

where T is a splitting of [a, b], such that

a = t1 < · · · < tn = b

and
bˆ

a

v(t) dt = lim
∆t→0

n∑
i=1

v(ti)∆xi

where T is a splitting of [a, b], such that

a = t1 < · · · < tn = b

These integrals are defined when the limit exists without depending on T .
When they exist, the integral of f(t) is defined as

bˆ
a

f(t) dt =
bˆ

a

u(t) dt+ i

bˆ
a

v(t) dt

Theorem 27. All properties of real integrals are also valid for complex
integrals.

Theorem 28.∣∣∣∣∣∣∣∣
bˆ

a

f(t) dt

∣∣∣∣∣∣∣∣ ≤
bˆ

a

∣∣f(t)
∣∣ dt
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2 Curves in C
Definition 42. A continuous function γ : [a, b]→ C is called a curve.

Definition 43 (Parametric representation of a curve). The curve γ(t) can
be represented as

γ(t) = x(t) + iy(t)

where t is a parameter.

Definition 44 (Differentiability). γ is said to be differentiable if x and y are
both differentiable.

Theorem 29 (Parametric representation of a straight line). Let z1, z2 ∈ C.
The straight line passing through z1 and z2 can represented parametrically as

γ(t) = z1 + t(z2 − z1)

The slope of this line is z1 − z2.

Theorem 30 (Parametric representation of a circle). A circle with radius r,
centred at the origin, can be represented parametrically as

γ(t) = reit

with 0 ≤ t ≤ 2π.

Exercise 12.
Parametrize the curve

{
z = x+ iy : x2

4 + y2 = 1
}

starting from 2, and going
anti-clockwise twice.

Solution 12.
The curve is an ellipse centred at (0, 0), with a = 2, and b = 1.

γ(t) = 2 cos t+ i sin t

Therefore, as the curve goes anti-clockwise twice, t ∈ [0, 4π].

Definition 45 (Simple curve). A curve γ is said to be simple if it is non
self-intersecting, i.e. it is one-to-one with respect to the parameter t, except
maybe at the extreme values of t.
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Definition 46 (Closed curve). A curve γ : [a, b]→ C is said to be closed, if
and only if

γ(a) = γ(b)

Definition 47 (Jordan curve). A closed simple curve is called a Jordan curve.

Theorem 31. A Jordan curve enclosed a region inside it.

Definition 48 (Piecewise differentiability). γ is said to be piecewise differ-
entiable if there exists a splitting

a = t1 < · · · < tn = b

such that γ is differentiable on each segment [ti, ti+1].

3 Complex Line Integrals
Definition 49 (Complex line integral). Let γ : [a, b] → C be a curve, and
let f : D → C, where D ⊆ C, and γ

(
[a, b]

)
⊂ D. Then, the integral

ˆ
γ

f(z) dz =
bˆ

a

f
(
γ(t)

)
γ̇(t) dt

If γ is piecewise differentiable, then

ˆ
γ

f(z) dz =
n∑
i=1

xi+1ˆ
xi

f
(
γ(t)

)
γ̇(t) dt

Definition 50 (Oriented contour). An oriented contour for α > 0, z0 ∈ C,
is defined to be

Cα,z0 =
{
w ∈ C : |w − z0| = α

}
oriented anti-clockwise, starting at z0 + α.

Theorem 32. ∀α > 0, z0 ∈ C,
˛

Cα,z0

dz
z − z0

= 2πi
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Proof. Let

γ(t) = z0 + αeit

with 0 ≤ t ≤ 2π.
Therefore,

γ̇(t) = αieit

Therefore,

˛

Cα,z0

dz
z − z0

=
2πˆ

0

1
z0 + αeit − z0

αieit dt

=
2πˆ

0

i dt

= 2πi

Theorem 33. Line integrals are linear for all α, β ∈ C, i.e.

α

ˆ
γ

f dz ± β
ˆ
γ

g dz =
ˆ
γ

αf ± βg dz

Theorem 34. Let γ1 and γ2 be two curves such that the start point of γ2 is
the end point of γ1. Then, the curves can be composited to a curve γ1 + γ2,
and ˆ

γ1

f(z) dz +
ˆ
γ2

f(z) dz =
ˆ

γ1+γ2

f(z) dz

Theorem 35. Let γ : [a, b] → C be a curve. Then, γ : [−b,−a] → C has
orientation opposite to that of γ, and

γ(t) = γ(−t)
˙γ(t) = −γ̇(t)

Then,
ˆ

γ

f(z) dz = −
ˆ
γ

f(z) dz
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Theorem 36 (Length of a curve). The length of the curve γ : [a, b]→ C is
given by

length(γ) =
bˆ

a

∣∣γ̇(t)
∣∣ dt

Exercise 13.
Find the length of the astroid given by

γ(t) = cos3 t+ i sin3 t

where γ : [0, 2π]→ C.

