

YouDanMu

Sprint 1

Incremental Testing and

Regression Testing Log

Team Member: Naiwei Zheng, Yucong Ma,

 Yibo Gou, Ge Yan,

 Jiaqi Zhu

1 Classification Of Components
1.1 Define Components

a. Incremental Testing Form

We use Top-down form of incremental testing since our modules are highly
dependent to each other and our plan of implementation of project are top-down,
meaning many of the sub-modules are not finished in Sprint 1, it is easier to design
and implement for us to perform Top-down testing rather than bottom-up testing.

b. Modules

i. YDM

Main entrance of the program, the realization and initialization for all
other modules, communicate with Browser Extension to listen events and
assign action to each modules

● Input: Events from Video Providers
● Output: Events to signal other modules
● Parent Dependency: None
● Child Dependency: Danmaku Providers, Danmaku Timeline,

Renderer, Video Providers, Danmaku, Browser Extension
ii. Danmaku Timeline

Store the timeline of Danmaku and host function that perform play, pause,
speed change of the timeline. Communicate with Renderer as the data source
of contents to be rendered

● Input: List of Danmaku fetched from Danmaku Providers
● Output: Animation frame update events
● Parent Dependency: YDM, Danmaku Providers
● Child Dependency: Danmaku

iii. Danmaku Providers

An interface to be implemented to be classes for loading and parsing the
sources of danmaku.

● Input: Video identifier
● Output: List of Danmaku from the specific Danmaku source
● Parent Dependency: YDM
● Child Dependency: Danmaku

iv. Video Providers

An interface to be implemented to be classes that store the information of
current video player states and events

● Input: Third party events (e.g. YouTube internal events)
● Output: Common YDM events
● Parent Dependency: YDM

● Child Dependency: Third party interface (e.g. YouTube API)
v. Browser Extension

The outward extension of the plugin to communicate with browser, hook up
events listeners, inject javascript code and interact with DOM elements.

● Input: Events from browser
● Output: Common YDN events
● Parent Dependency: YDM
● Child Dependency: Browser API

vi. Danmaku

The class to be instantiated to store a single danmaku content, styles and state

● Input: Danmaku content and properties
● Output: Danmaku object encapsulate the DOM element
● Parent Dependency: YDM
● Child Dependency: None

vii. Renderer

Convert our data to DOM elements that are rendered by the browser. React to
resize and state change of the player.

● Input: Danmaku Timeline tick events
● Output: Draw Danmaku on the web page
● Parent Dependency: YDM, Danmaku Timeline
● Child Dependency: Danmaku

c. Diagram

1.2 Which form of incremental testing did you follow
For our incremental testing, we used top-down testing with the help of stubs. This is because
most of the leaf-node modules in our project are depending on the environments, and should
integrate with third party modules. Such as the Danmaku Providers classes, they invokes
API from different websites but eventually returns a common data type to our other modules.
The YouTube API hijack the YouTube API and listen to web page events but eventually
provides a set of common events to other modules. With top-down testing, we can replace
these leaf-node environment depending modules with dummy stubs that only responds to
the common interface, without actually invoking their party interfaces. This way, we can free
our testing environment from the actual production environment, for instance, we can test
most of the modules merely under the command line, event without running a browser.

2 Incremental and Regression Testing

2.1 Automation
We do use automation to assist our incremental and regression testing. Since our

source code is written in TypeScript, we want to benefits from the type checking and IDE
static code analysis by writing our test cases also in TypeScript. Thus we need to compile
our test scripts along with our source code. To do this we used Gulp.js, a stream-interfaced
asynchronous JavaScript task runner; node-typescript, a package that stream the source
files to the TypeScript compiler, and several other toolings.

We choose Jasmine.js as our test framework, with assistance with Chai.js as an
environment independent assertion library, Mocha.js as the task runner in browser
environment, and coverall.js as the code coverage reporter.

The testing strategy is to write a set of test cases for every single module. We
refactored our modules into single files, and we can dynamically substitute other modules
with dummy stubs with a static testing interface. This way we can just import a module,
replaces other modules with stubs, then write assertion with set of test cases to conduct
testing on a single module.

For regression testing, we wrote a Gulp job that watch on source code changes, with
each change, it automatically rerun the compilation and testing process, and produce code
coverage report. Thus every fix will be tested immediately and the automation process would
efficiently assist the development iteration.

2.2 Defect log
* Severity: 1 – Workaround 2 – Important 3 – Critical

Module YDM

Incremental Test Log

Defect No. Description Severity How to correct

1 The plug-in sometimes will crush
if user turn video into fullscreen. 3 Create a case in resize event function

to handle this situation.

2 After the video reloaded, the event
listener stop functioning 2

Listen more reload events rather than
solely refresh event. Re-hook the
event listeners each time the reload
event happens

3 After switch video, Danmaku for
previous video will still be played. 2 After switching video, identify the

video.

Regression Test Log

Defect No. Description Severity How to correct

1

After fixing reloading bug,
sometimes the reload events
triggered while the video is not
reloaded

2

This is caused by internal crash and
reload by the browser or video
player. We guarded a limit of how
many times the video can be
reloaded, while the limit reach, the
danmaku will not be reloaded and a
prompt is out to the user.

