

Document number​: ​D0419R0V0
Date​: 2016-07-31
Project​: Library Working Group, SG14
Reply-to​: Carl Cook, ​carlcook@optiver.com​, Nicolas Fleury, ​nidoizo@gmail.com

Non-allocating standard functions

Abstract

This paper introduces ​inplace_function​, a non-allocating general-purpose polymorphic
function wrapper, designed to be a drop-in, zero-cost replacement for ​std::function ​.
This proposal has been put forward due to many members of SG14 implementing this
concept within games and low latency C++ systems. The key idea is to avoid the several
costs of memory allocation when constructing a ​std::function​, instead embedding the
buffer for the target within the ​inplace_function​ itself.

In typical usage of ​std::function​, the target is called before the function goes out of
scope (or is copied), meaning heap allocation only solves the problem of not knowing how
much space to reserve for the target. With ​inplace_function​, we pass the responsibility of
specifying an adequate buffer size to the caller at compile time (verified by a static assert),
allowing users to avoid all unnecessary memory allocations - something important to
developers of low latency C++ systems.

I. Table of Contents

II. Introduction
III. Motivation and Scope
IV. Impact on the standard
V. Design decisions

Relation with std::function
Name
Class signature
Compilation-time guarantee
Copy/Move/Destruction
Memory layout
Trivial/non trivial classes split
Base class without size
Swapping

VI. Technical specifications
Sample use

VII. Acknowledgements
Existing implementations

mailto:carlcook@optiver.com
mailto:nidoizo@gmail.com

VIII. References

II. Introduction
This paper is to outline the motivation for adding a non-allocating standard function to the
standard library. A non-allocating standard function is designed to be a drop-in replacement
for ​std::function​, but with all storage internal to the inplace_function object itself, rather
than externally allocated memory.

III. Motivation and Scope
The introduction of ​std::function​, a general-purpose polymorphic wrapper over callable
targets, has been widely appreciated by C++ users. It gives the ability to assign from several
callable target types, pass functions by value, and invoke targets with the familiar function
call syntax.

std::function ​generally incurs a dynamic allocation on assignment of the target function
(the exception being the small object optimization for function pointers and
std::reference_wrappers). For performance critical software, this overhead, while seemingly
low, is unacceptable.

Within the SG14 reflector, so far we have found six implementations of non allocating
functions that are used in commercial games and high frequency trading applications. This 1

suggests that the problem of dynamic allocation is real, and that a standardised
non-allocating function would be of use.

We present a full reference implementation and test suite for inspection. We expect that
such a function is useful within games and low latency C++ development, where a
general-purpose function is useful, but ​std::function​ can’t be used due to its expensive
and unpredictable performance characteristics.

IV. Impact on the standard
This proposal is a pure library extension. It does not require changes to any standard
classes, functions or headers, and it does not affect the application binary interface.

It can be implemented by C++11 compilers, and relies only on standard libraries.

1 See ​Existing Implementations

V. Design decisions

Name
The name static_function is something that could first come up when thinking of an
embedded buffer, however with the meaning of “static function” in C++, it would sound
confusing. So far the name suggested is inplace_function, as it implies the buffer is
embedded, whatever the size of the function. Since a lambda could end up with multiple
closures, this is a detail important to be understood as a programmer has to explicitly
increase the template size argument. It could make sense to adopt the same nomenclature
of proposals like inline_vector, so inline_function (or inplace_vector), to have a common
suffix for different standard utilities with embedded buffers.

Relation with std::function
The first discussion on SG14 was about adding a base class to std::function (or make
std::function a template typedef) that is more flexible to prevent heap usage. However as
discussion evolved, the conclusion is that is what is wanted is another class,
std::inplace_function​, dedicated to being allocation-less.

For that new class, sharing a base class with ​std::function​ was discussed, to be able to
pass function objects by reference without dependence on how it’s stored. However, that
might not be worth the burden in implementation restrictions, and would break the ABI with
the existing ​std::function​. Instead, std::​inplace_function​ class can prioritize
performance without compromise, and still conform to the ​std::function​ interface.

Copying from ​std::inplace_function​ to ​std::function​ of the same function signature
should be supported, as ​std::function​ supports any function size. However, so far,
copying from ​std::function​ to ​std::inplace_function​ would not be allowed, as it risks
breaking the compile-time guarantees of ​std::inplace_function​ (an option here is to
throw a runtime exception if the target buffer is too small).

It might be worth noting that a codebase preferring ​std::inplace_function​ to
std::function​ will probably always prefer it.

