
JFP 16 (2): 129–136, 2006. c© 2003 Cambridge University Press

doi:10.1017/S095679680300474X First published online 31 July 2003 Printed in the United Kingdom

129

FUNCTIONAL PEARL

Marble mingling

S. A. CURTIS∗
University of Stirling, Stirling FK9 4LA, UK

(e-mail: s.curtis@cs.stir.ac.uk)

1 Introduction

A bag (literally and mathematically!) of marbles is deemed to be mingled if all the

colours of the marbles are different. Given a positive integer k and a collection of m

marbles, our objective is to try and extract as many mingled bags as possible from

the collection, where each bag contains exactly k marbles.

For example, consider a collection of four red, three green, three blue and two

yellow marbles. If k= 3, then we may select at most four bags: two RGB selections,

one RGY selection, and one RBY selection. Alternatively, if k= 4, then we may

select at most two bags, both with RGBY selections, leaving one green, one blue

and two red marbles left over.

A special case of this problem was considered in Curtis (1996) by a programmer

wishing to plan usage of drugs packages in a double-blind medical trial: the different

types of drugs corresponded to the marble colours, the packages were assigned in

pairs because of the double-blind criterion, so that k= 2, and to obtain minimum

wastage of unused packages, the maximum possible number of marble selections

was needed.

More general examples of this problem occur in craft work, where items are

constructed from many differently-coloured pieces. For example, a patchwork maker

may have a large pile of fabric squares, out of which are to be produced as many

“ninepatch blocks” as possible, where the fabrics in each block are all different. In

this case, k= 9:

In this pearl, we look at this problem in two ways. Firstly, a greedy algorithm is

used to produce a listing of as many mingled marble selections as possible. Secondly,

attention is restricted to the maximum number of selections possible, for which we

find an even more efficient algorithm.

∗ Now at: Department of Computing, Oxford Brookes University, Oxford, OX33 1HX. e-mail:
sharoncurtis@brookes.ac.uk

130 S. A. Curtis

2 A greedy solution

Not all marble selection strategies will lead to an optimal solution. For example,

with the marble collection from the previous page, and with k= 3, choosing two

selections of GBY ensures that only one further selection of RGB can be made,

leaving three red marbles left over. Only three selections are obtained, not as many

as the four given previously.

One intuitive guess at a successful strategy is that which at each step chooses the k

most common marbles of those remaining. To put it another way: suppose some

kind person has sorted our marble collection into jars, so that all the red marbles

are in one jar, all the blue marbles are in another jar, and so on. At each step of

the algorithm, k marbles are chosen from the k fullest jars at that time. Using our

example marble collection to illustrate, with k= 3, the steps followed by this greedy

algorithm would be

Marbles Remaining Selections

4R 3G 3B 2Y
RGB

3R 2G 2B 2Y
RGB

2R 1G 1B 2Y
RGY

1R 1B 1Y
RBY

This strategy does indeed produce an optimal solution:

Proof

It is sufficient to show that the first greedy step of the algorithm can lead to an

optimal solution, and then the same argument may be applied to the remaining

steps.

If there are at least k different colours of marbles in the collection to begin with,

then the greedy strategy dictates choosing the selection of marbles with colours

{c1, . . . ck}, where the colours of marbles have been labelled as follows: c1 is the most

common marble colour, c2 the most common after c1, and so on.

Let S be an optimal solution to the problem, consisting of a listing of mingled

marble selections, together with any marbles left over. We obtain another optimal

solution Sk containing a marble selection with colours {c1, . . . ck}, and to do this, we

use induction on i with the following induction hypothesis:

For 1 � i � k, the marbles in S may be rearranged to obtain another optimal solution Si,

which contains a marble selection including colours c1 . . . ci.

Base case: either a c1-coloured marble is already included in one of the selections

of S , in which case S1 = S , or all the c1-coloured marbles are left over, one of which

may be safely swapped into any mingled marble selection of S to form S1.

Inductive case: using the induction hypothesis, we rearrange S to form Si, which

includes a selection s containing marbles of colours c1 . . . ci. If s already contains

Functional pearl 131

a ci+1-coloured marble, then Si+1 = Si and we are done. If not, we must find a

ci+1-coloured marble elsewhere in Si to swap with one of the other marbles in s.

