Last updated: 2018-05-12
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: ddf9062
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/BH_robustness_cache/
Ignored: analysis/FDR_Null_cache/
Ignored: analysis/FDR_null_betahat_cache/
Ignored: analysis/Rmosek_cache/
Ignored: analysis/StepDown_cache/
Ignored: analysis/alternative2_cache/
Ignored: analysis/alternative_cache/
Ignored: analysis/ash_gd_cache/
Ignored: analysis/average_cor_gtex_2_cache/
Ignored: analysis/average_cor_gtex_cache/
Ignored: analysis/brca_cache/
Ignored: analysis/cash_deconv_cache/
Ignored: analysis/cash_fdr_1_cache/
Ignored: analysis/cash_fdr_2_cache/
Ignored: analysis/cash_fdr_3_cache/
Ignored: analysis/cash_fdr_4_cache/
Ignored: analysis/cash_fdr_5_cache/
Ignored: analysis/cash_fdr_6_cache/
Ignored: analysis/cash_plots_cache/
Ignored: analysis/cash_sim_1_cache/
Ignored: analysis/cash_sim_2_cache/
Ignored: analysis/cash_sim_3_cache/
Ignored: analysis/cash_sim_4_cache/
Ignored: analysis/cash_sim_5_cache/
Ignored: analysis/cash_sim_6_cache/
Ignored: analysis/cash_sim_7_cache/
Ignored: analysis/correlated_z_2_cache/
Ignored: analysis/correlated_z_3_cache/
Ignored: analysis/correlated_z_cache/
Ignored: analysis/create_null_cache/
Ignored: analysis/cutoff_null_cache/
Ignored: analysis/design_matrix_2_cache/
Ignored: analysis/design_matrix_cache/
Ignored: analysis/diagnostic_ash_cache/
Ignored: analysis/diagnostic_correlated_z_2_cache/
Ignored: analysis/diagnostic_correlated_z_3_cache/
Ignored: analysis/diagnostic_correlated_z_cache/
Ignored: analysis/diagnostic_plot_2_cache/
Ignored: analysis/diagnostic_plot_cache/
Ignored: analysis/efron_leukemia_cache/
Ignored: analysis/fitting_normal_cache/
Ignored: analysis/gaussian_derivatives_2_cache/
Ignored: analysis/gaussian_derivatives_3_cache/
Ignored: analysis/gaussian_derivatives_4_cache/
Ignored: analysis/gaussian_derivatives_5_cache/
Ignored: analysis/gaussian_derivatives_cache/
Ignored: analysis/gd-ash_cache/
Ignored: analysis/gd_delta_cache/
Ignored: analysis/gd_lik_2_cache/
Ignored: analysis/gd_lik_cache/
Ignored: analysis/gd_w_cache/
Ignored: analysis/knockoff_10_cache/
Ignored: analysis/knockoff_2_cache/
Ignored: analysis/knockoff_3_cache/
Ignored: analysis/knockoff_4_cache/
Ignored: analysis/knockoff_5_cache/
Ignored: analysis/knockoff_6_cache/
Ignored: analysis/knockoff_7_cache/
Ignored: analysis/knockoff_8_cache/
Ignored: analysis/knockoff_9_cache/
Ignored: analysis/knockoff_cache/
Ignored: analysis/knockoff_var_cache/
Ignored: analysis/marginal_z_alternative_cache/
Ignored: analysis/marginal_z_cache/
Ignored: analysis/mosek_reg_2_cache/
Ignored: analysis/mosek_reg_4_cache/
Ignored: analysis/mosek_reg_5_cache/
Ignored: analysis/mosek_reg_6_cache/
Ignored: analysis/mosek_reg_cache/
Ignored: analysis/pihat0_null_cache/
Ignored: analysis/plot_diagnostic_cache/
Ignored: analysis/poster_obayes17_cache/
Ignored: analysis/real_data_simulation_2_cache/
Ignored: analysis/real_data_simulation_3_cache/
Ignored: analysis/real_data_simulation_4_cache/
Ignored: analysis/real_data_simulation_5_cache/
Ignored: analysis/real_data_simulation_cache/
Ignored: analysis/rmosek_primal_dual_2_cache/
Ignored: analysis/rmosek_primal_dual_cache/
Ignored: analysis/seqgendiff_cache/
