

YouDanMu Sprint 2

Defects Log

Team Member: Naiwei Zheng, Yucong Ma,

 Yibo Gou, Ge Yan,

 Jiaqi Zhu

A. Design Inspection Defects Log
Product YouDanMu Design Inspection

Date 03/01/17

Author Ge Yan

Moderator Naiwei Zheng

Inspectors Jiaqi Zhu, Yibo Gou, Naiwei Zheng

Recorders Yucong Ma

Defect# Description Severity How corrected.

1 It was originally planned that our render
module is isolated completely from the
timeline module and use an event
emitting module to communicate with
each other. However, js is weak with
event emission system and it is work
heavy and time consuming to implement
our own system.

3 We fix the issue by
using rejx which is
small and easy to
implement to our
existing code. It also
works well when
hooking up different
events to our
functions.

2. Danmaku Source module and Video
Source module were originally planned
to be sharing with one of the same
support interface however the video
source module is far more complicated
than we planned, by sharing the same
interface would be a waste for Danmaku
source or the interface is not enough for
Video Source module.

3 Separated two
modules completely
and use two
interfaces for
inheritance. Used
another Danmaku
module to connect
timeline between
Danmaku and Video
Source.

3. The Video Source module is heavily
based on the actual video website API
which made it really hard to implement
test cases and test stubs when come to
testing

3 Written a stub as a
video site that has
the API to be
accepted by our
video source
module. Fake our
own video site that
emit events by our
manipulations.
Implemented to be
used in automatic
testing

B. Code Inspection Defects Log

Product Damaku Fetch module inspection

Date 03/01/17

Author Yibo Gou

Moderator Naiwei Zheng

Inspectors Yucong Ma, Yibo Gou, Ge Yan

Recorders Yucong Ma

Defect# Description Severity How corrected.

1 When fetching Danmaku with
Bilibili Web API from the
injected script running on the
YouTube web page, Chrome
browser complains about the
cross-domain reference policy
violation. Thus failed to load
any external file.

3 We have to redirect the HTTP
call from the injected script to
our extension’s background
page where it has no
cross-domain reference policy.
Then redirect the response
back to the content page where
data is processed.

2. We want to iterate on the
parsed XML object element
query result. However, the
returned value is of type
NodeList, where no Array-like
functions is applicable.

1 By looking up the
implementation of NodeList, we
found that it implemented
Iterable interface, where we
can directly construct array like
stream with RxJS’
`Observable.from` constructor.
Then we can apply RxJS
operators on the resulting
stream.

3. We expect the module to return
a stream of Danmaku as an
Observable RxJS object, but
the `map` function produced a
stream of array of Danmaku. It
may result in type mismatch.

2 We need to use the
`mergeMap` RxJS operator to
flatten the produced array of
Danmaku into a single stream
of Danmaku.

Product Youtube Integration module inspection

Date 03/01/17

Author Naiwei Zheng

Moderator Naiwei Zheng

Inspectors Yibo Gou

Recorders Jiaqi Zhu

Defect# Description Severit
y

How corrected.

1 Some of the event name are hard
coded that needed to hook to the
website events, it will be hard to find
out the issue if the API of YouTube
has changed.

3 Define all constant
variables in one place.
When these names are to
be used. used the
variables instead of hard
coding the names of the
events.

2. Ads plays and videos plays are
handled at the same place. This
caused much confusion when come to
editing to code to add more functions
as some functions should not be run
when the ads played. However, some
functions needs to be run only when
the ads played.

3 Separate ads play and
video play functions and
distinguish the event
emission between these
two play events.

3. To capture the screen size change
event, we listened on the size button
clicked event, where it fires before the
screen size is actually changed.

2 Use asynchronous busy
waiting to capture the
moment where the screen
size is changed.

4. When entering to fullscreen, the
screen size is changed several times,
when using the above method, we can
only capture the first change, and the
ending screen size may be different.

2 We rewrite the screen
size change detection
mechanism. We use a
slow clock to busy loop a
detector to constantly
check for screen size
change. We produce a
RxJS stream of screen
size change events, then
we apply the RxJS
`sampleTime` operator to
“debounce” a fast
changing sequence of

events and only take the
last event in a short
duration of time.

5. Sometimes ads play before video
starts, and thus the play event is not
fired. However the video is actually
buffering, and we want to wrap it with
a “cue” event to indicated that video is
about to play and meta info is
available.

1 We listen on “buffering”
event to managed the
state of video info
initialization, and wrap it
inside our “cue” event.

6. To be able to destroy rendering
screen, we need an additional “unplay”
event to indicate video meta info
becomes invalid.

2 We listen on the
“unstarted” event that
indicate video is stopped,
and wrap it inside our
“unplay” event.

Product Chrome Extension module Inspection.

Date 03/01/17

Author Yucong Ma

Moderator Naiwei Zheng

Inspectors Jiaqi Zhu, Ge Yan

Recorders Jiaqi Zhu

Defect# Description Severity How corrected.

1 When implementing the
injected script <-> background
page function call redirection
channel, we found out that no
direct method is available to
communicate between the two
environments.