Solution 13.

γ(t) = cos3 t+ i sin3 t

∴ γ̇(t) = −3 sin t cos2 t+ 3i cos t sin2 t

∴
∣∣γ̇(t)

∣∣ =
√

9
(
cos4 t sin2 t+ sin4 t cos2 t

)
= 3| sin t cos t|

√
cos2 t+ sin2 t

= 3| sin t cos t|

Therefore,

length(γ) =
bˆ

a

∣∣γ̇(t)
∣∣ dt

= 3
2πˆ

0

| sin t cos t| dt

= 12

π
2ˆ

0

sin t cos t dt

= 6

π
2ˆ

0

sin 2t dt

= 6
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Theorem 37. Let f(z) be a function defined in a domain D including a
curve γ. Let ∃M > 0, such that all values of f have

∣∣f(z)
∣∣ ≤M , then∣∣∣∣∣∣∣∣

ˆ
γ

f(z) dz

∣∣∣∣∣∣∣∣ ≤M length(γ)

Definition 51 (Primitive function). Let D ⊂ C. F (z) is said to be the
primitive function of f(z) in D, if ∀z ∈ D,

F ′(z) = f(z)

Theorem 38 (Fundamental Theorem of Calculus). Let γ : [a, b] → C be
piecewise continuous, and let f be continuous on γ, i.e. f ◦ γ is continuous.
Let there exist an analytic function F , defined on a domain including γ, such
that ∀z ∈ γ,

F ′(z) = f(z)

Then,
ˆ
γ

f(z) dz = F
(
γ(b)

)
− F

(
γ(a)

)

Theorem 39 (Equivalent conditions for existence of a primitive function).
Let D be a domain. Let f be continuous on D. Then, the following conditions
are equivalent.

1. f has a primitive function F in D.

2. For any closed path γ such that γ ⊂ D,
ˆ
γ

f(z) dz = 0

3. For any curve γ such that γ ⊂ D, the integral
ˆ
γ

f(z) dz depends only

on the edges of γ.
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Exercise 14.

Find
ˆ
γ

cos z dz where γ goes from π to i.

Solution 14.
sin z is the primitive of cos z over C.
Therefore,

ˆ
γ

cos z dz = sin i− sin π

= ei
2 − e−i2

2i − 0

= e−1 − e
2i

= i
−1
e

+ e

2

Exercise 15.
Calculate the integral of

f(z) = (z − z0)n

∀n ∈ Z, where γ = CR,z0 .

Solution 15.
For 0 ≤ t ≤ 2π,

γ(t) = z0 +Reit

∴ γ̇(t) = Rieit

Therefore,

ˆ
γ

(z − z0)n dz =
2πˆ

0

(
z0 +Reit − z0

)n (
Rieit

)
dt

= iRn+1
2πˆ

0

ei(n+1)t dt
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Therefore,

ˆ
γ

(z − z0)n dz =


2πi ; n = −1
Rn+1

n+1 e
i(n+1)t

∣∣∣2π
0

; n 6= −1

=

2πi ; n = −1
0 ; n 6= −1

Theorem 40.

ˆ
γ

P dx+Q dy =
bˆ

a

(
P
(
γ(t)

)
ẋ(t) +Q

(
γ(t)

)
ẏ(t)

)
dt

where t ∈ [a, b].