Ignored: analysis/simulated_correlated_null_2_cache/
Ignored: analysis/simulated_correlated_null_3_cache/
Ignored: analysis/simulated_correlated_null_cache/
Ignored: analysis/simulation_real_se_2_cache/
Ignored: analysis/simulation_real_se_cache/
Ignored: analysis/smemo_2_cache/
Ignored: data/LSI/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Ignored: output/fig/
Unstaged changes:
Deleted: analysis/cash_plots_fdp.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
library(edgeR)
library(limma)
library(sva)
library(cate)
library(vicar)
library(ashr)
library(pROC)
source("../code/gdash.R")
mat = readRDS("../data/liver.sim.rds")
counts_to_summary = function (counts, design) {
dgecounts = edgeR::calcNormFactors(edgeR::DGEList(counts = counts, group = design[, 2]))
v = limma::voom(dgecounts, design, plot = FALSE)
lim = limma::lmFit(v)
r.ebayes = limma::eBayes(lim)
p = r.ebayes$p.value[, 2]
t = r.ebayes$t[, 2]
z = sign(t) * qnorm(1 - p/2)
betahat = lim$coefficients[,2]
sebetahat = betahat / z
return (list(betahat = betahat, sebetahat = sebetahat, z = z))
}
one_sim <- function (mat, ngene, nsamp, pi0, sd) {
## add simulated signals
mat.sim = seqgendiff::poisthin(t(mat), nsamp = nsamp, ngene = ngene, gselect = "random", signal_params = list(mean = 0, sd = sd), prop_null = pi0)
counts = t(mat.sim$Y) ## ngene * nsamples matrix
design = mat.sim$X
beta = mat.sim$beta
which_signal = (beta != 0)
## methods using summary statistics only
summary = counts_to_summary(counts, design)
fit.pvalue = (1 - pnorm(abs(summary$z))) * 2
fit.BH = p.adjust(fit.pvalue, method = "BH")
fit.qvalue = qvalue::qvalue(fit.pvalue)
fit.locfdr = locfdr::locfdr(summary$z, bre = round(ngene / 20), plot = 0)
fit.ash = ashr::ash(summary$betahat, summary$sebetahat, mixcompdist = "normal", method = "fdr")
fit.gdash = gdash(summary$betahat, summary$sebetahat)
fit.gdash.ash = ashr::ash(summary$betahat, summary$sebetahat, fixg = TRUE, g = fit.gdash$fitted_g)
## methods using data matrix
Y = t(log(counts + 0.5))
X = design
num_sv <- sva::num.sv(dat = t(Y), mod = X, method = "be")
mout <- vicar::mouthwash(Y = Y, X = X, k = num_sv, cov_of_interest = 2, include_intercept = FALSE)
cate_cate <- cate::cate.fit(X.primary = X[, 2, drop = FALSE], X.nuis = X[, -2, drop = FALSE], Y = Y, r = num_sv, adj.method = "rr")
sva_sva <- sva::sva(dat = t(Y), mod = X, mod0 = X[, -2, drop = FALSE], n.sv = num_sv)
X.sva <- cbind(X, sva_sva$sv)
lmout <- limma::lmFit(object = t(Y), design = X.sva)
eout <- limma::ebayes(lmout)
svaout <- list()
svaout$betahat <- lmout$coefficients[, 2]
svaout$sebetahat <- lmout$stdev.unscaled[, 2] * sqrt(eout$s2.post)
svaout$pvalues <- eout$p.value[, 2]
## result: roc auc
roc_res = c(
pvalue = pROC::roc(response = which_signal, predictor = fit.pvalue)$auc,
BH = pROC::roc(response = which_signal, predictor = fit.BH)$auc,
qvalue = pROC::roc(response = which_signal, predictor = fit.qvalue$lfdr)$auc,
locfdr = pROC::roc(response = which_signal, predictor = fit.locfdr$fdr)$auc,
ash = pROC::roc(response = which_signal, predictor = ashr::get_lfdr(fit.ash))$auc,
cash = pROC::roc(response = which_signal, predictor = ashr::get_lfdr(fit.gdash.ash))$auc,
mouthwash = pROC::roc(response = which_signal, predictor = c(mout$result$lfdr))$auc,