Class signature
template<typename Signature, size_t Capacity = /*default-capacity*/,

size_t Alignment = /*default-alignment*/>

class inplace_function;

● Capacity​ is the size of the internal buffer
● Alignment​ is the largest supported alignment of assigned functions
● Default-capacity​ is implementation-defined
● Default-alignment​ is implementation-defined

Use of standard allocators
Allocator support was part of the original proposal for std::function, but was dropped as part
of C++17 (see ​P0302R1​). The same concerns for allocator support are held by us, such as
what should be the expected behaviour when an ​inplace_function​ is copied, and what
are the semantics for type erasure v.s. allocators.

A more pressing concern, however, is the negative performance impact a custom allocator is
likely to introduce. For example, if the internal buffer is allocated elsewhere, this means that
the management information (such as the pointer to the buffer) are located inplace, but the
actual buffer itself is elsewhere.

We believe that custom allocators are not a good match for inplace_function. We prefer to
allow the implementor of inplace_function to determine the exact layout of the object’s
memory, and it is usually best to hold all such memory internal to the inplace_function (i.e.
allocation free).

Relationship to llvm::function_ref
The LLVM API includes a utility function named ​llvm::function_ref​, which provides a
reference to a callable object:
http://llvm.org/docs/ProgrammersManual.html#the-function-ref-class-template​. This is
semantically identical to a ​std::function​ that contains a reference wrapper, i.e. a non
allocating handle to a callable object that can itself be passed by reference or by value.

While this is comparable to ​inplace_function​, a copy of the callable object is made by
inplace_function​, meaning there are no issues with temporaries going out of scope
before the ​inplace_function​ is invoked. For example, if a lambda has references to local
variables, the compiler is free to clean these up before the ​llvm::function_ref​ is
invoked, leading to undefined behavior.

Possibility of std::make_inplace_function
This would be useful in some cases, but given that ​std::function​ does not provide a
make_function​ (due to ambiguities in terms of type resolution), ​make_inplace_function
won’t be provided either.

Compilation-time guarantee
Since the buffer size and alignment is known at compilation-time, then assigned functions
are validated at compilation-time to be of proper size and alignment. The function size can
be at most the buffer size, and function alignment can be at most the alignment. Internal to
std::inplace_function​, ​static_assert​ should be used for these validations.

The only run-time error inside ​std::inplace_function​ itself is when calling it without any
function assigned.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html
http://llvm.org/docs/ProgrammersManual.html#the-function-ref-class-template

Default buffer size and default alignment size
In our implementation, a default buffer size of 32 bytes, with alignment of 16 bytes, seems to
be a reasonable choice. This gives a total object size of 48 bytes (i.e. less than a L1 cache
line on x86), and is still large enough to capture most callable objects in the codebases
tested on so far. With 16 byte alignment, this allows us to store the two internal pointers with
no padding, followed by the buffer, on the same cache line, with no padding (assuming the
inplace_function​ object itself is cache aligned).

Copy/move/destruction
Proper copy, move and destruction are all supported for the embedded function. Again, the
exact mechanics of this are left to the implementation.

Generated code
An optimizing compiler should generate a minimum amount of overhead when constructing
and invoking an ​inplace_function​. For example, to construct an ​inplace_function​ with
a simple lambda, such as:

inplace_function<void()> fn = [&]{ locallyScopedVar += rand(); };

all recent versions of gcc will generate two move instructions (one for the address of the
management function, and one for the address of the invocation function), and then a single
call instruction against the invocation function.

Memory layout
Memory layout is left to implementation, however we can note that all implementations we
have found so far have taken the same approach of storing function pointers directly as
members to avoid the indirection of type-erasing using a vtable, as well as a properly aligned
buffer to store the function.

The function pointers are used for four things: calling, copying, moving and destroying. The
same function can be used for multiple tasks. However, since calling performance is the
most important and has a unique signature, the function pointer for calling should probably
be dedicated to that task.

The buffer storing the function will be used for calling, but its last bytes may have a high
chance of not being used. So optimal memory layout depends on ​Alignment​, as follows:

If​ Alignment <= sizeof(void*) ​then it is optimal to store the members in this
order:

1. CallerFctPtr
2. Buffer
3. ManagementFctPtr

If​ Alignment == 2*sizeof(void*) ​then you can avoid wasted padding in the first
cache line, and members should be stored in this order:

1. CallerFctPtr
2. ManagementFctPtr
3. Buffer

Otherwise the same logic applies if the implementation would use more than two

function pointers:
1. CallerFctPtr
2. DestructionFctPtr
3. CopyAndMoveFctPtr
4. Buffer

Overall we tend to think it’s better to put the Destroy, Copy and Move routines inside the
same management function, similar to gcc’s implementation of ​std::function.

