Last updated: 2018-05-17

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180501)

    The command set.seed(20180501) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: f7f7273

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    log/
    
    Untracked files:
        Untracked:  analysis/binom.Rmd
        Untracked:  analysis/binomial.Rmd
        Untracked:  analysis/overdis.Rmd
        Untracked:  analysis/smashtutorial.Rmd
        Untracked:  docs/figure/poiunknown.Rmd/
        Untracked:  docs/figure/sigma.Rmd/
        Untracked:  docs/figure/smashtutorial.Rmd/
    
    Unstaged changes:
        Modified:   analysis/ashpmean.Rmd
        Modified:   analysis/nugget.Rmd
        Modified:   analysis/unknownvar.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd f7f7273 Dongyue 2018-05-16 edit
    Rmd fc2c755 Dongyue 2018-05-16 edit
    Rmd 996d337 Dongyue 2018-05-14 poisson data unkown variance


Simulations of Poisson nugget effect(unkown).

Previously, we have studies the methods to estimate unknown \(\sigma\) in the model \(Y_t=\mu_t+N(0,\sigma^2)+N(0,s_t^2)\). Here, we apply mle and smashu methods and compare them with smash as well as smashgen with known \(sigma\). The measure of accuracy is mean square error. Plots are also given as visual aid.

library(smashrgen)
library(ggplot2)
#' Simulation study comparing smash and smashgen

simu_study=function(m,sigma,nsimu=100,seed=12345,
                    niter=1,family='DaubExPhase',ashp=TRUE,verbose=FALSE,robust=FALSE,
                    tol=1e-2){
  set.seed(seed)
  smash.err=c()
  smashgen.err=c()
  smashgen.smashu.err=c()
  smashgen.mle.err=c()
  for(k in 1:nsimu){
    lamda=exp(m+rnorm(length(m),0,sigma))
    x=rpois(length(m),lamda)
    #fit data
    smash.out=smash.poiss(x)
    smashgen.out=smash_gen(x,dist_family = 'poisson',sigma = sigma)
    smashu.out=smash_gen(x,dist_family = 'poisson',y_var_est = 'smashu')
    mle.out=smash_gen(x,dist_family = 'poisson',y_var_est = 'mle')
    smash.err[k]=mse(exp(m),smash.out)
    smashgen.err[k]=mse(exp(m),smashgen.out)
    smashgen.smashu.err[k]=mse(exp(m),smashu.out)
    smashgen.mle.err[k]=mse(exp(m),mle.out)
  }
  return(list(est=list(smash.out=smash.out,smashgen.out=smashgen.out,smashu.out=smashu.out,mle.out=mle.out,x=x),err=data.frame(smash=smash.err,smashgen=smashgen.err,
              smashgen.smashu=smashgen.smashu.err,smashgen.mle=smashgen.mle.err)))
}

Simulation 1: Constant trend Poisson nugget

\(\sigma=0.1\)

m=rep(1,128)
result=simu_study(m,0.1)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 0.0318433
mean(result$err$smashgen)
[1] 0.02987159
mean(result$err$smashgen.smashu)
[1] 0.03133639
mean(result$err$smashgen.mle)
[1] 0.02987841
ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

\(\sigma=1\)

m=rep(1,128)
result=simu_study(m,1)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 29.73513
mean(result$err$smashgen)
[1] 0.233901
mean(result$err$smashgen.smashu)
[1] 0.2236465
mean(result$err$smashgen.mle)
[1] 0.288378
#ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

\(\sigma=2\)

m=rep(1,128)
result=simu_study(m,2)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 8372.27
mean(result$err$smashgen)
[1] 0.4991542
mean(result$err$smashgen.smashu)
[1] 0.5850626
mean(result$err$smashgen.mle)
[1] 0.5626063
#ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

Simulation 2: Step trend

\(\sigma=0.1\)

m=c(rep(3,128), rep(5, 128), rep(6, 128), rep(3, 128))
result=simu_study(m,0.1)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 368.4722
mean(result$err$smashgen)
[1] 29.20088
mean(result$err$smashgen.smashu)
[1] 31.90063
mean(result$err$smashgen.mle)
[1] 36.42519
#ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