cate = pROC::roc(response = which_signal, predictor = c(cate_cate$beta.p.value))$auc,
sva = pROC::roc(response = which_signal, predictor = c(svaout$pvalues))$auc
)
## ash with summary statistics
method_list <- list()
method_list$cate <- list()
method_list$cate$betahat <- c(cate_cate$beta)
method_list$cate$sebetahat <- c(sqrt(cate_cate$beta.cov.row * cate_cate$beta.cov.col) / sqrt(nrow(X)))
method_list$sva <- list()
method_list$sva$betahat <- c(svaout$betahat)
method_list$sva$sebetahat <- c(svaout$sebetahat)
ashfit <- lapply(method_list, FUN = function(x) {ashr::ash(x$betahat, x$sebetahat, mixcompdist = "normal", method = "fdr")})
ashfit$ash <- fit.ash
ashfit$cash <- fit.gdash.ash
ashfit$mouthwash <- mout
ashfit = ashfit[c("ash", "cash", "mouthwash", "cate", "sva")]
## pi0
pi0_res <- sapply(ashfit, FUN = ashr::get_pi0)
pi0_res <- c(
qvalue = fit.qvalue$pi0,
locfdr = min(1, fit.locfdr$fp0["mlest", "p0"]),
pi0_res
)
## mse
mse_res <- sapply(ashfit, FUN = function(x) {mean((ashr::get_pm(x) - beta)^2)})
mse_res <- c(ols = mean((summary$betahat - beta)^2), mse_res)
## pFDP calibration
pFDP_alpha = function (alpha, tail_stat, true, obs) {
return(1 - mean(true[tail_stat <= alpha]))
}
pFSP_alpha = function (alpha, tail_stat, true, obs) {
return(mean(sign(obs[tail_stat <= alpha]) != sign(true[tail_stat <= alpha])))
}
tail_cali_list = function (alpha_list, tail_cali_alpha, tail_stat, true, obs) {
sapply(alpha_list, tail_cali_alpha, tail_stat, true, obs)
}
alpha_list = seq(0, 0.2, by = 0.001)
pFDP <- sapply(
ashfit, FUN = function (x) {
tail_cali_list(alpha_list, pFDP_alpha, ashr::get_qvalue(x), which_signal, x$data$x)
}
)
pFDP_BH = tail_cali_list(alpha_list, pFDP_alpha, fit.BH, which_signal, summary$betahat)
pFDP_qvalue = tail_cali_list(alpha_list, pFDP_alpha, fit.qvalue$qvalues, which_signal, summary$betahat)
pFDP_res = cbind(BH = pFDP_BH, qvalue = pFDP_qvalue, pFDP)
## pFSR calibration
pFSP_res <- sapply(
ashfit, FUN = function (x) {
tail_cali_list(alpha_list, pFSP_alpha, ashr::get_svalue(x), beta, x$data$x)
}
)
return(list(pi = pi0_res, mse = mse_res, auc = roc_res, alpha = alpha_list, pFDP = pFDP_res, pFSP = pFSP_res))
}
n_sim = function (n, mat, ngene, nsamp, pi0, sd) {
pi0_list = mse_list = auc_list = pFDP_list = pFSP_list = list()
for (i in 1 : n) {
one_res = one_sim(mat, ngene, nsamp, pi0, sd)
pi0_list[[i]] = one_res$pi
mse_list[[i]] = one_res$mse
auc_list[[i]] = one_res$auc
pFDP_list[[i]] = one_res$pFDP
pFSP_list[[i]] = one_res$pFSP
}
alpha_vec = one_res$alpha
pi0_mat = matrix(unlist(pi0_list), nrow = n, byrow = TRUE)
colnames(pi0_mat) = names(pi0_list[[1]])
mse_mat = matrix(unlist(mse_list), nrow = n, byrow = TRUE)
colnames(mse_mat) = names(mse_list[[1]])
auc_mat = matrix(unlist(auc_list), nrow = n, byrow = TRUE)
colnames(auc_mat) = names(auc_list[[1]])
pFDP_mat = list()
for (j in 1 : ncol(pFDP_list[[1]])) {
pFDP_mat[[j]] = t(sapply(pFDP_list, FUN = function(x) {rbind(x[, j])}))
}
names(pFDP_mat) = colnames(pFDP_list[[1]])
pFSP_mat = list()
for (j in 1 : ncol(pFSP_list[[1]])) {
pFSP_mat[[j]] = t(sapply(pFSP_list, FUN = function(x) {rbind(x[, j])}))
}
names(pFSP_mat) = colnames(pFSP_list[[1]])
return(list(pi0 = pi0_mat, mse = mse_mat, auc = auc_mat, alpha = alpha_vec, pFDP = pFDP_mat, pFSP = pFSP_mat))
