- Dr Colin Gillespie
- Originally from the 1990 City of Culture (Glasgow)
- Senior Statistics Lecturer, Newcastle University
- Consultant at Jumping Rivers
- twitter: csgillespie
Slides: [jumpingrivers.com]
#> function (x, ...) #> UseMethod("mean") #> <bytecode: 0x73098b8> #> <environment: namespace:base>
note the bytecode
line
mean_r = function(x) { total = 0 n = length(x) for(i in 1:n) total = total + x[i]/n total }
library("compiler") cmp_mean_r = cmpfun(mean_r) cmp_mean_r #> function(x) { #> total = 0 #> n = length(x) #> for(i in 1:n) #> total = total + x[i]/n #> total #> } #> <bytecode: 0x5608fa8>
# Generate some data x = rnorm(1000) microbenchmark::microbenchmark(times = 10, unit = "ms", # milliseconds mean_r(x), cmp_mean_r(x), mean(x)) #> Unit: milliseconds #> expr min lq mean median uq max neval cld #> mean_r(x) 0.358 0.361 0.370 0.363 0.367 0.43 10 c #> cmp_mean_r(x) 0.050 0.051 0.052 0.051 0.051 0.07 10 b #> mean(x) 0.005 0.005 0.008 0.007 0.008 0.03 10 a
There are a number of ways to complile code.
cmpfun()
where \(N\) indices the level of optimisation (\(0\) to \(3\))
to the DESCRIPTION file
install.packages()
are not compiled
R_COMPILE_PKGS
R_COMPILE_PKGS=3
to ~/.Renviron
## Windows users need Rtools install.packages("ggplot2", type = "source", INSTALL_opts = "--byte-compile")
install.packages("benchmarkme")
benchmarkme
library("benchmarkme")
get_ram() #> 16.3 GB get_cpu() #> $vendor_id #> [1] "GenuineIntel" #> #> $model_name #> [1] "Intel(R) Core(TM) i7-4702HQ CPU @ 2.20GHz" #> #> $no_of_cores #> [1] 8
benchmarkme
library("benchmarkme")## On CRAN ## Tests based on a script by ## Simon Urbanek & Douglas Bates res = benchmark_std(runs = 3)
benchmarkme
library("benchmarkme") res = benchmark_std(runs = 2) # # Programming benchmarks (5 tests): # 3,500,000 Fibonacci numbers calculation (vector calc): 0.52 (sec). # Grand common divisors of 1,000,000 pairs (recursion): 0.965 (sec). # Creation of a 3500x3500 Hilbert matrix (matrix calc): 0.306 (sec). # Creation of a 3000x3000 Toeplitz matrix (loops): 11.5 (sec). # Escoufier's method on a 60x60 matrix (mixed): 1.17 (sec). # # Matrix calculation benchmarks (5 tests): # Creation, transp., deformation of a 5000x5000 matrix: 0.794 (sec). # 2500x2500 normal distributed random matrix ^1000: 0.522 (sec). # Sorting of 7,000,000 random values: 0.598 (sec). # 2500x2500 cross-product matrix (b = a' * a): 6.56 (sec). # Linear regr. over a 3000x3000 matrix (c = a \ b'): 4.5 (sec). # # Matrix function benchmarks (5 tests):
benchmarkme
# Upload results + # RAM, CPU, # OS, byte-compile, BLAS upload_results(res)
benchmarkme
plot(res)
benchmark_io
upload_results
takes a five column matrix
system.time
outputbenchmarkme
releases@edinbR
in the booking form