If one of the left over marbles in Si is coloured ci+1, it may be swapped safely

with one of the other marbles in s. Otherwise, all the ci+1-coloured marbles must

be in other selections of Si, and we must swap one of them with some cm-coloured

marble (where m > i+ 1) in s.

If it is not possible to perform this swap whilst keeping the selections mingled,

then the following must be the case: not only is there a cm-coloured marble in s,

but any selection with a ci+1-coloured marble also contains a cm-coloured marble,

contradicting the fact that ci+1-coloured marbles are at least as common as cm-

coloured marbles. Thus we can choose a selection in Si containing a ci+1-coloured

marble and safely swap it with the cm-coloured marble in s, to form another optimal

solution Si+1. �

2.1 Implementation

We now translate the above algorithm into a functional program to produce a listing

of as many marble selections as possible.

A jar of marbles can be represented by the quantity of marbles in the jar, together

with their colour:

type JarC = (Int , Colour)

Thus the program’s input has type [JarC]. We further make the assumption that the

input data is appropriate: that is, no jar contains less than one marble, and no two

jars hold marbles of the same colour.

We introduce a sampling function that removes marbles from jars, and also

removes any newly-emptied jars from the list of jars:

sampleC : : Int → [JarC] → ([Colour] , [JarC])

sampleC i js = (map snd js , concat (map (removeC i) js))

removeC : : Int → JarC → [JarC]

removeC i (n , c) | n == i = []

| n > i = [(n − i , c)]

The above is more general than currently needed, as it offers the choice of how

many marbles should be removed from each jar: this choice will be useful later on.

For now, we use sampleC 1 to sample precisely one marble from each jar.

After sorting the initial list of jars into descending order of fullness, the greedy

step of taking one marble from each of the k fullest jars of the list js can be

performed by sampleC 1 (take k (sort js)). It would be inefficient to sort the jars at

every step, so the jars are sorted once at the beginning of the algorithm. Then, as a

sampling of a sorted list of jars returns a list of jars which is also sorted, merging the

list of sampled jars with the unsampled jars safely retains the sorted property of

the list of jars at each step. Thus a program to list as many mingled selections as

possible is the function marblesList:

132 S. A. Curtis

marblesList : : Int → [JarC] → [[Colour]]

marblesList k = mList k . sort

mList : : Int → [JarC] → [[Colour]]

mList k js | length js < k = []

| otherwise = s : mList k (merge js′ (drop k js))

where (s , js′) = sampleC 1 (take k js)

This functional program is still inefficient, because it calculates length js at each

step, but it is possible to improve this by calculating length js once at the beginning

of the algorithm, and rewriting the sampleC function so that it also returns the

new list length at each step. With this alteration (omitted above, for clarity), the

complexity of the algorithm is O(j log j +m), for j jars containing m marbles in

total. This complexity comes from O(j log j) for sorting efficiently, and O(m) for

mList, as a maximum of �m/k� selections are possible, each taking O(k) to perform.

In cases when the distribution of marbles is not sparse amongst the jars, so that

j � m, the algorithm is of complexity Θ(m), and this is optimal: simply listing the

marble selections must take m steps.

For practical use in real-world problems, marble listings are required, and the

above program is efficient at producing these. If instead, we do not care about

listings, and turn our interest to solely the maximum number of mingled selections

that can be obtained, further efficiency improvements are possible.

3 An even greedier solution

We begin with the straightforward translation of the above program into one that

simply counts the number of marble selections. First, the colour information is

omitted, so that our datatype for jars is now

type Jar = Int

The sampling may now simply remove the marbles from the jars, as no colour

listings are required:

sample : : Int → [Jar] → [Jar]

sample i = concat . map (remove i)

remove : : Int → Jar → [Jar]

remove i n | n == i = []

| n > i = [n − i]

Similarly to how mList listed the marble selections, we use a function mCount to

count the selections:

marblesCount : : Int → [Jar] → Int

marblesCount k = mCount k . sort

Functional pearl 133

mCount : : Int → [Jar] → Int

mCount k js | length js < k = 0

| otherwise = 1+ mCount k js′

where js ′ = merge (sample 1 (take k js)) (drop k js)

