Last updated: 2017-03-07
Code version: 03366d9
Following previous simulation on randomly selected data sets, this time we first apply ash
on \(z\) scores for every data set, and take a second look at those data sets on which ash
makes most mistakes, or in other words, produces smallest \(\hat\pi_0\).
ash
z = read.table("../output/z_null_liver_777.txt")
library(ashr)
n = dim(z)[1]
pihat0 = c()
for (i in 1:n) {
ash.fit = ash(as.numeric(z[i, ]), 1, method = "fdr")
pihat0[i] = get_pi0(ash.fit)
}
ash
-hostile” data setsI = order(pihat0)[1:100]
x = seq(-10, 10, 0.01)
y = dnorm(x)
k = 1
for (j in I) {
cat("N0.", k, ": Data Set", j, "pihat0 =", pihat0[j])
hist(as.numeric(z[j, ]), xlab = "z scores", freq = FALSE, ylim = c(0, 0.45), main = "10000 z scores, default")
lines(x, y, col = "red")
hist(as.numeric(z[j, ]), xlab = "z scores", freq = FALSE, ylim = c(0, 0.45), nclass = 100, main = "10000 z scores, 100 bins")
lines(x, y, col = "red")
k = k + 1
}
N0. 1 : Data Set 724 pihat0 = 0.01606004
N0. 2 : Data Set 33 pihat0 = 0.01680632
N0. 3 : Data Set 537 pihat0 = 0.01681555
N0. 4 : Data Set 522 pihat0 = 0.02083846
N0. 5 : Data Set 693 pihat0 = 0.02122591
N0. 6 : Data Set 840 pihat0 = 0.02316832
N0. 7 : Data Set 749 pihat0 = 0.02583276
N0. 8 : Data Set 269 pihat0 = 0.02787007
N0. 9 : Data Set 360 pihat0 = 0.0308234
N0. 10 : Data Set 23 pihat0 = 0.03139009
N0. 11 : Data Set 389 pihat0 = 0.03156173
N0. 12 : Data Set 923 pihat0 = 0.03239883
N0. 13 : Data Set 22 pihat0 = 0.03271534
N0. 14 : Data Set 885 pihat0 = 0.03413736
N0. 15 : Data Set 705 pihat0 = 0.03438913
N0. 16 : Data Set 40 pihat0 = 0.03668824
N0. 17 : Data Set 338 pihat0 = 0.0393062
N0. 18 : Data Set 379 pihat0 = 0.03958053
N0. 19 : Data Set 649 pihat0 = 0.04041784
N0. 20 : Data Set 627 pihat0 = 0.04041922
N0. 21 : Data Set 133 pihat0 = 0.04064386
N0. 22 : Data Set 915 pihat0 = 0.04083527
N0. 23 : Data Set 999 pihat0 = 0.04218153
N0. 24 : Data Set 182 pihat0 = 0.04223457
N0. 25 : Data Set 511 pihat0 = 0.04232901
N0. 26 : Data Set 122 pihat0 = 0.04301549
N0. 27 : Data Set 937 pihat0 = 0.04305909
N0. 28 : Data Set 771 pihat0 = 0.04316169
N0. 29 : Data Set 495 pihat0 = 0.04395344
N0. 30 : Data Set 41 pihat0 = 0.04491135
N0. 31 : Data Set 984 pihat0 = 0.04567195
N0. 32 : Data Set 3 pihat0 = 0.0465218
N0. 33 : Data Set 907 pihat0 = 0.04653847
N0. 34 : Data Set 355 pihat0 = 0.04750946
N0. 35 : Data Set 485 pihat0 = 0.04794909
N0. 36 : Data Set 56 pihat0 = 0.04829662
N0. 37 : Data Set 809 pihat0 = 0.04880257
N0. 38 : Data Set 404 pihat0 = 0.05059485
N0. 39 : Data Set 858 pihat0 = 0.05110069
N0. 40 : Data Set 77 pihat0 = 0.05151585
N0. 41 : Data Set 800 pihat0 = 0.05218407
N0. 42 : Data Set 562 pihat0 = 0.05247834
N0. 43 : Data Set 893 pihat0 = 0.05252202
N0. 44 : Data Set 403 pihat0 = 0.0531628
