Last updated: 2018-05-12
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: ac438b4
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/BH_robustness_cache/
Ignored: analysis/FDR_Null_cache/
Ignored: analysis/FDR_null_betahat_cache/
Ignored: analysis/Rmosek_cache/
Ignored: analysis/StepDown_cache/
Ignored: analysis/alternative2_cache/
Ignored: analysis/alternative_cache/
Ignored: analysis/ash_gd_cache/
Ignored: analysis/average_cor_gtex_2_cache/
Ignored: analysis/average_cor_gtex_cache/
Ignored: analysis/brca_cache/
Ignored: analysis/cash_deconv_cache/
Ignored: analysis/cash_fdr_1_cache/
Ignored: analysis/cash_fdr_2_cache/
Ignored: analysis/cash_fdr_3_cache/
Ignored: analysis/cash_fdr_4_cache/
Ignored: analysis/cash_fdr_5_cache/
Ignored: analysis/cash_fdr_6_cache/
Ignored: analysis/cash_plots_cache/
Ignored: analysis/cash_sim_1_cache/
Ignored: analysis/cash_sim_2_cache/
Ignored: analysis/cash_sim_3_cache/
Ignored: analysis/cash_sim_4_cache/
Ignored: analysis/cash_sim_5_cache/
Ignored: analysis/cash_sim_6_cache/
Ignored: analysis/cash_sim_7_cache/
Ignored: analysis/correlated_z_2_cache/
Ignored: analysis/correlated_z_3_cache/
Ignored: analysis/correlated_z_cache/
Ignored: analysis/create_null_cache/
Ignored: analysis/cutoff_null_cache/
Ignored: analysis/design_matrix_2_cache/
Ignored: analysis/design_matrix_cache/
Ignored: analysis/diagnostic_ash_cache/
Ignored: analysis/diagnostic_correlated_z_2_cache/
Ignored: analysis/diagnostic_correlated_z_3_cache/
Ignored: analysis/diagnostic_correlated_z_cache/
Ignored: analysis/diagnostic_plot_2_cache/
Ignored: analysis/diagnostic_plot_cache/
Ignored: analysis/efron_leukemia_cache/
Ignored: analysis/fitting_normal_cache/
Ignored: analysis/gaussian_derivatives_2_cache/
Ignored: analysis/gaussian_derivatives_3_cache/
Ignored: analysis/gaussian_derivatives_4_cache/
Ignored: analysis/gaussian_derivatives_5_cache/
Ignored: analysis/gaussian_derivatives_cache/
Ignored: analysis/gd-ash_cache/
Ignored: analysis/gd_delta_cache/
Ignored: analysis/gd_lik_2_cache/
Ignored: analysis/gd_lik_cache/
Ignored: analysis/gd_w_cache/
Ignored: analysis/knockoff_10_cache/
Ignored: analysis/knockoff_2_cache/
Ignored: analysis/knockoff_3_cache/
Ignored: analysis/knockoff_4_cache/
Ignored: analysis/knockoff_5_cache/
Ignored: analysis/knockoff_6_cache/
Ignored: analysis/knockoff_7_cache/
Ignored: analysis/knockoff_8_cache/
Ignored: analysis/knockoff_9_cache/
Ignored: analysis/knockoff_cache/
Ignored: analysis/knockoff_var_cache/
Ignored: analysis/marginal_z_alternative_cache/
Ignored: analysis/marginal_z_cache/
Ignored: analysis/mosek_reg_2_cache/
Ignored: analysis/mosek_reg_4_cache/
Ignored: analysis/mosek_reg_5_cache/
Ignored: analysis/mosek_reg_6_cache/
Ignored: analysis/mosek_reg_cache/
Ignored: analysis/pihat0_null_cache/
Ignored: analysis/plot_diagnostic_cache/
Ignored: analysis/poster_obayes17_cache/
Ignored: analysis/real_data_simulation_2_cache/
Ignored: analysis/real_data_simulation_3_cache/
Ignored: analysis/real_data_simulation_4_cache/
Ignored: analysis/real_data_simulation_5_cache/
Ignored: analysis/real_data_simulation_cache/
Ignored: analysis/rmosek_primal_dual_2_cache/
Ignored: analysis/rmosek_primal_dual_cache/
Ignored: analysis/seqgendiff_cache/
Ignored: analysis/simulated_correlated_null_2_cache/
Ignored: analysis/simulated_correlated_null_3_cache/
Ignored: analysis/simulated_correlated_null_cache/
Ignored: analysis/simulation_real_se_2_cache/
Ignored: analysis/simulation_real_se_cache/
Ignored: analysis/smemo_2_cache/
Ignored: data/LSI/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Ignored: output/fig/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | ac438b4 | LSun | 2018-05-12 | Update to 1.0 |
html | ac438b4 | LSun | 2018-05-12 | Update to 1.0 |
Rmd | cc0ab83 | Lei Sun | 2018-05-11 | update |
html | 0f36d99 | LSun | 2017-12-21 | Build site. |
html | 853a484 | LSun | 2017-11-07 | Build site. |
html | 59fd661 | LSun | 2017-02-03 | Build site. |
html | 36c1e4c | LSun | 2017-02-03 | Build site. |
html | d616c3d | LSun | 2017-02-03 | occurrence |
html | c21d808 | LSun | 2017-02-02 | Build site. |
Rmd | 858f0e4 | LSun | 2017-02-01 | background |
html | 858f0e4 | LSun | 2017-02-01 | background |
Last updated: 2018-05-12
Code version: ac438b4697e1e3025d37654d1430ba1c44be19ba
This document simply simulates some null data by randomly sampling two groups of 5 samples from some RNA-seq data (GTEx liver samples). We plot \(p\) value histograms and see the effects of inflation: some distributions are inflated near 0 and others are inflated near 1. However, when we look at the qqplots (here of the z scores, but should be same for p values) we see something that is interesting, although obvious in hindsight: the most extreme p values (z scores) are never “too extreme” (although they are sometimes not extreme enough). The inflation comes from the “not quite so extreme” p values and z scores. This makes sense: when you have positively correlated variables, the most extreme values will tend to be less extreme than when you have independent samples, because you have “effectively” fewer independent samples.
