cutstock.py

Column generation is a solution process that begins with a small, manageable part of a problem (specifically, a few of the variables), solves that part, analyzes the partial solution to determine the next part of the problem (specifically, one or more variables) to add to the model, and then solves the new, enlarged model. Column generation repeats the process until a satisfactory solution to the whole problem is achieved.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# --------------------------------------------------------------------------
# Source file provided under Apache License, Version 2.0, January 2004,
# http://www.apache.org/licenses/
# (c) Copyright IBM Corp. 2015, 2016
# --------------------------------------------------------------------------

from collections import namedtuple
import json

from docplex.util.environment import get_environment
from docplex.mp.absmodel import AbstractModel

# ------------------------------

DEFAULT_ROLL_WIDTH = 110
DEFAULT_ITEMS = [(1, 20, 48), (2, 45, 35), (3, 50, 24), (4, 55, 10), (5, 75, 8)]
DEFAULT_PATTERNS = [(i, 1) for i in range(1, 6)]  # (1, 1), (2, 1) etc
DEFAULT_PATTERN_ITEM_FILLED = [(p, p, 1) for p in range(1, 6)]  # pattern1 for item1, pattern2 for item2, etc.

FIRST_GENERATION_DUALS = [1, 1, 1, 1, 0]


class TItem(object):
    def __init__(self, item_id, item_size, demand):
        self.id = item_id
        self.size = item_size
        self.demand = demand
        self.dual_value = -1

    @classmethod
    def make(cls, args):
        arg_id = args[0]
        arg_size = args[1]
        arg_demand = args[2]
        return cls(arg_id, arg_size, arg_demand)

    def __str__(self):
        return 'item%d' % self.id


class TPattern(namedtuple("TPattern", ["id", "cost"])):

    def __str__(self):
        return 'pattern%d' % self.id


class CuttingStockPatternGeneratorModel(AbstractModel):
    """ The cutting stock pattern-generation model."""

    def __init__(self, master_items, roll_width, **kwargs):
        AbstractModel.__init__(self, 'CuttingStock_PatternGeneratorModel', **kwargs)
        self.items = master_items
        # default values
        self.duals = [1] * len(master_items)
        self.use_vars = {}
        self.roll_width = roll_width

    def setup_variables(self):
        self.use_vars = self.integer_var_list(self.items, ub=999999, name='Use')

    def load_data(self, *args):
        self.items = [TItem.make(it_row) for it_row in args[0]]
        self.duals = args[1][:]
        self.roll_width = args[2]

    def update_duals(self, new_duals):
        """ Update the duals array"""
        self.duals = new_duals
        # duals not used in constraint , only objective has to be updated
        self.setup_objective()

    def clear(self):
        self.use_vars = {}
        AbstractModel.clear(self)

    def setup_constraints(self):
        self.add_constraint(self.scal_prod(self.use_vars, (it.size for it in self.items)) <= self.roll_width)

    def setup_objective(self):
        """ NOTE: this method is called at each loop"""
        self.minimize(1 - self.scal_prod(self.use_vars, self.duals))

    def get_use_values(self):
        assert self.solution

        return [use_var.solution_value for use_var in self.use_vars]


class FirstPatternGeneratorModel(CuttingStockPatternGeneratorModel):
    """ a specialized generator model to check the first iteration of pattern generation."""

    def __init__(self):
        CuttingStockPatternGeneratorModel.__init__(self, DEFAULT_ITEMS, DEFAULT_ROLL_WIDTH)
        self.update_duals(FIRST_GENERATION_DUALS)


class CutStockMasterModel(AbstractModel):
    """ The cutting stock master model. """

    def __init__(self, **kwargs):
        AbstractModel.__init__(self, 'Cutting Stock Master', **kwargs)
        self.items = []
        self.patterns = []
        self.pattern_item_filled = {}

        self.max_pattern_id = -1
        self.items_by_id = {}
        self.patterns_by_id = {}
        # results
        self.best_cost = -1
        self.nb_iters = -1
        self.item_fill_cts = []
        self.cut_vars = {}

        self.roll_width = 99999
        self.MAX_CUT = 9999

    def clear(self):
        AbstractModel.clear(self)
        self.item_fill_cts = []
        self.cut_vars = {}

    def load_data(self, item_table, pattern_table, fill_table, roll_width):
        self.items = [TItem.make(it_row) for it_row in item_table]
        self.items_by_id = {it.id: it for it in self.items}
        self.patterns = [TPattern(*pattern_row) for pattern_row in pattern_table]
        self.patterns_by_id = {pat.id: pat for pat in self.patterns}
        self.max_pattern_id = max(pt.id for pt in self.patterns)

        # build a dictionary storing how much each pattern fills each item.
        self.pattern_item_filled = {(self.patterns_by_id[p], self.items_by_id[i]): f for (p, i, f) in fill_table}
        self.roll_width = roll_width

    def add_new_pattern(self, item_usages):
        """ makes a new pattern from a sequence of usages (one per item)"""
        new_pattern_id = self.max_pattern_id + 1
        new_pattern = TPattern(new_pattern_id, 1)
        self.patterns.append(new_pattern)
        self.max_pattern_id = new_pattern_id
        for used, item in zip(item_usages, self.items):
            self.pattern_item_filled[new_pattern, item] = used

    def setup_variables(self):
        # how much to cut?
        self.cut_vars = self.continuous_var_dict(self.patterns, lb=0, ub=self.MAX_CUT, name='Cut')

    def setup_constraints(self):
        all_items = self.items
        all_patterns = self.patterns