}
sd = 0.6
pi0 = 0.9
ngene = 1e3
nsamp = 10
nsim = 100
set.seed(777)
system.time(res <- n_sim(nsim, mat, ngene, nsamp, pi0, sd))
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 1
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 1
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 1
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 1
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 1
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 1
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 1
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Warning in log(rowSums(sweep(x = exp(ldmix - ldmax), MARGIN = 2, STATS =
pi_vals, : NaNs produced
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5
Warning in locfdr::locfdr(summary$z, bre = round(ngene/20), plot = 0): CM
estimation failed, middle of histogram non-normal
Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 2
Iteration (out of 5 ):1 2 3 4 5 Number of significant surrogate variables is: 3
Iteration (out of 5 ):1 2 3 4 5
user system elapsed
1703.469 381.549 2135.044
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
f92c0db | LSun | 2017-06-17 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
f92c0db | LSun | 2017-06-17 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
f92c0db | LSun | 2017-06-17 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
f92c0db | LSun | 2017-06-17 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
f92c0db | LSun | 2017-06-17 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
f92c0db | LSun | 2017-06-17 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
f92c0db | LSun | 2017-06-17 |
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] Rmosek_8.0.69 PolynomF_1.0-1 CVXR_0.95
[4] REBayes_1.2 Matrix_1.2-12 SQUAREM_2017.10-1
[7] EQL_1.0-0 ttutils_1.0-1 pROC_1.10.0
[10] ashr_2.2-2 vicar_0.1.6 cate_1.0.4
[13] sva_3.26.0 BiocParallel_1.12.0 genefilter_1.60.0
[16] mgcv_1.8-22 nlme_3.1-131 edgeR_3.20.2
[19] limma_3.34.4
loaded via a namespace (and not attached):
[1] Biobase_2.38.0 svd_0.4.1 bit64_0.9-7
[4] splines_3.4.3 foreach_1.4.4 ECOSolveR_0.4
[7] R.utils_2.6.0 stats4_3.4.3 blob_1.1.0
[10] yaml_2.1.18 pillar_1.0.1 RSQLite_2.0
[13] backports_1.1.2 lattice_0.20-35 digest_0.6.15
[16] colorspace_1.3-2 htmltools_0.3.6 R.oo_1.21.0
[19] plyr_1.8.4 XML_3.98-1.9 esaBcv_1.2.1
[22] xtable_1.8-2 corpcor_1.6.9 scales_0.5.0
[25] whisker_0.3-2 scs_1.1-1 git2r_0.21.0
[28] tibble_1.4.1 annotate_1.56.1 gmp_0.5-13.1
[31] IRanges_2.12.0 ggplot2_2.2.1 BiocGenerics_0.24.0
[34] lazyeval_0.2.1 Rmpfr_0.6-1 survival_2.41-3
[37] magrittr_1.5 memoise_1.1.0 evaluate_0.10.1
[40] R.methodsS3_1.7.1 doParallel_1.0.11 MASS_7.3-47
[43] truncnorm_1.0-7 tools_3.4.3 matrixStats_0.52.2
[46] stringr_1.3.0 S4Vectors_0.16.0 munsell_0.4.3
[49] locfit_1.5-9.1 AnnotationDbi_1.40.0 compiler_3.4.3
[52] rlang_0.1.6 grid_3.4.3 leapp_1.2
[55] RCurl_1.95-4.8 iterators_1.0.9 bitops_1.0-6
[58] rmarkdown_1.9 gtable_0.2.0 codetools_0.2-15
[61] DBI_0.7 R6_2.2.2 ruv_0.9.6
[64] knitr_1.20 bit_1.1-12 workflowr_1.0.1
[67] rprojroot_1.3-2 stringi_1.1.6 pscl_1.5.2
[70] parallel_3.4.3 Rcpp_0.12.16
This reproducible R Markdown analysis was created with workflowr 1.0.1