Theorem 41. If

f = u+ iv

then,
ˆ
γ

f(z) dz =
ˆ
γ

u dx− v dy + i

ˆ
γ

v dx+ u dy

Theorem 42 (Green’s Theorem). Let

F = P dx+Q dy

such that Px, Py, Qx, Qy are continuous in the domain D,
ˆ

∂D

P dx+Q dy =
¨

D

(
Qx − Py

)
dx dy

Theorem 43 (Cauchy-Goursat Theorem). Let D be a domain, such that ∂D
is obtained by a finite number of curves, ie. ∂D is piecewise differentiable. If
f : D → C is analytic, then

ˆ

∂D

f(z) dz = 0
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4 Cauchy Integral Formula
Theorem 44 (Cauchy Integral Formula/Mean Value Theorem). Let C be
a simple closed curve in positive orientation with respect to a domain, DC,
closed by a curve C. If f is analytic in DC, then

f(z0) = 1
2πi

ˆ

C

f(z)
z − z0

dz

Theorem 45 (Cauchy Differentiation Formula). Let C be a simple closed
curve in positive orientation with respect to a domain, DC, closed by a curve
C. If f is analytic in DC, then

f (n)(z0) = n!
2πi

ˆ

C

f(z)
(z − z0)n+1 dz

Theorem 46. If f is analytic in D, then f is infinitely differentiable.
Proof. Let z0 ∈ D. Therefore, ∃ε > 0, such that D(z0, ε) ∈ D. Therefore, by
Cauchy Differentiation Formula,

f (n)(z0) = n!
2πi

ˆ

Cz0,ε

f(z)
(z − z0)n+1 dx

and particularly, exists.
Theorem 47 (Morera’s Theorem). Let D be a domain, and let f : D → C
be continuous. If

´
γ
f(z) dz = 0, for any closed curve γ, such that γ ∈ D, then

f is analytic in D

Proof. By Equivalent conditions for existence of a primitive function, asˆ
γ

f(z) dz = 0

there exists a primitive function F for f , i.e.,

F ′(z) = f(z)

for all z ∈ D.
Therefore, as F is differentiable in D, and as D is a domain, and hence is
open, F is analytic.
Therefore, as F is analytic in D, F is infinitely differentiable, with analytic
derivatives.
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Theorem 48 (Cauchy Derivative Estimate). Let f be analytic in Dz0,r. Let
∂Dz0,r be denoted as Cz0,r.
Let

MR = max
z∈Cz0,R

∣∣f(z)
∣∣

Then, ∀n ∈ N,∣∣∣f (n)(z0)
∣∣∣ ≤ n!MR

Rn

Exercise 16.

Find
π́

−π

1
2−cos t dt.

Solution 16.
Let

z = eit

∴ dz = iz dt

πˆ
−π

1
2− cos t dt =

ˆ

∂D0,1

1
2− z+z−1

2

dz
iz

=
ˆ

∂D0,1

2 dz
(4− z − z−1) iz

=
ˆ

∂D0,1

2 dz
−i (z2 − 4z + 1)

=
ˆ

∂D0,1

2 dz
i
(
z − 2 +

√
3
) (
z − 2−

√
3
)

= 2i
ˆ

∂D0,1

dz(
z − 2 +

√
3
) (
z − 2−

√
3
)

Let

z1 = 2 +
√

3
z2 = 2−

√
3
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Therefore, as z1 ∈ D0,1, by Cauchy Integral Formula/Mean Value Theorem,

πˆ
−π

1
2− cos t dt = 2i

ˆ

∂D0,1

dz(
z − 2 +

√
3
) (
z − 2−

√
3
)

= 2i
2πi

(
1

z − 2−
√

3

)∣∣∣∣∣∣
z=2−

√
3

= −4π
(

1
2−
√

3− 2−
√

3

)

= 2π√
3

Therefore, the integral is real, which is expected, as the function is real.

Exercise 17.
Calculate

´
C1,3

cos z
(z−i)3 dz.

Solution 17.

ˆ

C1,3

cos z
(z − i)2+1 dz = 2πi

2 cos z|z=1

= −iπ cos(i)

= −iπ e
−1 + e1

2
= −iπ cosh(1)

5 Liouville’s Theorem

Theorem 49 (Liouville’s Theorem). If f is entire and bounded, then f is
constant.

Exercise 18.
If f is entire, such that ∀z ∈ C, <

(
f(z)

)
< M , show that it is constant.
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Solution 18.
As e<(f(x)) < M ,∣∣∣ef(z)

∣∣∣ = e<(f(z))

∴
∣∣∣ef(z)

∣∣∣ < eM

Therefore, e<(f(z)) is an entire and bounded function. Therefore, by Liouville’s
Theorem, ef(z) is constant.
Let

ef(z) = c

Therefore,

f(z) = ln |c|+ 2πki

Therefore, even though k may be dependent on z, as f(z) is continuous, k
must be continuous, to ensure that there is no discontinuity in f(z). Therefore,
f(z) is constant.

