Last updated: 2019-01-27

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180501)

    The command set.seed(20180501) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: a1a64c5

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
    
    Untracked files:
        Untracked:  analysis/chipexoeg.Rmd
        Untracked:  analysis/efsd.Rmd
        Untracked:  analysis/talk1011.Rmd
        Untracked:  data/chipexo_examples/
        Untracked:  data/chipseq_examples/
        Untracked:  talk.Rmd
        Untracked:  talk.pdf
    
    Unstaged changes:
        Modified:   analysis/binomial.Rmd
        Modified:   analysis/fda.Rmd
        Modified:   analysis/index.Rmd
        Modified:   analysis/r2.Rmd
        Modified:   analysis/sigma.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd a1a64c5 Dongyue Xie 2019-01-27 wflow_publish(“analysis/r2b.Rmd”)
    html 9ce257c Dongyue Xie 2019-01-27 Build site.
    Rmd d6bcb1a Dongyue Xie 2019-01-27 wflow_publish(“analysis/r2b.Rmd”)
    html 97b73fc Dongyue Xie 2019-01-22 Build site.
    Rmd b5029e2 Dongyue Xie 2019-01-22 wflow_publish(“analysis/r2b.Rmd”)
    html ad12c40 Dongyue Xie 2019-01-22 Build site.
    Rmd 11f83fb Dongyue Xie 2019-01-22 wflow_publish(“analysis/r2b.Rmd”)


For the method used in these examples, see here

True \(R^2\) is defined as \(R^2=\frac{var(X\beta)}{var(y)}=\frac{var(y)-\sigma^2}{var(y)}=1-\frac{\sigma^2}{var(y)}=1-\frac{\sigma^2}{\sigma^2+var(X\beta)}\)

Ajusted R^2: \(1-\frac{\sum(y_i-\hat y_i)^2/(n-p-1)}{\sum(y_i-\bar y)^2/(n-1)}\)

Shrink adjusted R^2: use fash shrinking \(fash.output=\log(\frac{\sum(y_i-\hat y_i)^2/(n-p-1)}{\sum(y_i-\bar y)^2/(n-1)})\) then shrunk adjusted R^2 is \(1-\exp(fash.output)\)

Shrink R^2 = \(1 - \exp(fash.output)*\frac{n-p-1}{n-1}\), because \(R^2=1-\frac{\sum(y_i-\hat y_i)^2}{\sum(y_i-\bar y)^2}=1-\frac{\sum(y_i-\hat y_i)^2/(n-p-1)}{\sum(y_i-\bar y)^2/(n-1)}*\frac{n-p-1}{n-1}=1-(1-adjR^2)*\frac{n-p-1}{n-1}\)

R Function

R function for shrinking adjusted R/ R squared:

library(ashr)
#'@param R2: R squared from linear regression model fit
#'@param n: sample size
#'@param p: number od covariates
#'@output shrinked R squared.
ash_r2=function(R2,n,p){
  df1=n-p-1
  df2=n-1
  log.ratio=log((1-R2)/(df1)*(df2))
  shrink.log.ratio=ash(log.ratio,1,lik=lik_logF(df1=df1,df2=df2))$result$PosteriorMean
  shrinked.ar2=1-exp(shrink.log.ratio)
  shrinked.r2=1-exp(shrink.log.ratio)*df1/df2
  return(list(shrinked.r2=shrinked.r2,shrinked.ar2=shrinked.ar2))
}

Compare Shrinked \(R^2\) with True \(R2\).

Assume linear model \(y=X\beta+\epsilon\) where \(\epsilon\sim N(0,\sigma^2I)\)

  1. n=100, p=5. \(\beta\) ranges from 0 to 1, for example \(\beta=(0,0,0,0,0)\),…,\(\beta=(0.1,0.1,0.1,0.1,0.1)\),…, \(\beta=(1,1,1,1,1)\) etc. \(y=X\beta+\epsilon\) where \(\epsilon\sim N(0,I_n)\).
set.seed(1234)

n=100
p=5
R2=c()
R2a=c()
trueR2=c()

beta.list=seq(0,1,length.out = 100)
X=matrix(runif(n*(p),0,2),n,p)
for (i in 1:length(beta.list)) {
  