Trivial/non trivial classes split
An additional ​std::inplace_trivial_function​ class could be provided to avoid storing
function pointers to management routines that are not used. However, the flexible member
layout that can be used depending on alignment reduces this need, by storing members in
terms of optimal cache locality.

Base class without size
A base class ​std::inplace_function_base​ without the ​Capacity​ template argument
could be added, to allow passing a ​std::inplace_function​ object of any capacity as an
argument. It would contain the caller function pointer. However to be fully functional it would
need to pass the ​this​ pointer to the caller function or have an additional template argument
with alignment to be able to perform a proper down cast upon invocation.

The base class would require deleted or protected copy constructors to avoid object slicing,
meaning a solution like proposal of ​std::unique_function could be used instead. A 2

proposal like ​std::unique_function​ sounds more powerful for this kind of need, by
allowing wrapping of any ​callable​ type.

Alignment
It could be possible for std::inplace_function to support assignment of functions of bigger
alignment, as long as the capacity of the inplace_function is big enough to compensate.
That validation would be at compile-time and it would add a few instructions in the
implementation to offset the buffer at proper alignment. The capacity would need to be at
least AssignedSize + AssignedAlignment - Alignment.

But we don’t suggest to do that. It would minimize the need to increase alignment template
argument, but it could request to increase alignment in situations where only the size of the

2 See ​Related Work

assigned function changed, which could be confusing. We think it’s better to simple have a
static assert on alignment of assigned function to not be bigger than inplace_function
alignment.

Exceptions
Multiple SG14 members want inplace_function to support to be exception free. We suggest
to add a trait for the behavior when calling non-assigned inplace_function. That same trait
would be responsible of making inplace_function::operator() with noexcept(true). The
default trait behavior would still be to throw an exception when calling a non-assigned
inplace_function.

Swapping
We have seen some implementations with support for swapping. However, we have seen
some implementations that would not properly support certain functor types. For example,
suppose the buffer is implemented by the following member:

 ​std::aligned_storage<CapacityT, AlignmentT> _M_data;

You cannot do something as simple as this in the swap function:

 std::swap(_M_data, other._M_data);

Since the two buffers can contain different types (functors), swapping must be done through
three different moves and would only work for two buffers of same size:

 std::aligned_storage<Capacity, Alignment> tempData;

 move(_M_data, tempData);

 move(other._M_data, this->_M_data);

 move(tempData, other._M_data);

VI. Technical specifications
A full implementation and tests can be found on the SG14 github repository, please see item
[1] in the references section for details.

template <typename Signature, size_t Capacity =
/*InplaceFunctionDefaultCapacity*/​, size_t Alignment =
/*InplaceFunctionDefaultAlignment*/​>
class inplace_function;

template <typename R, typename... Args, size_t Capacity, size_t Alignment>
class inplace_function<R(Args...), Capacity, Alignment>
{
Public:

// Creates an empty function
inplace_function();

// Destroys the inplace_function. If the stored callable is valid, it

is destroyed also
~inplace_function();

// Creates an implace function, copying the target of other within the

internal buffer
// If the callable is larger than the internal buffer, a compile-time

error is issued
// May throw any exception encountered by the constructor when copying

the target object
template<typename Callable>
inplace_function(const Callable& target);

// Moves the target of an implace function, storing the callable

within the internal buffer
// If the callable is larger than the internal buffer, a compile-time

error is issued
// May throw any exception encountered by the constructor when moving

the target object
template<typename Callable>
inplace_function(Callable&& target);

// Copy construct an implace_function, storing a copy of other’s

target internally
// May throw any exception encountered by the constructor when copying

the target object
inplace_function(const inplace_function& other);

// Move construct an implace_function, moving the other’s target to

this inplace_function’s internal buffer
// May throw any exception encountered by the constructor when moving

the target object
inplace_function(inplace_function&& other);

// Allows for copying from inplace_function object of the same type,

but with a smaller buffer
// May throw any exception encountered by the constructor when copying

the target object
// If OtherCapacity is greater than Capacity, a compile-time error is

issued
template<size_t OtherCapacity>
inplace_function(const inplace_function<R(Args...), OtherCapacity>&

other);

// Allows for moving an inplace_function object of the same type, but
with a smaller buffer