Exercise 19.
Let f be entire and periodic, with two periods, 1 and i, i.e. ∀z ∈ C,

f(z) = f(z + 1)
= f(z + i)

Then, f is constant.

Solution 19.
Let

D =
{
z : 0 ≤ <(z) ≤ 1, 0 ≤ =(z) ≤ 1

}
be a compact set.
f is continuous over D, and hence, |f | is also continuous over D.
Therefore, by Weierstrass theorem, f is bounded in D.
As the function is periodic with periods 1 and i,

f(x+ iy) = f
(
x− bxc+ i

(
y − byc

))
∴ f(D) = f(C)

Therefore, f is bounded in C, and by Liouville’s Theorem, it is constant.
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6 Fundamental Theorem of Algebra
Theorem 50. ∃R > 0, such that, ∀|z| > R,

∣∣ρ(z)
∣∣ =

∣∣∣∣∣∣
n∑
k=0

akz
k

∣∣∣∣∣∣
≥ |an||z|

n

2
Theorem 51 (Fundamental Theorem of Algebra). Any polynomial p(z), of
degree n ≥ 1, over C has at least one root in C, i.e. ∃z0, such that

p(z0) = 0

Proof. If possible, ∀z ∈ C, let

p(z) 6= 0

As p(z) is a polynomial, it is an entire function.
Therefore,

f(z) = 1
p(z)

is also entire.
Therefore, ∃R > 0, such that ∀|z| > R,

∣∣p(z)
∣∣ ≥ |an||z|n2

∴
∣∣p(z)

∣∣ ≥ |an|Rn

2
Therefore, ∀|z| > R,∣∣f(z)

∣∣ = 1∣∣p(z)
∣∣

∴
∣∣f(z)

∣∣ ≤ 1
|an|Rn

2

Let

m1 = 1
|an|Rn

2

= 2
|an|Rn
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Therefore, ∀|z| > R,∣∣f(z)
∣∣ ≤ m1

Let the closed disk D be

D =
{
z : |z| ≤ R

}
Therefore, f is continuous in D. Hence, |f | is also continuous in D.
By Weierstrass theorem, |f | is bounded in D.
Therefore, let∣∣f(z)

∣∣ ≤ m2

Therefore, ∀z ∈ C,∣∣f(z)
∣∣ ≤ max{m1,m2}

Therefore, as f(z) is entire and bounded, by Liouville’s Theorem, it is constant.
Therefore,

p(z) = 1
f(z)

is constant. Hence, the degree of p(z) is 0.
This contradicts the assumption the condition of n ≥ 1. Hence, p(z) has at
least one root in C.

Theorem 52. Any polynomial of degree n ≥ 1 has exactly n roots, not
necessarily distinct. Particularly,

p(z) = an
n∏
k=1

(z − zk)

where each zk is a root of p(z).

7 Maximum Modulus Principle
Theorem 53. Let f be an analytic function in a domain D, and ∀z ∈ Dz0,ε ⊂
D, let∣∣f(z)

∣∣ ≤ ∣∣f(z0)
∣∣

Then, f is constant on Dz0,ε, i.e., ∀z ∈ Dz0,ε,

f(z) = f(z0)
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Proof. For ρ < ε, let
Cρ =

{
z : |z − z0| = ρ

}
Therefore, f is analytic inside and on Cρ.
Therefore, by Cauchy Integral Formula/Mean Value Theorem,

∣∣f(z0)
∣∣ =

∣∣∣∣∣∣∣∣
1

2πi

ˆ

Cρ

f(z)
z − z0

dz

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

2πi

2πˆ

0

f
(
z0 + ρeit

)
z0 + ρeit − z0

iρeit dt

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

2π

2πˆ

0

f
(
z0 + ρeit

)
dt

∣∣∣∣∣∣∣∣
≤ 1

2π

2πˆ

0

∣∣∣∣f (z0 + ρeit
)∣∣∣∣ dt∣∣f(z)

∣∣ ≤ ∣∣f(z0)
∣∣

≤ 1
2π

2πˆ

0

∣∣f(z0)
∣∣ dt

Also, ∣∣f(z0)
∣∣ ≥ ∣∣∣∣f (z0 + ρeit

)∣∣∣∣
∴
∣∣f(z0)