  beta=rep(beta.list[i],p)
  y=X%*%beta+rnorm(n)
  datax=data.frame(X=X,y=y)
  mod=lm(y~X,datax)
  mod.sy=summary(mod)
  R2[i]=mod.sy$r.squared
  R2a[i]=mod.sy$adj.r.squared
  trueR2[i]=1-(1)/(1+var(X%*%beta))
}
R2s=ash_r2(R2,n,p)$shrinked.r2
R2as=ash_r2(R2,n,p)$shrinked.ar2
plot(beta.list,R2,ylim=range(c(R2,R2a,R2s,R2as,trueR2)),main='',xlab='beta',ylab='',type='l')
lines(beta.list,R2a,col=2)
lines(beta.list,R2as,col=3)
lines(beta.list,R2s,col=4)
lines(beta.list,trueR2,col='grey80')
abline(h=0,lty=2)
legend('topleft',c('R^2','Adjusted R^2','Adjusted R^2 fash','R^2 fash','True R^2'),lty=c(1,1,1,1,1),col=c(1,2,3,4,'grey80'))

Expand here to see past versions of unnamed-chunk-2-1.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

plot(trueR2,R2,type='l',ylim=range(c(R2,R2a,R2s,R2as,trueR2)))
lines(trueR2,R2a,col=2)
lines(trueR2,R2as,col=3)
lines(trueR2,R2s,col=4)
lines(trueR2,trueR2,col='grey80')
legend('topleft',c('R^2','Adjusted R^2','Adjusted R^2 fash','R^2 fash'),lty=c(1,1,1,1),col=c(1,2,3,4))

Expand here to see past versions of unnamed-chunk-2-2.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

  1. n=20, p=3.
set.seed(1234)

n=20
p=3
R2=c()
R2a=c()
trueR2=c()

beta.list=seq(0,1,length.out = 100)
X=matrix(runif(n*(p),0,2),n,p)
for (i in 1:length(beta.list)) {
  beta=rep(beta.list[i],p)
  y=X%*%beta+rnorm(n)
  datax=data.frame(X=X,y=y)
  mod=lm(y~X,datax)
  mod.sy=summary(mod)
  R2[i]=mod.sy$r.squared
  R2a[i]=mod.sy$adj.r.squared
  trueR2[i]=1-(1)/(1+var(X%*%beta))
}
R2s=ash_r2(R2,n,p)$shrinked.r2
R2as=ash_r2(R2,n,p)$shrinked.ar2
plot(beta.list,R2,ylim=range(c(R2,R2a,R2s,R2as,trueR2)),main='',xlab='beta',ylab='',type='l')
lines(beta.list,R2a,col=2)
lines(beta.list,R2as,col=3)
lines(beta.list,R2s,col=4)
lines(beta.list,trueR2,col='grey80')
abline(h=0,lty=2)
legend('topleft',c('R^2','Adjusted R^2','Adjusted R^2 fash','R^2 fash','True R^2'),lty=c(1,1,1,1,1),col=c(1,2,3,4,'grey80'))

Expand here to see past versions of unnamed-chunk-3-1.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

plot(trueR2,R2,type='l',ylim=range(c(R2,R2a,R2s,R2as,trueR2)))
lines(trueR2,R2a,col=2)
lines(trueR2,R2as,col=3)
lines(trueR2,R2s,col=4)
lines(trueR2,trueR2,col='grey80')
legend('topleft',c('R^2','Adjusted R^2','Adjusted R^2 fash','R^2 fash'),lty=c(1,1,1,1),col=c(1,2,3,4))

Expand here to see past versions of unnamed-chunk-3-2.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

When n is small, all \(R^2\) are shrunk to zero. Try to increase beta: from 0-1 to 0-2

set.seed(1234)

n=20
p=3
R2=c()
R2a=c()
trueR2=c()

beta.list=seq(0,2,length.out = 100)
X=matrix(runif(n*(p),0,2),n,p)
for (i in 1:length(beta.list)) {
  beta=rep(beta.list[i],p)
  y=X%*%beta+rnorm(n)
  datax=data.frame(X=X,y=y)
  mod=lm(y~X,datax)
  mod.sy=summary(mod)
  R2[i]=mod.sy$r.squared
  R2a[i]=mod.sy$adj.r.squared
  trueR2[i]=1-(1)/(1+var(X%*%beta))
}
R2s=ash_r2(R2,n,p)$shrinked.r2
R2as=ash_r2(R2,n,p)$shrinked.ar2
plot(beta.list,R2,ylim=range(c(R2,R2a,R2s,R2as,trueR2)),main='',xlab='beta',ylab='',type='l')
lines(beta.list,R2a,col=2)
lines(beta.list,R2as,col=3)
lines(beta.list,R2s,col=4)
lines(beta.list,trueR2,col='grey80')
abline(h=0,lty=2)
legend('topleft',c('R^2','Adjusted R^2','Adjusted R^2 fash','R^2 fash','True R^2'),lty=c(1,1,1,1,1),col=c(1,2,3,4,'grey80'))