// May throw any exception encountered by the constructor when moving
the target object

// If OtherCapacity is greater than Capacity, a compile-time error is
issue

template<size_t OtherCapacity>
inplace_function(inplace_function<R(Args...), OtherCapacity>&& other);

// Assigns a copy of other’s target
// May throw any exception encountered by the assignment operator when

copying the target object
inplace_function& operator=(const inplace_function& other);

// Assigns the other’s target by way of moving
// May throw any exception encountered by the assignment operator when

moving the target object
inplace_function& operator=(inplace_function&& other);

// Allows for copy assignment of an inplace_function object of the

same type, but with a smaller buffer
// If the copy constructor of target object throws, this is left in

uninitialized state
// If OtherCapacity is greater than Capacity, a compile-time error is

issued
template<size_t OtherCapacity>
inplace_function& operator=(const inplace_function<R(Args...),

OtherCapacity>& other);

// Allows for move assignment of an inplace_function object of the
same type, but with a smaller buffer

// If the move constructor of target object throws, this is left in
uninitialized state

// If OtherCapacity is greater than Capacity, a compile-time error is
issued

template<size_t OtherCapacity>
inplace_function& operator=(inplace_function<R(Args...),

OtherCapacity>&& other);

// Assign a new target
// If the copy constructor of target object throws, this is left in

uninitialized state
template<typename Callable>
inplace_function& operator=(const Callable& target);

// Assign a new target by way of moving
// If the move constructor of target object throws, this is left in

uninitialized state
template<typename Callable>
inplace_function& operator=(Callable&& target);

//​ ​Compares​ ​this​ ​inplace​ ​function​ ​with​ ​a​ ​null​ ​pointer
//​ ​Empty​ ​functions​ ​compare​ ​equal,​ ​non-empty​ ​functions​ ​compare​ ​unequal
bool operator==(std::nullptr_t);

//​ ​Compares​ ​this​ ​inplace​ ​function​ ​with​ ​a​ ​null​ ​pointer
//​ ​Empty​ ​functions​ ​compare​ ​equal,​ ​non-empty​ ​functions​ ​compare​ ​unequal

bool operator!=(std::nullptr_t);

// Converts to 'true' if assigned
explicit operator bool() const throw();

// Invokes the target
// Throws std::bad_function_call if not assigned
R operator () (Args... args) const;

// Swap two targets
void swap(inplace_function& other);

};

Sample use

#include <iostream>

// simple functor type
struct Functor
{

Functor() {}
Functor(const Functor&) { std::cout << "copy functor" << std::endl; }
Functor(Functor&&) { std::cout << "move functor" << std::endl; }
void operator()()
{

std::cout << "functor operator()" << std::endl;
}

};

// simple free function
void Foo()
{

std::cout << "foo()" << std::endl;
}

// exercise either a standard_function or inplace_function
template <typename T>
void FunctionTest()
{

// construct function from lambda and invoke
T func1 = [] { std::cout << "lambda invoked" << std::endl; };
func1();

// assign to function from free function and invoke
func1 = &Foo;
func1();

// construct function from functor and invoke
T func2 = Functor();
func2();

// swap two compatible functions
func.swap(func2);

}

int main()
{

FunctionTest<std::inplace_function<void()>>();
FunctionTest<std::function<void()>>();

}

VII. Acknowledgements
The authors would like to thank Maciej Gajewski from Optiver B.V. and Edward Catmur from
Maven Securities, for contributing their reference implementations, and for their insightful
comments.

Existing implementations

1. Optiver B.V.
a. Non allocating function which has a user specified capacity. Static_assert is

used to detect buffer overflows. Lambdas record destructors and constructors
2. Maven Securities:

a. Non allocating function which supports only trivial types, meaning no pointer
to constructors or destructors is required (only the buffer and an invocation
pointer). A user defined capacity of N bytes, with static_asserts for overflow

b. Non allocating function which supports copying, moving and destructing of
callable targets. A user defined capacity of N bytes.

3. Ubisoft
a. Non allocating function that was a wrapper over std::function using TLS to

work with specific stateless allocator. Was working with VS2012 but with
variadic templates it’s now much simpler to make a custom type without
wrapping std::function.

4. Wargaming Seattle
a. Sean to comment here?

5. Erik Ringtorp
a. Erik, feel like commenting here?

6. https://github.com/rukkal/static-stl/blob/master/include/sstl/function.h

VIII. References
● [1] ​https://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h
● [2] ​http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4543.pdf

https://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4543.pdf