∣∣ ≥ 1
2π

2πˆ

0

∣∣∣∣f (z0 + ρeit
)∣∣∣∣ dt

Therefore,

∣∣f(z0)
∣∣ = 1

2π

2πˆ

0

∣∣∣∣f (z0 + ρeit
)∣∣∣∣ dt

∴
1

2π

2πˆ

0

∣∣f(z0)
∣∣ dt = 1

2π

2πˆ

0

∣∣∣∣f (z0 + ρeit
)∣∣∣∣ dt

∴ 0 = 1
2π

2πˆ

0

(∣∣f(z0)
∣∣− ∣∣∣∣f (z0 + ρeit

)∣∣∣∣
)

dt
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Therefore,∣∣f(z0)
∣∣− ∣∣∣∣f (z0 − ρeit

)∣∣∣∣ ≥ 0

Therefore, as the integral this non-negative expression is zero, the expression
must be zero. Hence,∣∣f(z0)

∣∣ =
∣∣∣∣f (z0 + ρeit

)∣∣∣∣
Similarly, by Cauchy-Riemann Equations, if ∀z ∈ Dz0,ε,∣∣f(z0)

∣∣ =
∣∣f(z)

∣∣
then

f(z0) = f(z)

Theorem 54 (Maximum Modulus Principle). Let f be analytic in D and
continuous on ∂D, and non-constant, then f has no local maximum in D,
and the global maximum in D, i.e. the closer of D, must be on ∂D.

Exercise 20.
Find the maximum of

f(z) = ez

in
{
z : |z| ≤ 3

}
.

Solution 20.
f(z) is entire and hence analytic in D0,3. Also, it is non-constant. Hence, by
Maximum Modulus Principle, the global maximum must be on

{
z : |z| < 3

}
.

Let

γ(t) = 3eit

where 0 ≤ t ≤ 2π.
Therefore, ∀z ∈ ∂D,

|ez| =
∣∣∣e3eit

∣∣∣
=
∣∣∣e3(cos t+i sin t)

∣∣∣
=
∣∣∣e3 cos t

∣∣∣ ∣∣∣e3i sin t
∣∣∣

= e3 cos t

≤ e3

Therefore, z = 3 is the global maximum.

39



Theorem 55 (Minimum Modulus Principle). If f is analytic in D, continuous
on ∂D such that ∀z ∈ D, f(z) 6= 0, then show that f has a global minimum
in ∂D.

Proof. As f(z) 6= 0, let

g(z) = 1
f(z)

Therefore, by Maximum Modulus Principle, g(z) has a global maximum in
∂D, which corresponds to the global minimum of f(z).

Exercise 21.
Let D be a bounded domain and f be a non-constant, analytic function in
D, the closer of D, such that ∀z ∈ ∂D,∣∣f(z)

∣∣ = 1

Prove that ∃z0 ∈ D, such that

f(z0) = 0

Solution 21.
By Maximum Modulus Principle, ∀z ∈ D,∣∣f(z)

∣∣ ≤ 1

If possible, ∀z ∈ D, let

f(z) 6= 0

Therefore, by Minimum Modulus Principle,∣∣f(z)
∣∣ ≥ 1

Therefore,∣∣f(z)
∣∣ = 1

Therefore, by Cauchy-Riemann Equations, f is constant.
This contradicts that f is non-constant. Therefore, ∃z0 ∈ D, such that

f(z0) = 0
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Exercise 22.
Let f be analytic on

D =
{
z : |z| < 1

}
a and on ∂D.
Assuming ∀z ∈ D,

∣∣f(z)
∣∣ ≤ ∣∣∣∣f (z2

)∣∣∣∣
show that f is constant.

Solution 22.
Let 0 < r < 1. Let

Dr =
{
z : |z| ≤ r

}
Therefore,

Dr2 =
{
z : |z| ≤ r2

}
Therefore, as 0 < r < 1,

Dr2 ⊂ Dr

As
∣∣f(z)

∣∣ ≤ ∣∣∣∣f (z2
)∣∣∣∣, by Maximum Modulus Principle,

max
Dr

∣∣f(z)
∣∣ ≤ max

Dr2

∣∣f(z)
∣∣

As Dr2 ⊂ Dr,

max
Dr2

∣∣f(z)
∣∣ ≤ max

Dr

∣∣f(z)
∣∣

Therefore,

max
Dr

∣∣f(z)
∣∣ = max

Dr2

∣∣f(z)
∣∣

Therefore, the maximum
∣∣f(z)