By now, the reader might be frustrated by the apparently slow progress of this

algorithm, which chooses just one selection at each step. It may seem that removing

as many marbles as possible at one step is more advantageous, but the correctness

of the algorithm needs to be maintained. Note what happens with this strategy when

used on our example marble collection, with k= 3:

Marbles Remaining Selections

4R 3G 3B 2Y
RGB, RGB, RGB

1R 2Y

By taking as many as possible at the first step, we get only three marble selections,

whereas the original correct greedy algorithm above gives the optimal number, 4.

This shows the importance of re-evaluating at each step which jars are fullest.

However, there is a way to reduce the number of steps required: when the k

jars which are fullest remain so after the sampling of one marble from each, then

these same jars will be those sampled from next. Combining multiple samplings of

one marble into one sampling of multiple marbles increases the efficiency of the

algorithm, but how many can we sample at once? Intuition suggests we may sample

i marbles from each jar, where i is one more than the difference in quantities between

the least full of the k fullest jars, and the fullest jar of those remaining. Indeed a

straightforward (but unilluminating, so omitted) calculation can be performed on

mCount, leading to this result. Here is the transformed version:

mCount2 : : Int → [Jar] → Int

mCount2 k js | length js < k = 0

| otherwise = i+ mCount2 k js ′

where i = js!!(k − 1) − js!!k + 1

js ′ = merge (sample i (take k js)) (drop k js)

We now have an accelerated version of the same algorithm. Again using the same

example, we can see its effect on the number of steps performed:

Marbles Remaining Selections

4R 3G 3B 2Y
RGB, RGB

2R 2Y 1G 1B
RYG

1R 1Y 1B
RYB

The resulting efficiency improvement is not great, because although the first step

of the algorithm may result in a large sampling of marbles, subsequent samplings

consist of only one or two marbles, as either js!(k − 1) − 1= js!k or js!(k − 1) = js!k

134 S. A. Curtis

at each subsequent step. Thus overall, the worst case complexity remains the same.

However, progress towards greater efficiency can be made by looking carefully at

how this algorithm performs with assorted marble collections.

4 A more than greedy solution

We observed earlier that in any bag of m marbles, the maximum number of selections

of size k obtainable is �m/k�. Examination of the previous algorithm reveals a clear

pattern as to when this maximum is not achieved (for the sake of this explanation

we assume that the red marbles are those most numerous): on the occasions when

there are at least k marbles left over after running the algorithm, there were too

many red marbles to use up, even though a red marble was selected at each step.

Here is a typical example of too many red marbles, with k= 3:

Marbles Remaining Selections

8R 4G 3B 2Y
RGB, RGB, RGB

5R 2Y 1G
RYG

4R 1Y

Conversely, if there are not too many red marbles, they are easy to use up, leaving

fewer than k marbles left over, and so the full complement of �m/k� selections is

obtained. (See previous pages for examples of marble collections with sufficiently

few red marbles.) This inspires a conjecture:

If the fullest jar contains no more than �m/k� marbles, where m is the total number of

marbles, then it is possible to extract �m/k� mingled marble selections of size k from the jars.

This turns out to be true, and the proof is by induction on k:

Proof

Base case: when k= 1, �m/k� =m, and trivially we obtain m mingled selections with

just one marble in each.

Inductive case: we first set aside the first �m/k� marbles from the ordered list of jars.

That is, first we set aside as many as we can of the marbles in the first jar (those of the

most common colour), up to �m/k� of them, then if necessary use marbles from

the second jar, and so on, until we have �m/k� marbles set aside. Assume without

loss of generality that the �m/k�th marble set aside was yellow.

Before dealing with the remaining jars, we note that⌊
m− �m

k
�

k − 1

⌋
=

⌊m
k

⌋
+

⌊
m mod k

k − 1

⌋
.