3 We found out that the content
script can listen on events on
the page element, and the
injected script can dispatch
custom events. Moreover,
there’s `chrome.sendMessage`
interface on content script that
can be used to communicate
with background script. Thus
we can use content script as a
proxy to listen on injected
script’s event and forward it to
background page with Chrome
extension API, and get back
response, and create custom
event again and dispatch to
injected script again.

2. The user settings are not
synced when they log in on
another device, the setting in
the new device overwrite the
original settings.

2 When the current settings are
not in default status, promote
user to select between “Use
saved settings” or “Save and
apply current settings”.

Product Render module inspection.

Date 03/01/17

Author Yibo Gou

Moderator Naiwei Zheng

Inspectors Jiaqi Zhu, Naiwei Zheng

Recorders Naiwei Zheng

Defect# Description Severity How corrected.

1 Unicode have special
character(subscript,superscript) which will
exceed the screen that cause problem for
the calculation of the rendering module.

3 Filter out those
special characters
which are trival for
normal users.

2. When user change the overall font size of
Danmaku. The dynamicly changing
sometimes will cause overlap of Danmaku.

2 Recalculate and
reset the default
denstiy of Danmaku
when user adjust the
font size.’’

3. When user change the overall font family,
some characters cannot be matched in
new font family.

1 Make those
untranslatable
characters to
question mark.

Product Bilibili Danmaku paser module inspection.

Date 03/01/17

Author Jiaqi Zhu

Moderator Naiwei Zheng

Inspectors Naiwei Zheng, Ge Yan

Recorders Yucong Ma

Defect# Description Severity How corrected.

1 Danmaku sources will return GBK
encoding which is not acceptable for our
format will cuase error.

3 Check the encoding
before pasing

2 During parsing process, Danmaku with
same author name will be consider as the
same author. It can have different user with
same user name.

 Parsing Danmaku
based on user ID
instead of user
name.

C. Unit Test Defects Log

We do use automation to assist our testing. Since our source code is written in TypeScript,
we want to benefits from the type checking and IDE static code analysis by writing our test
cases also in TypeScript. Thus we need to compile our test scripts along with our source
code. To do this we used Gulp.js, a stream-interfaced asynchronous JavaScript task runner;
node-typescript, a package that stream the source files to the TypeScript compiler, and
several other toolings.

We choose Jasmine.js as our test framework, with assistance with Chai.js as an
environment independent assertion library, Mocha.js as the task runner in browser
environment, and coverall.js as the code coverage reporter.

The testing strategy is to write a set of test cases for every single module. We
refactored our modules into single files, and we can dynamically substitute other modules
with dummy stubs with a static testing interface. This way we can just import a module,
replaces other modules with stubs, then write assertion with set of test cases to conduct
testing on a single module.

Product Youtube Integration module Unit test

Date 03/01/17

Author Naiwei Zheng

Moderator Naiwei Zheng

Inspectors Ge Yan, Yibo Gou

Recorders Jiaqi Zhu

Defect# Description Severity How corrected.

1. Adplay event can happen during the
playback of video, this could cause conflict
to the render module where there is an ad
inserted in the middle of the video.

Input: adplay event from Youtube event
Output: fucntion to handle adplay event

1 Monitor videoPause
event when adPlay
trigger to find out if
the ads is played
during the video
playback and pause
the danmaku if
necessary.

2. If the player is already full screen before the
event is being hooked to our event system,
will cause problem to the render module.

Input: Screen size and fullscreen event
Output: parameters to be parsed to render

2 When getting the
screen size for the
first time. Do not
assume that the
video is played
using window mode

module but check if the
fullscreen mode is
activated and react
to that.

Product Chrome extension module Unit test

Date 03/01/17

Author Yibo Gou

Moderator Naiwei Zheng

Inspectors Naiwei Zheng, Yucong Ma

Recorders Jiaqi Zhu

Defect# Description Severity How corrected.

1. If the profile being synced to the chrome
cloud is not correct and being read by the
extension module. The module does not
check if the profile is valid and this will
cause problem if the profile is not valid
even the plugin will completely crashed
even with restart

Input: user profile
Output: plugin settings

3 Check the bounds of
each value in profile,
check the validity of
each definitions in
the profile and throw
out error if the profile
is not valid. Load the
default profile when
the profile is valid.

Product YouDanMu render module Unit test

Date 03/01/17

Author Yibo Gou

Moderator Naiwei Zheng

Inspectors Yucong Ma, Naiwei Zheng

Recorders Jiaqi Zhu

Defect# Description Severity How corrected.

1. If the danmaku is being input into the
render module is empty, the danmaku will

2 ignore empty
danmaku with only

still be render but the calculation to dodge
other danmaku will cause division of zero

Input: danmaku to render
Output: render result

whitespace
character.

Product Danmaku Timeline module Unit test

Date 03/01/17

Author Yibo Gou

Moderator Naiwei Zheng

Inspectors Yucong Ma, Naiwei Zheng

Recorders Jiaqi Zhu

Defect# Description Severity How corrected.

1. Danmaku that are blocked by the user will
be render again once the danmaku is
parsed for the parser once more (refresh,
reset, reload).

Input: Danmaku to fill in timeline
Output: Danmaku to be rendered in
timeline

3 Use the pair of vid
and uid of the
danmaku to record
the danmaku being
blocked rather than
using solely the uid
of danmaku to
record the danmaku
being blocked by
user.