∣∣ on Dr is at a point in the interior of Dr.
Therefore, by Maximum Modulus Principle, f is constant on Dr. Therefore,
as 0 < r < 1, f is constant on D.
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Part VI

Complex Sequences and Series
1 Complex Series
Definition 52 (Convergence of complex series). The complex series ∑ zn is
said to converge to L, if and only if

lim
N→∞

SN = lim
N→∞

N∑
n=0

zn

= L

Theorem 56. If

zn = xn + iyn

then,
∞∑
n=0

zn =
∞∑
n=0

xn + i
∞∑
n=0

yn

Definition 53 (Absolute convergence of complex series). The series
∞∑
n=1

zn is
said to converge absolutely, if

∞∑
n=1
|zn| <∞

2 Series of Complex Functions
Theorem 57. If a series converges converges absolutely, then it also con-
verges.

Definition 54 (Pointwise convergence of series of functions). Let fn : Ω→ C,
where Ω ⊆ C. The series

∞∑
n=0

fn is said to converge pointwise to f ∈ Ω, if
∀z ∈ Ω,

∞∑
n=0

fn(z) = f(z)
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Definition 55 (Uniform convergence of series of functions). Let fn : Ω→ C,
where Ω ⊆ C. The series

∞∑
n=0

fn is said to converge uniformly to f ∈ Ω, if

lim
N→∞

sup
z∈Ω

∣∣SN(z)− f(z)
∣∣ = 0

where

SN(z) =
N∑
n=0

zn

2.1 Criteria for Uniform Convergence of Series of Func-
tions

Theorem 58 (Weierstrass M-test). Let fn : Ω → C, where Ω ⊆ C. Let
Mn ≥ 0 be a sequence which converges, such that, ∀z ∈ Ω,

∣∣fn(z)
∣∣ ≤Mn

Then fn(z) converges uniformly in Ω.

3 Power Series

Definition 56 (Power series). A series of the form
∞∑
n=0

an(z− z0)n is called a
power series. All an are called the coefficients, and z0 is called the centre.

Theorem 59. A power series

f(z) =
∞∑
n=0

an(z − z0)n

converges in a disk
{
z : |z − z0| < R

}
and diverges in

{
z : |z − z0| > R

}
, where

1
R

= lim
n→∞

sup |an|
1
n

Also, the series converges uniformly in the set
{
z : |z − z0| < R′

}
, ∀R′, such

that 0 < R′ < R.
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3.1 Integration of Power Series
Theorem 60. Let

f(z) =
∞∑
n=0

an(z − z0)n

be convergent in Dz0,R.
Let Γ be a curve in Dz0,R.
Let g(z) : Γ→ C be continuous in Γ.
Then,

ˆ

Γ

g(z)f(z) dz =
∞∑
n=0

an

ˆ

Γ

g(z)(z − z0)n dz

Theorem 61. Let

f(z) =
∞∑
n=0

an(z − z0)n

be convergent in Dz0,R.
Let Γ be a curve in Dz0,R.
If

ˆ

Γ

f(z) dz =
∞∑
n=0

an

ˆ

Γ

(z − z0)n dz

= 0

then f is analytic in Dz0,R.

3.2 Differentiation of Power Series
Theorem 62. Let

f(z) =
∞∑
n=0

an(z − z0)n

Then, in Dz0,R,

f ′(z) =
∞∑
n=1

nan(z − z0)n−1

where
1
R

= lim
n→∞

sup |an|
1
n
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Theorem 63. All functions of the form 1
nz

, which converge uniformly, are
analytic.

Definition 57 (Riemann zeta function). The Riemann zeta function is
defined to be

ζ(z) =
∞∑
n=1

1
nz

Exercise 23.
Show that ζ(z), the Riemann zeta function is analytic in

{
z : <(z) > 1

}
.

Solution 23.

ζ(z) =

∣∣∣∣∣∣
∞∑
n=1

1
nz

∣∣∣∣∣∣
≤
∞∑
n=1

∣∣∣∣∣ 1
nz

∣∣∣∣∣
≤
∞∑
n=1

∣∣∣∣∣ 1
nx+iy

∣∣∣∣∣
≤
∞∑
n=1

∣∣∣∣∣ 1
nxniy

∣∣∣∣∣
≤
∞∑
n=1

1
nx

Let ε > 0.
Let

Mn = 1
n1+ε

Therefore, for z ∈
{
z : <(z) > 1 + ε

}
, as

{
Mn = 1

n1+ε

}
converges, and as

1
nz
≤ 1
n1+ε

by the Weierstrass M-test, ζ(z) converges in
{
z : <(z) ≥ 1 + ε

}
. As this holds

for all ε > 0, ζ(z) is also analytic in
{
z : <(z) > 1

}
.
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4 Taylor Series for Complex Functions
Theorem 64 (Taylor Series for Complex Functions). Let f be analytic in
Dz0,R. Then,

f(z) =
∞∑
n=0

an(z − z0)n

where

an = f (n)(z0)
n!

