
Introduction to R

1 / 10

What is R?

As stated in the manual for beginners found at the Comprehensive R Archive Network, R is

An e�ective data handling and storage facility,
a suite of operators for calculations on arrays, in particular matices
a large, coherent, integrated collection of intermediate tools for data analysis,
graphical facilities for data analysis and display either directly at the computer or on hard-
copy,
a well developed simple and e�ective programming language (called S) which includes
conditionals, loops, user de�ned recursive functions and input and output facilities

2 / 10

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

What is R?

It is free and available for all major OS.
R is an interpreted language.
R itself is a rather 'modern' GNU implementation of S language, which in turn was
developed by Bell Laboratories. The �rst stable beta version was released around 2000.
Part of R functions are written in R itself and make it easy to understand, part are written in
C, FORTRAN and other languages for the sake of the performance (mostly computational
parts). There is a toolchain for building R C interoperable libraries.
R can be extended through packages that can be installed from di�erent centralized
repositories (CRAN, MRAN and mirrors), directly from directories on local machine, from
*git repos and from many other sources.

↔

3 / 10

Basic concepts

There are several base types in R, integer, double, character, complex,
factor and logical. It is safe to say that everything in R is a �rst-class object
The simplest collection is a vector - a group of objects of the same type. Any standalone
primitive object (like number 2.0) is itself a vector of size 1.
Matricies are arrays of higher order (rectangular), lists are general collections of any objects
of any types, data frames are data-base like tables with columns of equal length but
di�erent type. Another type, part of the tidyverse package, tibble extends
functions of data frames.
Higher order types can be de�ned using class systems (I am aware of several, S3, S4,
Reference classes and S6)

4 / 10

> x <- 5 # Assigns 5 (double) to x
> x # Prints x, equivalent to print(x)
[1] 5
> x[1] # Accesses 1st element of a vector
[1] 5
> y <- list(x, "Hello world") # A list
> y
[[1]]
[1] 5
#
[[2]]
[1] "Hello world"
> a <- 1:7 # Integer range from 1 to 7
> a ^ 2 # Vectorized power operation
[1] 1 4 9 16 25 36 49
> mean(a ^ 2) # Calls built-in stat. mean
[1] 38.5
> sd (a ^ 2) # Standard deviation
[1] 34.17358

> sprintf("Compare %3.2f to %3.2e", 0.0123, 0.0123)
[1] "Compare 0.01 to 1.23e-02"
> quantile(rnorm(n = 100, mean = 0, sd = 3),
+ probs = c(0.16, 0.84))
16% 84%
-3.191771 2.949907
> f <- function(x) {
+ mn <- mean(x)
+ s <- sd(x)
+ rng <- range(x)
+ return(c(mn, s, rng))
+}
> f(c(10, 20, 30, 123, 0.06, -100))
[1] 13.84333 71.24490 -100.00000 123.00000
> z <- 0
> for (i in 1:100) z <- z + i; print(z)
[1] 5050
> sum(1:100)
[1] 5050

Examples: Run interactively

5 / 10

> f # Type the name of previously defined func
function(x) {
mn <- mean(x)
s <- sd(x)
rng <- range(x)
return(c(mn, s, rng))
}
> ?mean # Opens local web page with manual
> data <- data.frame(x = 1:10,
+ y = 1:10 + rnorm(10))
> plot(data$x, data$y, type = "b",
+ pch = 19, lty = 2, col = "blue",
+ xlab = "The X", ylab = "The Y")
> lines(1:10, 1:10, lty = 1, col = "#FF0000")
> data[1:2,]
x y
1 1 1.721106
2 2 1.848209
> quit("no")

Examples: Get help & make a plot

6 / 10

Examples: Install JAGS and get some packages

JAGS can be found here
We need rjags to run JAGS from R, tidyverse (optional) to use fancy data
manipulation facilities.

> install.packages(c("rjags", "tidyverse")) # Installs two packages
> library(rjags) # Loads rjags, can be used without quotes
> library(tidyverse) # All useful data processing tools

Now check out code examples (demo)

7 / 10

http://mcmc-jags.sourceforge.net/

Assignment operators:

<- and -> are default operators
= is used with named func. arguments
<<- and ->> are global assignment ops.
> getwd() # Returns current working directory
[1] "\path\to\current\dir"
> setwd("\path\to\new\dir") # Sets work dir

Loop alternatives

apply, lapply, sapply, vapply
> sapply(1:5, function(x) (x + 1) ^ 2)
[1] 4 9 16 25 36

> library(foreach)
> foreach(i = 1:2) %do% { i ^ 2}
[[1]]
[1] 1
#
[[2]]
[1] 4
> library(parallel)
> library(doSNOW)
> cl <- makeCluster(2, "SOCK")
> registerDoSNOW(cl)
> foreach(...) %dopar% {...}
> stopCluster(cl)

> file.path("dir1", "dir2")
"dir1/dir2"

More useful examples

8 / 10

> paste("d", c("x", "y", "z"), sep = "_")
[1] "d_x" "d_y" "d_z"
> substring("Hello World!", 7, 11)
[1] "World"
> grepl("[W|w]o.*!$",
+ c("World!", "world!", "world"))
[1] TRUE TRUE FALSE
> c(5 / 2, 5 %% 2, 5 %/% 2)
[1] 2.5 1.0 2.0
> c(1, 5, 11) %in% (1:10)
[1] TRUE TRUE FALSE
> setNames(c(1, 2, 3), c("a", "b", "c"))
a b c
1 2 3
> order(c(20, 50, 10, 90, 30))
[1] 3 1 5 2 4

> sink("filename.dat") # Output goes to file
> print("Hello World!")
Nothing in terminal, line appears in file
> sink() # Closes last sink
> pdf("file.pdf", width = 7, height = 5)
> plot(1:5, 5:1) # Plot goes into pdf file
> dev.off() # Closes current device !important!
> tryCatch(stop("Sample error"),
+ error = function(e) print("Err handled"),
+ finally = print("Cleanup"))
[1] "Cleanup"
[1] "Err handled"

More useful examples

9 / 10

Thank you!

10 / 10