N0. 45 : Data Set 780 pihat0 = 0.05426134
N0. 46 : Data Set 538 pihat0 = 0.05493143
N0. 47 : Data Set 324 pihat0 = 0.05506971
N0. 48 : Data Set 176 pihat0 = 0.05513259
N0. 49 : Data Set 972 pihat0 = 0.05539611
N0. 50 : Data Set 644 pihat0 = 0.0557842
N0. 51 : Data Set 977 pihat0 = 0.0564768
N0. 52 : Data Set 467 pihat0 = 0.06112237
N0. 53 : Data Set 857 pihat0 = 0.06183555
N0. 54 : Data Set 783 pihat0 = 0.06208376
N0. 55 : Data Set 976 pihat0 = 0.06343862
N0. 56 : Data Set 968 pihat0 = 0.06385437
N0. 57 : Data Set 942 pihat0 = 0.06399678
N0. 58 : Data Set 402 pihat0 = 0.06468693
N0. 59 : Data Set 341 pihat0 = 0.06681535
N0. 60 : Data Set 411 pihat0 = 0.06812445
N0. 61 : Data Set 484 pihat0 = 0.06857855
N0. 62 : Data Set 476 pihat0 = 0.06944478
N0. 63 : Data Set 407 pihat0 = 0.07139176
N0. 64 : Data Set 871 pihat0 = 0.07236197
N0. 65 : Data Set 638 pihat0 = 0.07281058
N0. 66 : Data Set 232 pihat0 = 0.07317683
N0. 67 : Data Set 778 pihat0 = 0.07619716
N0. 68 : Data Set 349 pihat0 = 0.07627442
N0. 69 : Data Set 985 pihat0 = 0.07865805
N0. 70 : Data Set 259 pihat0 = 0.0794454
N0. 71 : Data Set 452 pihat0 = 0.079703
N0. 72 : Data Set 268 pihat0 = 0.08182634
N0. 73 : Data Set 526 pihat0 = 0.08340671
N0. 74 : Data Set 274 pihat0 = 0.08580661
N0. 75 : Data Set 685 pihat0 = 0.08592309
N0. 76 : Data Set 499 pihat0 = 0.08826948
N0. 77 : Data Set 982 pihat0 = 0.08854547
N0. 78 : Data Set 582 pihat0 = 0.08899861
N0. 79 : Data Set 953 pihat0 = 0.08900989
N0. 80 : Data Set 811 pihat0 = 0.08962902
N0. 81 : Data Set 575 pihat0 = 0.0946117
N0. 82 : Data Set 997 pihat0 = 0.09560788
N0. 83 : Data Set 231 pihat0 = 0.09686204
N0. 84 : Data Set 781 pihat0 = 0.09690435
N0. 85 : Data Set 853 pihat0 = 0.09889116
N0. 86 : Data Set 868 pihat0 = 0.09918104
N0. 87 : Data Set 502 pihat0 = 0.1001788
N0. 88 : Data Set 606 pihat0 = 0.1033893
N0. 89 : Data Set 912 pihat0 = 0.106048
N0. 90 : Data Set 659 pihat0 = 0.1065714
N0. 91 : Data Set 501 pihat0 = 0.1090034
N0. 92 : Data Set 296 pihat0 = 0.1115216
N0. 93 : Data Set 895 pihat0 = 0.1119629
N0. 94 : Data Set 153 pihat0 = 0.1148195
N0. 95 : Data Set 477 pihat0 = 0.1172838
N0. 96 : Data Set 769 pihat0 = 0.1187511
N0. 97 : Data Set 555 pihat0 = 0.1210902
N0. 98 : Data Set 475 pihat0 = 0.1273824
N0. 99 : Data Set 584 pihat0 = 0.1291777
N0. 100 : Data Set 949 pihat0 = 0.1308901
sessionInfo()
R version 3.3.2 (2016-10-31)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS Sierra 10.12.3
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] backports_1.0.5 magrittr_1.5 rprojroot_1.2 tools_3.3.2
[5] htmltools_0.3.5 yaml_2.1.14 Rcpp_0.12.9 stringi_1.1.2
[9] rmarkdown_1.3 knitr_1.15.1 git2r_0.18.0 stringr_1.1.0
[13] digest_0.6.9 workflowr_0.3.0 evaluate_0.10
This R Markdown site was created with workflowr