= 1
2πi

ˆ

∂Dz0,R′

f(z)
(z − z0)n+1 dz

where R′ < R.

Theorem 65 (First Uniqueness Theorem). Let f and g be analytic functions
in a domain D, such that for z0 ∈ D, ∀n ∈ N,

f (n)(z0) = g(n)(z0)

Then,

f(z) = g(z)

in D.

Theorem 66 (Second Uniqueness Theorem). Let f and g be analytic func-
tions in a domain D. Let there exist {zn}∞n=1 ⊂ D which converges to z0 ∈ D,
such that ∀n,

f(zn) = g(zn)

Then,

f(z) = g(z)

in D.

Proof. As f and g are analytic in D, they are continuous in D. Therefore,

lim
n→∞

f(zn) = f(z0)

lim
n→∞

g(zn) = g(z0)
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As ∀n,

f(zn) = g(zn)

Let

f(z0) = a0

g(z0) = a0

Therefore, let

lim
n→∞

f(zn)− f(z0)
zn − z0

= f ′(z0)

= a1

Therefore,

lim
n→∞

g(zn)− g(z0)
zn − z0

= f ′(z0)

= a1

Similarly, let

f ′′(z0) = f(zn)− a0 − a1(zn − z0)
(zn − z0)2

= a2

g′′(z0) = g(zn)− a0 − a1(zn − z0)
(zn − z0)2

= a2

Therefore,

f(zn)−
N∑
k=0

ak(zn − z0)k

(zn − z0)N+1

= f (N+1)(z0)
(N + 1)!

= aN+1

g(zn)−
N∑
k=0

ak(zn − z0)k

(zn − z0)N+1

= g(N+1)(z0)
(N + 1)!

= aN+1
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Therefore the Taylor series coefficients of f and g are equal. Therefore,

f = g

in D.

Exercise 24.
Let f(z) be analytic in D0,1, such that ∀n ∈ N ≥ 2,

f

(
1
n

)
= 1
n

Find f(z).

Solution 24.
∀n ∈ N ≥ 2,∣∣∣∣∣ 1n

∣∣∣∣∣ ≤ 1

Therefore,{
1
n

}
⊂ D0,1

The limit of the sequence is

lim
n→∞

1
n

= 0

Therefore, the sequences converges to 0.
Let

g(z) = z

∴ g

(
1
n

)
= 1
n

Therefore, by the Second Uniqueness Theorem,

f(z) = g(z)
= z

48



5 Laurent Series

Theorem 67 (Laurent Theorem). Let f be analytic in an annulus r <
|z − z0| < R. Let C be a simple closed curve around z0, with positive
orientation, inside the annulus. Then, f has a unique Laurent series around
z0, which converges to f in this ring, i.e.,

f(z) =
∞∑

n=−∞
cn(z − z0)n

=
∞∑
n=1

cn
(z − z0)n +

∞∑
n=0

cn(z − z0)n

where

cn = 1
2πi

ˆ

C

f(z)
(z − z0)n+1 dz

and

r = lim
n→∞

sup n

√
|cn|

1
R

= lim
n→∞

sup n

√
|cn|

Exercise 25.

f(z) = − 1
(z − 1)(z − 2)

Find the Laurent series of f(z) around z = 0.
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Solution 25.
f is analytic everywhere except at z = 1 and z = 2.
For |z| < 1, converting to partial fractions,