2

After fixing the switch video bug.
Sometimes the trial to identify
video happens too often that
affect the experience of the user.

2
Simplified the process of identifying
video, the reload will only happens if
the video is really changed

Module danmakuProvider

Incremental Test Log

Defect No. Description Severity How to correct

1 Some Danmaku cannot be
downloaded due to the different
requirement from different
Danmaku sources(Login.etc)

1 Prompt user notification that
Danmaku from certain Danmaku
source cannot be loaded.

2 Some Website posted special
Danmaku which written by script
designed by website themselves.

1 Identify and filter those special
Danmaku.

Regression Test Log

Defect No. Description Severity How to correct

1 After adding identification to
special danmaku, the renderer is
not function to this new data

3 Fix the renderer to accept the new
data type

2 The error message in the
notification that used to prompt
user that the danmaku cannot be
download from specific source
caused the parsing process to stop
and the callback is never called
after parser..

3 Added a return error message to the
parser callback that specifically
stated error why the danmaku cannot
be downloaded

Module Danmaku

Incremental Test Log

Defect No. Description Severity How to correct

1

Different website has different
properties for their own
Danmaku which cannot be
translate and recorded by our
own format

1 Only parse the property that we
have already identified.

2 Size ratio from Danmaku
sources will cause the overlap 2

Limit the size ratio of Danmaku.
When the ratio exceed certain value,
ratio will be set as the value.

Regression Test Log

Defect No. Description Severity How to correct

1 Size ratio are
sometimes too small
that cause display and
calculation error to the
renderer

1 Set a lower bound of
the minimal size ratio

Module Video Provider

Incremental Test Log

Defect No. Description Severity How to correct

1 Danmaku start playing when
advertisement is playing. 2 Identify current playing video is

video content or ads.

2

When video playing speed
exceed certain value(or negative
number) our render will cause
problem to the danmaku timeline
and renderer

1 Limit the range of playing speed to
values that accepted by most users.

3
Constantly rapidly hitting pause
and play will cause inaccurate
timeline

1
Sync the timeline with the video
timeline each time the play event is
triggered.

Regression Test Log

Defect No. Description Severity How to correct

1

Setting the speed limit to caused
calling the speed change function
while the speed is not changed
(while reach the lower or higher
bound)

1
Added a statement to ensure the
speed limit has really changed to call
the speed change event.

2

If the timeline is synced to the
time in the near past, it cause
same danmaku being displayed
twice

2

Adding a minimal difference between
the timeline and the time to sync, if
the limit is not reached, the timeline
will not be updated. Also, if the
timeline to synced to the time in the
past, the renderer will clear the
screen.

Module Danmaku Timeline

Incremental Test Log

Defect No. Description Severity How to correct

1
If seek time number exceed
Danmaku max time will cause
timeline to crash

3 Compare the max time. Conditionally
seek time.

2

If Danmaku timeline loaded by
user exceed video time, this will
cause Danmaku continue playing
after video ends.

2

Compare the video length with
Danmaku timeline and delete the
Danmaku which exceed the video
length.

3

If Danmaku display is turned off,
then be restarted, there will be no
Danmaku show on the current
page.

2 Notify users to refresh the pages
which need to display Danmaku.

Regression Test Log

Defect No. Description Severity How to correct

1

Because we cut the
remaining timeline
when the danmaku
timeline exceed the
video time. If the user
modify the danmaku
timeline the danmaku
exceeded will not
render.

2

We decided only skip
rendering the
danmaku instead of
deleting it.

Module Renderer

Incremental Test Log

Defect No. Description Severity How to correct

1
Extremely large amount of
Danmaku in the same screen will
cause crush

3 Set a maximum number of Danmaku
in the same screen.

2 Cannot calculate the available
space 2

Update algorithm, each time we need
allocate a new space, we recalculate
the all the occupied space.

3

When a danmaku contains white
space characters at the beginning
or at the end of it. These character
will be rendered and occupied
screen spaces.

1 Before render the danmaku, we will
trim the content of each danmaku.

Regression Test Log

Defect No. Description Severity How to correct

1 Some Danmaku will not be
display 1

Push those danmaku into a queue and
will be displayed when there are
some available space.

2
After we calculate for every
Danmaku, delay will be
generated by this algorithm

1 Optimize our algorithm.

3

After we use queue for Danmaku
which cannot be displayed on
time. Some old Danmaku will be
displayed in inappropriate time

1
Set an expired time. When the
Danmaku exceed valid time, this
Danmaku will be set as invalid.

Module Browser Extension

Incremental Test Log

Defect No. Description Severity How to correct

1
If user run the extension during
playing the video, the extension
won’t work.

1 Promote user to refresh the page.

2
The plugin waiting for message
forever while extension cannot
get the message from webpage.

2 Send timeout event to YDM and
hang all operations

3
The event extension hooked has
expired however the module still
listening to the event.

2 Set a timeout to the event and handle
it with YDM to hang all operations

4
When in one of the tabs where is
plugin loaded is crashed, the
module will also crashed.

2 Listen to processes.onExit event and
unload all instances with YDM

Regression Test Log

Defect No. Description Severity How to correct

1 Timeout event hang forever even
after page reloaded 2 Add an exception to reload event to

be detected after timeout happens