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

plot(trueR2,R2,type='l',ylim=range(c(R2,R2a,R2s,R2as,trueR2)))
lines(trueR2,R2a,col=2)
lines(trueR2,R2as,col=3)
lines(trueR2,R2s,col=4)
lines(trueR2,trueR2,col='grey80')
legend('topleft',c('R^2','Adjusted R^2','Adjusted R^2 fash','R^2 fash'),lty=c(1,1,1,1),col=c(1,2,3,4))

Expand here to see past versions of unnamed-chunk-4-2.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

Compare fash and corshrink

1-d case

n=100,p=1

library(CorShrink)
set.seed(1234)

n=100
p=1
R2=c()
#R2a=c()
trueR2=c()

beta.list=seq(0,1,length.out = 100)
X=matrix(runif(n*(p),0,2),n,p)
for (i in 1:length(beta.list)) {
  beta=rep(beta.list[i],p)
  y=X*beta+rnorm(n)
  datax=data.frame(X=X,y=y)
  mod=lm(y~X,datax)
  mod.sy=summary(mod)
  R2[i]=mod.sy$r.squared
  R2a[i]=mod.sy$adj.r.squared
  trueR2[i]=1-(1)/(1+var(X%*%beta))
}
R2.fash=ash_r2(R2,n,p)$shrinked.r2
R2.cor=(CorShrinkVector(sqrt(R2),n))^2
plot(beta.list,R2,ylim=range(c(R2.fash,R2.cor,R2,trueR2)),main='',xlab='beta',ylab='',type='l')
lines(beta.list,R2.cor,col=2)
lines(beta.list,R2.fash,col=4)
lines(beta.list,trueR2,col='grey80')
abline(h=0,lty=2)
legend('topleft',c('R2','R^2 fash','R^2 CorShrink','True R^2'),lty=c(1,1,1,1),col=c(1,4,2,'grey80'))

Expand here to see past versions of unnamed-chunk-5-1.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

plot(trueR2,R2.fash,type='l',ylim=range(c(R2.fash,R2.cor,trueR2)),ylab='')
lines(trueR2,R2.cor,col=2)
lines(trueR2,trueR2,col='grey80')
legend('topleft',c('R^2 fash','R^2 CorShrink'),lty=c(1,1),col=c(1,2))

Expand here to see past versions of unnamed-chunk-5-2.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

n=20,p=1

set.seed(1234)

n=20
p=1
R2=c()
#R2a=c()
trueR2=c()

beta.list=seq(0,1,length.out = 100)
X=matrix(runif(n*(p),0,2),n,p)
for (i in 1:length(beta.list)) {
  beta=rep(beta.list[i],p)
  y=X*beta+rnorm(n)
  datax=data.frame(X=X,y=y)
  mod=lm(y~X,datax)
  mod.sy=summary(mod)
  R2[i]=mod.sy$r.squared
  R2a[i]=mod.sy$adj.r.squared
  trueR2[i]=1-(1)/(1+var(X%*%beta))
}
R2.fash=ash_r2(R2,n,p)$shrinked.r2
R2.cor=(CorShrinkVector(sqrt(R2),n))^2
plot(beta.list,R2.fash,ylim=range(c(R2.fash,R2.cor,trueR2)),main='',xlab='beta',ylab='',type='l')
lines(beta.list,R2.cor,col=2)
lines(beta.list,trueR2,col='grey80')
abline(h=0,lty=2)
legend('topleft',c('R^2 fash','R^2 CorShrink','True R^2'),lty=c(1,1,1),col=c(1,2,'grey80'))

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

plot(trueR2,R2.fash,type='l',ylim=range(c(R2.fash,R2.cor,trueR2)),ylab='')
lines(trueR2,R2.cor,col=2)
lines(trueR2,trueR2,col='grey80')
legend('topleft',c('R^2 fash','R^2 CorShrink'),lty=c(1,1),col=c(1,2))

Expand here to see past versions of unnamed-chunk-6-2.png:
Version Author Date
9ce257c Dongyue Xie 2019-01-27