We now observe that the remaining jars contain m− �m/k� marbles in total, and

we know already that no individual jar contains more than �m/k� marbles. From

the above equation, we have that �m/k� � �(m− �m/k�)/(k − 1)�, so that none of the

Functional pearl 135

remaining jars may contain more than �(m− �m/k�)(k − 1)� marbles. This enables us

to use the induction hypothesis on the remaining jars, to obtain �(m− �m/k�)(k − 1)�
mingled marble selections of size k − 1. As �(m− �m/k�)(k − 1)� � �m/k�, we may

take �m/k� of these selections, and to each, we add one of the �m/k� marbles set

aside earlier.

Care must be taken with the yellow marbles, as this is the only colour which, as

well as having been set aside earlier, may also appear in the selections of size k − 1.

As there were no more than �m/k� yellow marbles in the first place, it is possible

to avoid adding a yellow marble to a selection already containing a yellow marble,

thus obtaining �m/k� mingled marble selections of size k. �

We have dealt with the case where the fullest jar is not too full, but we still need

to consider the case when the fullest jar contains more than �m/k� (red) marbles.

In this case, note that the number of possible mingled marble selections is exceeded

by the number of red marbles. This means that any optimal solution is equivalent

to one which uses a red marble in every mingled selection (selections without red

marbles may have one of their marbles swapped with a leftover red marble). Thus the

maximum possible number of mingled selections of size k is equal to the maximum

number we can obtain of size k − 1, without the red marbles. We thus arrive at the

following algorithm:

marblesCount3 : : Int → [Jar] → Int

marblesCount3 k js = mCount3 k (sum js) (sort js)

mCount3 : : Int → Int → [Jar] → Int

mCount3 k m js | k == 1 = m

| j � d = d

| otherwise = mCount3 (k − 1) (m − j) (tail js)

where j = head js

d = m ‘div’ k

4.1 Lazy improvement

Laziness can improve the efficiency of this algorithm: in cases where the fullest jar is

not too full, sorting of the whole list is not required, as only the number of marbles

in the fullest jar and the total number of marbles are needed. In the worst case, it

is still necessary to sort the whole list of jars.

By using a heap of jars, the algorithm is made more efficient. Initially, the heap is

constructed in linear time (see Brodal & Okasaki (1996) and Okasaki (1996)), and

then at each step, the fullest jar is removed from the heap. Our final program is

thus:

marblesCount4 : : Int → [Jar] → Int

marblesCount4 k js = mCount4 k (sum js) (makeHeap js)

136 S. A. Curtis

mCount4 : : Int → Int → Heap Jar → Int

mCount4 k m jh | k == 1 = m

| j � d = d

| otherwise = mCount4 (k − 1) (m − j) jh ′

where d = m ‘div’ k

(j , jh ′) = deleteMax jh

This gives a time complexity of O(j) (for j jars) in the best case, and O(j log j) in the

worst. For the average case, we consider the distribution of m marbles into j non-

empty jars by first assigning one marble to each jar, then randomly choosing a jar

for each of the remaining m− j marbles. The larger the number of jars to distribute

the marbles between, the closer to 0 the chances of the fullest jar containing more

than �m/k� marbles (see Freeman (1979) for more details of this distribution). Hence

this algorithm has average O(j) complexity.

5 Conclusion

The final linear algorithm is a considerable improvement over the O(j log j +m)

of our first algorithm. However, the first algorithm does have its uses. Although

the final algorithm could be adapted for the production of marble listings, the

first algorithm is more suitable for a human to implement manually: the repeated

sampling from the k fullest jars is a simple step-by-step algorithm which can easily

be used in practical applications.

Acknowledgements

Thanks are due especially to Peter Harding, the original programmer for the drugs

trial, and also to Jeremy Gibbons, who made helpful suggestions.

References

Brodal, G. S. and Okasaki, C. (1996) Optimal purely functional priority queues. J. Functional

Program., 6(6), 839–857.

Curtis, S. (1996) A relational approach to optimization problems. DPhil thesis, Technical

Monograph PRG-122, Computing Laboratory, Oxford.

Freeman, P. R. (1979) Exact distribution of the largest multinomial frequency. J. Appl. Stat.,

28(3), 333–336.

Okasaki, C. (1996) The role of lazy evaluation in amortized data structures. Proc. ACM

SIGPLAN International Conference on Functional Programming (ICFP ’96), vol. 31(6),

pp. 62–72.