It seems likely this can be exploited to help avoid false positives under positive correlation.
Load in the gtex liver data
library(limma)
library(edgeR)
library(qvalue)
library(ashr)
r = read.csv("../data/Liver.csv")
r = r[,-(1:2)] # remove outliers
#extract top g genes from G by n matrix X of expression
top_genes_index=function(g,X){return(order(rowSums(X),decreasing =TRUE)[1:g])}
lcpm = function(r){R = colSums(r); t(log2(((t(r)+0.5)/(R+1))* 10^6))}
Y=lcpm(r)
subset = top_genes_index(10000,Y)
Y = Y[subset,]
r = r[subset,]
Define voom transform (using code from Mengyin Lu)
voom_transform = function(counts, condition, W=NULL){
dgecounts = calcNormFactors(DGEList(counts=counts,group=condition))
#dgecounts = DGEList(counts=counts,group=condition)
if (is.null(W)){
design = model.matrix(~condition)
}else{
design = model.matrix(~condition+W)
}
v = voom(dgecounts,design,plot=FALSE)
lim = lmFit(v)
betahat.voom = lim$coefficients[,2]
sebetahat.voom = lim$stdev.unscaled[,2]*lim$sigma
df.voom = length(condition)-2-!is.null(W)
return(list(v=v,lim=lim,betahat=betahat.voom, sebetahat=sebetahat.voom, df=df.voom, v=v))
}
Make 2 groups of size n, and repeat random sampling.
set.seed(101)
n = 5 # number in each group
p = list()
z = list()
tscore =list()
for(i in 1:10){
counts = r[,sample(1:ncol(r),2*n)]
condition = c(rep(0,n),rep(1,n))
r.voom = voom_transform(counts,condition)
r.ebayes = eBayes(r.voom$lim)
p[[i]] = r.ebayes$p.value[,2]
tscore[[i]] = r.ebayes$t[,2]
z[[i]] = sign(r.ebayes$t[,2]) * qnorm(p[[i]]/2)
hist(p[[i]],main="histogram of effect tests")
qqnorm(z[[i]])
abline(a=0,b=1,col=1)
}
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
Version | Author | Date |
---|---|---|
0f36d99 | LSun | 2017-12-21 |
858f0e4 | LSun | 2017-02-01 |
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ashr_2.2-2 qvalue_2.10.0 edgeR_3.20.2 limma_3.34.4
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 compiler_3.4.3 pillar_1.0.1
[4] git2r_0.21.0 plyr_1.8.4 workflowr_1.0.1
[7] iterators_1.0.9 R.methodsS3_1.7.1 R.utils_2.6.0
[10] tools_3.4.3 digest_0.6.15 evaluate_0.10.1
[13] tibble_1.4.1 gtable_0.2.0 lattice_0.20-35
[16] rlang_0.1.6 foreach_1.4.4 Matrix_1.2-12
[19] parallel_3.4.3 yaml_2.1.18 stringr_1.3.0
[22] knitr_1.20 locfit_1.5-9.1 rprojroot_1.3-2
[25] grid_3.4.3 rmarkdown_1.9 ggplot2_2.2.1
[28] reshape2_1.4.3 magrittr_1.5 whisker_0.3-2
[31] MASS_7.3-47 codetools_0.2-15 backports_1.1.2
[34] scales_0.5.0 htmltools_0.3.6 splines_3.4.3
[37] colorspace_1.3-2 stringi_1.1.6 pscl_1.5.2
[40] lazyeval_0.2.1 munsell_0.4.3 doParallel_1.0.11
[43] truncnorm_1.0-7 SQUAREM_2017.10-1 R.oo_1.21.0
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ashr_2.2-2 qvalue_2.10.0 edgeR_3.20.2 limma_3.34.4
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 compiler_3.4.3 pillar_1.0.1
[4] git2r_0.21.0 plyr_1.8.4 workflowr_1.0.1
[7] iterators_1.0.9 R.methodsS3_1.7.1 R.utils_2.6.0
[10] tools_3.4.3 digest_0.6.15 evaluate_0.10.1
[13] tibble_1.4.1 gtable_0.2.0 lattice_0.20-35
[16] rlang_0.1.6 foreach_1.4.4 Matrix_1.2-12
[19] parallel_3.4.3 yaml_2.1.18 stringr_1.3.0
[22] knitr_1.20 locfit_1.5-9.1 rprojroot_1.3-2
[25] grid_3.4.3 rmarkdown_1.9 ggplot2_2.2.1
[28] reshape2_1.4.3 magrittr_1.5 whisker_0.3-2
[31] MASS_7.3-47 codetools_0.2-15 backports_1.1.2
[34] scales_0.5.0 htmltools_0.3.6 splines_3.4.3
[37] colorspace_1.3-2 stringi_1.1.6 pscl_1.5.2
[40] lazyeval_0.2.1 munsell_0.4.3 doParallel_1.0.11
[43] truncnorm_1.0-7 SQUAREM_2017.10-1 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1