Multiple

n=100, p=5

library(CorShrink)
set.seed(1234)

n=100
p=5
R2=c()
#R2a=c()
trueR2=c()

beta.list=seq(0,1,length.out = 100)
X=matrix(runif(n*(p),0,2),n,p)
for (i in 1:length(beta.list)) {
  beta=rep(beta.list[i],p)
  y=X%*%beta+rnorm(n)
  datax=data.frame(X=X,y=y)
  mod=lm(y~X,datax)
  mod.sy=summary(mod)
  R2[i]=mod.sy$r.squared
  R2a[i]=mod.sy$adj.r.squared
  trueR2[i]=1-(1)/(1+var(X%*%beta))
}
R2.fash=ash_r2(R2,n,p)$shrinked.r2
R2.cor=(CorShrinkVector(sqrt(R2),n))^2
plot(beta.list,R2.fash,ylim=range(c(R2.fash,R2.cor,trueR2)),main='',xlab='beta',ylab='',type='l')
lines(beta.list,R2.cor,col=2)
lines(beta.list,trueR2,col='grey80')
abline(h=0,lty=2)
legend('topleft',c('R^2 fash','R^2 CorShrink','True R^2'),lty=c(1,1,1),col=c(1,2,'grey80'))

plot(trueR2,R2.fash,type='l',ylim=range(c(R2.fash,R2.cor,trueR2)),ylab='')
lines(trueR2,R2.cor,col=2)
lines(trueR2,trueR2,col='grey80')
legend('bottomright',c('R^2 fash','R^2 CorShrink'),lty=c(1,1),col=c(1,2))

n=20, p=3

set.seed(1234)

n=20
p=3
R2=c()
#R2a=c()
trueR2=c()

beta.list=seq(0,1,length.out = 100)
X=matrix(runif(n*(p),0,2),n,p)
for (i in 1:length(beta.list)) {
  beta=rep(beta.list[i],p)
  y=X%*%beta+rnorm(n)
  datax=data.frame(X=X,y=y)
  mod=lm(y~X,datax)
  mod.sy=summary(mod)
  R2[i]=mod.sy$r.squared
  R2a[i]=mod.sy$adj.r.squared
  trueR2[i]=1-(1)/(1+var(X%*%beta))
}
R2.fash=ash_r2(R2,n,p)$shrinked.r2
R2.cor=(CorShrinkVector(sqrt(R2),n))^2
plot(beta.list,R2.fash,ylim=range(c(R2.fash,R2.cor,trueR2)),main='',xlab='beta',ylab='',type='l')
lines(beta.list,R2.cor,col=2)
lines(beta.list,trueR2,col='grey80')
abline(h=0,lty=2)
legend('topleft',c('R^2 fash','R^2 CorShrink','True R^2'),lty=c(1,1,1),col=c(1,2,'grey80'))

plot(trueR2,R2.fash,type='l',ylim=range(c(R2.fash,R2.cor,trueR2)),ylab='')
lines(trueR2,R2.cor,col=2)
lines(trueR2,trueR2,col='grey80')
legend('bottomright',c('R^2 fash','R^2 CorShrink'),lty=c(1,1),col=c(1,2))

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] CorShrink_0.1-6 ashr_2.2-7     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0        plyr_1.8.4        compiler_3.5.1   
 [4] git2r_0.23.0      workflowr_1.1.1   R.methodsS3_1.7.1
 [7] R.utils_2.7.0     iterators_1.0.10  tools_3.5.1      
[10] digest_0.6.17     corrplot_0.84     evaluate_0.11    
[13] gtable_0.2.0      lattice_0.20-35   Matrix_1.2-14    
[16] foreach_1.4.4     yaml_2.2.0        parallel_3.5.1   
[19] gridExtra_2.3     stringr_1.3.1     knitr_1.20       
[22] REBayes_1.3       rprojroot_1.3-2   grid_3.5.1       
[25] glmnet_2.0-16     rmarkdown_1.10    reshape2_1.4.3   
[28] corpcor_1.6.9     magrittr_1.5      whisker_0.3-2    
[31] backports_1.1.2   codetools_0.2-15  htmltools_0.3.6  
[34] MASS_7.3-51.1     assertthat_0.2.0  stringi_1.2.4    
[37] Rmosek_8.0.69     doParallel_1.0.14 pscl_1.5.2       
[40] truncnorm_1.0-8   SQUAREM_2017.10-1 R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1