− 1
(z − 1)(z − 2) = 1

z − 1 + −1
z − 2

= − 1
1− z + 1

2
1

1− z
2

= −
∞∑
n=0

zn + 1
2

∞∑
n=0

(
z

2

)2

= −
∞∑
n=0

zn +
∞∑
n=0

zn

2n+1

=
∞∑
n=0

(
1

2n+1 − 1
)
zn

For 1 < |z| < 2, converting to partial fractions,

− 1
(z − 1)(z − 2) = 1

z

1
1− 1

z

+ 1
2

1
1− z

2

= 1
z

∞∑
n=0

1
zn

+
∞∑
n=0

zn

2n+1

=
∞∑
n=1

1
zn

+
∞∑
n=0

zn

2n+1

For 2 < |z|, converting to partial fractions,

− 1
(z − 1)(z − 1) = 1

z − 1 + −1
z − 2

= 1
z

1
1− 1

z

− 1
z

1
1− 2

z

= 1
z

∞∑
n=0

1
zn
− 1
z

∞∑
n=0

(
2
z

)2

=
∞∑
n=1

1
zn
−
∞∑
n=1

2n−1

zn

=
∞∑
n=1

(
1− 2n−1

) 1
zn
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6 Isolated Singularity Points

Definition 58 (Isolated singular point). A point z0 is said to be an isolated
singular point of f(z) is f is analytic in a perforated neighbourhood of z0, i.e.
if ∃ε > 0 such that f is analytic in Dz0,ε \ {z0}.

Exercise 26.
Find all isolated singular points of

1. f(z) = 1
z

2. f(z) = sin z
z

3. f(z) = Log z

Solution 26.
1.

f(z) = 1
z

Therefore, ∀ε > 0 around z = 0, f is analytic. Therefore, z = 0 is an
isolated singular point for f(z).

2.

f(z) = sin z
z

Therefore, ∀ε > 0 around z = 0, f is analytic. Therefore, z = 0 is an
isolated singular point for f(z).

3.

f(z) = Log z

As Log z is not defined on a ray in C, f is not analytic on D0,ε. Therefore,
z = 0 is not an isolated singular point.
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6.1 Characterization of Isolated Singular Points
Definition 59 (Characterization of isolated singular points). Let z0 be an
isolated singular point of f . Therefore, by Laurent Theorem, f has a Laurent
series around z0 with r = 0, which converges in the ring 0 < |z − z0| < R.

1. z0 is said to be a removable isolated singular point, if ∀n < 0, cn = 0.

2. z0 is said to be a pole on order N , if ∀n < −N , cn = 0, and C−N 6= 0.

3. z0 is said to be a principle removable isolated singular point, if ∀n < 0,
cn 6= 0.

Definition 60 (Residue). Let f have an isolated singular point at z = 0.
The residue of f at z0 is defined to be the coefficient c−1, of 1

z−z0
.

It is denoted as

c−1 = Resf (z0)

= 1
2πi

ˆ

C

f(z) dz

where c−1 is a Laurent coefficient of f .

Definition 61. For any z0 ∈ C such that f(z0) = 0, the order of the zero is
defined to be n ∈ N, such that

f (n) 6= 0

and

f (k)(z0) = 0

where k = 0, . . . , n− 1.
A pole of order 1 is said to be a single pole.

Exercise 27.
Find the order of the zero at z = 0 for

1. f(z) = z sin z

2. f(z) = 1− cos z
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Solution 27.
1.

f(z) = z sin z
∴ f(0) = 0

Therefore,

f ′(z) = sin z + z cos z
∴ f ′(0) = 0

Therefore,

f ′′(z) = cos z + cos z − z sin z
∴ f ′′(0) = 2

6= 0

Therefore, the order of the zero at z = 0 is 2.

2.

f(z) = 1− cos z
∴ f(0) = 0

Therefore,

f ′(z) = sin z
∴ f ′(0) = 0

Therefore,

f ′′(z) = cos z
∴ f ′′(0) = 1

Therefore, the order of the zero at z = 0 is 2.

Exercise 28.
Let f(z) and g(z) be functions analytic at z0. Let z0 be a zero of order m
for f(z), and n for g(z). Then, prove that z0 is a zero of order m+ n for the
function f(z)g(z).
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Solution 28.
As z0 is a zero of order m with respect to f(z),

f(z) = (z − z0)mh1(z)

where h1(z) is an analytic function, such that

h1(z0) 6= 0

As z0 is a zero of order n with respect to g(z),

g(z) = (z − z0)nh2(z)

where h2(z) is an analytic function, such that

h2(z0) 6= 0

Therefore,

f(z)g(z) = (z − z0)mh1(z)(z − z0)nh2(z)
= (z − z0)m+nh1(z)h2(z)

Therefore, z0 is a zero of order m+ n for the function f(z)g(z).
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