        def pattern_item_filled(pattern, item):
            return self.pattern_item_filled[pattern, item] if (pattern, item) in self.pattern_item_filled else 0

        self.item_fill_cts = []
        for item in all_items:
            item_fill_ct = self.sum(
                self.cut_vars[p] * pattern_item_filled(p, item) for p in all_patterns) >= item.demand
            self.item_fill_cts.append(item_fill_ct)
            self.add_constraint(item_fill_ct, 'ct_fill_{0!s}'.format(item))

    def setup_objective(self):
        total_cutting_cost = self.sum(self.cut_vars[p] * p.cost for p in self.patterns)
        self.add_kpi(total_cutting_cost, 'Total cutting cost')
        self.minimize(total_cutting_cost)

    def print_information(self):
        print('#items={}'.format(len(self.items)))
        print('#patterns={}'.format(len(self.patterns)))
        AbstractModel.print_information(self)

    def print_solution(self):
        print("| Nb of cuts | Pattern   | Pattern's detail (# of item1,..., # of item5) |")
        print("| {} |".format("-" * 70))
        for p in self.patterns:
            if self.cut_vars[p].solution_value >= 1e-3:
                pattern_detail = {b.id: self.pattern_item_filled[(a, b)] for (a, b) in self.pattern_item_filled if
                                  a == p}
                print(
                    "| {:<10g} | {!s:9} | {!s:45} |".format(self.cut_vars[p].solution_value,
                                                            p,
                                                            pattern_detail))
        print("| {} |".format("-" * 70))

    def save_solution_as_json(self, file):
        solution = []
        for p in self.patterns:
            if self.cut_vars[p].solution_value >= 1e-3:
                pattern_detail = {b.id: self.pattern_item_filled[(a, b)] for (a, b) in self.pattern_item_filled if
                                  a == p}
                n = {}
                n['pattern'] = str(p)
                n['cuts']= "%g" % self.cut_vars[p].solution_value
                n['details'] = pattern_detail
                solution.append(n)
        file.write(json.dumps(solution, indent=3).encode('utf-8'))

    def run(self, **kwargs):
        master_model = self
        master_model.ensure_setup()
        gen_model = CuttingStockPatternGeneratorModel(master_items=self.items,
                                                      roll_width=self.roll_width,
                                                      output_level=self.output_level,
                                                      **kwargs
                                                      )
        gen_model.setup()
        rc_eps = 1e-6
        obj_eps = 1e-4
        loop_count = 0
        best = 0
        curr = self.infinity
        status = False
        while loop_count < 100 and abs(best - curr) >= obj_eps:
            print('\n#items={},#patterns={}'.format(len(self.items), len(self.patterns)))
            if loop_count > 0:
                self.refresh_model()
            status = master_model.solve(**kwargs)
            loop_count += 1
            best = curr
            if not status:
                print('{}> master model fails, stop'.format(loop_count))
                break
            else:
                assert master_model.solution
                curr = self.objective_value
                print('{}> new column generation iteration, best={:g}, curr={:g}'.format(loop_count, best, curr))
                duals = self.get_fill_dual_values()
                print('{0}> moving duals from master to sub model: {1}'.format(loop_count, map (lambda x: float('%0.2f' % x), duals)))
                gen_model.update_duals(duals)
                status = gen_model.solve(**kwargs)
                if not status:
                    print('{}> slave model fails, stop'.format(loop_count))
                    break

                rc_cost = gen_model.objective_value
                if rc_cost <= -rc_eps:
                    print('{}> slave model runs with obj={:g}'.format(loop_count, rc_cost))
                else:
                    print('{}> pattern-generator model stops, obj={:g}'.format(loop_count, rc_cost))
                    break

                use_values = gen_model.get_use_values()
                print('{}> add new pattern to master data: {}'.format(loop_count, str(use_values)))
                # make a new pattern with use values
                if not (loop_count < 100 and abs(best - curr) >= obj_eps):
                    print('* terminating: best-curr={:g}'.format(abs(best - curr)))
                    break
                self.add_new_pattern(use_values)

        if status:
            print('Cutting-stock column generation terminates, best={:g}, #loops={}'.format(curr, loop_count))
            self.best_cost = curr
            self.nb_iters = loop_count
        else:
            print("Cutting-stock column generation fails")
        return status

    def get_fill_dual_values(self):
        return self.dual_values(self.item_fill_cts)


class DefaultCutStockMasterModel(CutStockMasterModel):
    def __init__(self, **kwargs):
        CutStockMasterModel.__init__(self, **kwargs)
        self.load_data(DEFAULT_ITEMS, DEFAULT_PATTERNS, DEFAULT_PATTERN_ITEM_FILLED, DEFAULT_ROLL_WIDTH)


if __name__ == '__main__':
    """DOcplexcloud credentials can be specified with url and api_key in the code block below.

    Alternatively, Context.make_default_context() searches the PYTHONPATH for
    the following files:

        * cplex_config.py
        * cplex_config_<hostname>.py
        * docloud_config.py (must only contain context.solver.docloud configuration)

    These files contain the credentials and other properties. For example,
    something similar to::

       context.solver.docloud.url = "https://docloud.service.com/job_manager/rest/v1"
       context.solver.docloud.key = "example api_key"
    """
    url = None
    key = None

    cutstock_model = DefaultCutStockMasterModel()
    
    # Solve the model. If a key has been specified above, the solve
    # will use IBM Decision Optimization on cloud.
    if cutstock_model.run(url=url, key=key):
        cutstock_model.print_solution()
        # Save the solution as "solution.json" program output.
        with get_environment().get_output_stream("solution.json") as fp:
            cutstock_model.save_solution_as_json(fp)