\(\sigma=1\)

m=c(rep(3,128), rep(5, 128), rep(6, 128), rep(3, 128))
result=simu_study(m,1)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 223491.6
mean(result$err$smashgen)
[1] 1658.668
mean(result$err$smashgen.smashu)
[1] 1650.308
mean(result$err$smashgen.mle)
[1] 1660.029
#ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

Simulation 3: Bumps

\(\sigma=0.1\)

m=seq(0,1,length.out = 256)
h = c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)
w = c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005,0.008,0.005)
t=c(.1,.13,.15,.23,.25,.4,.44,.65,.76,.78,.81)
f = c()
for(i in 1:length(m)){
  f[i]=sum(h*(1+((m[i]-t)/w)^4)^(-1))
}
m=f
result=simu_study(m,0.1)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 23.25972
mean(result$err$smashgen)
[1] 35.17066
mean(result$err$smashgen.smashu)
[1] 276.9639
mean(result$err$smashgen.mle)
[1] 36.6836
#ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

\(\sigma=1\)

result=simu_study(m,1)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 6462.494
mean(result$err$smashgen)
[1] 480.1025
mean(result$err$smashgen.smashu)
[1] 471.428
mean(result$err$smashgen.mle)
[1] 856.6609
#ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

Simulation 4: Spike mean

\(\sigma=0.1\)

spike.f = function(x) (0.75 * exp(-500 * (x - 0.23)^2) + 1.5 * exp(-2000 * (x - 0.33)^2) + 3 * exp(-8000 * (x - 0.47)^2) + 2.25 * exp(-16000 * 
    (x - 0.69)^2) + 0.5 * exp(-32000 * (x - 0.83)^2))
n = 256
t = 1:n/n
m = spike.f(t)

result=simu_study(m,0.1)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 0.6011156
mean(result$err$smashgen)
[1] 12306.79
mean(result$err$smashgen.smashu)
[1] 2931.977
mean(result$err$smashgen.mle)
[1] 12630.5
#ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

\(\sigma=1\)

result=simu_study(m,1)
par(mfrow=c(2,2))
plot(result$est$x,col='gray80',ylab='',main='smash')
lines(exp(m),col=1)
lines(result$est$smash.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: known sigma')
lines(exp(m),col=1)
lines(result$est$smashgen.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: (sigma^2+s_t^2) from smash')
lines(exp(m),col=1)
lines(result$est$smashu.out,col=4)
plot(result$est$x,col='gray80',ylab='',main='smashgen: sigma from mle')
lines(exp(m),col=1)
lines(result$est$mle.out,col=4)

mean(result$err$smash)
[1] 34.61266
mean(result$err$smashgen)
[1] 7991947410
mean(result$err$smashgen.smashu)
[1] 4418267884
mean(result$err$smashgen.mle)
[1] 13168337929
#ggplot(df2gg(result$err),aes(x=method,y=MSE))+geom_boxplot(aes(fill=method))+labs(x='')

Session information

sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_2.2.1    smashrgen_0.1.0  wavethresh_4.6.8 MASS_7.3-47     
[5] caTools_1.17.1   ashr_2.2-7       smashr_1.1-5    

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.16        plyr_1.8.4          compiler_3.4.0     
 [4] git2r_0.21.0        workflowr_1.0.1     R.methodsS3_1.7.1  
 [7] R.utils_2.6.0       bitops_1.0-6        iterators_1.0.8    
[10] tools_3.4.0         digest_0.6.13       tibble_1.3.3       
[13] evaluate_0.10       gtable_0.2.0        lattice_0.20-35    
[16] rlang_0.1.2         Matrix_1.2-9        foreach_1.4.3      
[19] yaml_2.1.19         parallel_3.4.0      stringr_1.3.0      
[22] knitr_1.20          REBayes_1.3         rprojroot_1.3-2    
[25] grid_3.4.0          data.table_1.10.4-3 rmarkdown_1.8      
[28] magrittr_1.5        whisker_0.3-2       backports_1.0.5    
[31] scales_0.4.1        codetools_0.2-15    htmltools_0.3.5    
[34] assertthat_0.2.0    colorspace_1.3-2    labeling_0.3       
[37] stringi_1.1.6       Rmosek_8.0.69       lazyeval_0.2.1     
[40] munsell_0.4.3       doParallel_1.0.11   pscl_1.4.9         
[43] truncnorm_1.0-7     SQUAREM_2017.10-1   R.oo_1.21.0        

This reproducible R Markdown analysis was created with workflowr 1.0.1