
Lisp and Symbolic Computation, 1, 11-37 (1988)
© 1988 Kluwer Academic Publishers—Manufactured in The Netherlands

The Mystery of the Tower Revealed: A
Nonreflective Description of the Reflective Tower

MITCHELL WAND
College ofComputer Science, Northeastern University, Boston, MA 02115

DANIEL P. FRIEDMAN
Computer Science Department, Indiana University, Bloomington, IN 47405

Abstract

In an important series of papers [8, 9], Brian Smith has discussed the nature of programs that know
about their text and the context in which they are executed. He called this kind of knowledge reflection.
Smith proposed a programming language, called 3-LISP, which embodied such self-knowledge in the
domain of metacircular interpreters. Every 3-LISP program is interpreted by a metacircular interpreter,
also written in 3-LISP. This gives rise to a picture of an infinite tower of metacircular interpreters, each
being interpreted by the one above it. Such a metaphor poses a serious challenge for conventional
modes of understanding of programming languages. In our earlier work on reflection [4], we showed
how a useful species of reflection could be modeled without the use of towers. In this paper, we give a
semantic account of the reflective tower. This account is self-contained in the sense that it does not em-
ploy reflection to explain reflection.

1. Modeling reflection

Reflective programming languages were introduced in [8, 9] to study programs
that need knowledge of their own behavior. In artificial intelligence, this kind of
knowledge is needed, for example, in programs that must explain their behavior to
a user. In the study of programming languages, a similar phenomenon occurs in
extensible languages, that is, languages in which one can write programs that
change the language itself. Lisp is such a language: The user can change the
language itself by defining new special forms, which effectively cause new lines to
be added to the Lisp interpreter.

In [4], we constructed a formal model of this behavior. To understand this
model, consider how a conventional denotational semantics models the context in
which a computation takes place. In a conventional language, an expression is
evaluated in a context that includes several parts:

A preliminary version of this paper appeared in Conference Record of the 1986 ACM Conference on Lisp
and Functional Programming, Cambridge, MA, August 1986. This material is based on work supported
by the National Science Foundation under Grants MCS 8303325, MCS 8304567, and DCR 8605218.

12 WAND AND FRIEDMAN

1. An environment that describes the bindings of identifiers, which, depending on
the language, might be values or locations.

2. A continuation that describes the control context. This is typically modeled by a
function whose job it is to receive the answer from the current expression and
then finish the entire calculation.

3. A store that describes the "global state " of the computation, including the con-
tents of locations and the state of the input-output system. In this paper, we do
not deal with the store part of the context.

These pieces of context are taken into account by passing them as arguments to
the valuation or interpreter. Thus the type of the interpreter or valuation is

: Exp-- Env —K -. A = Xepx. .

where A is some domain of answers. Thus we can think of (once we have written
it out) as defining an interpreter that manipulates three registers, e, p, and K.

Now we can define new language constructs. Consider adding a new kind of ex-
pression, called an add-immediate expression, which has two subexpressions. The
first is an arbitrary expression, which is to be evaluated, and the second is a num-
ber. The result of the entire expression is to be the sum of the number and the value
of the subexpression. We can define this in the language of denotational semantics
as follows:

(add-immediate e, n z)~ = Xpx.f;' F[e,]Ip(Xu.x(n 2 + u))

In the system described in this paper, we might define it by

(set! add-immediate

(make-reifier

(lambda (e r k)

(meaning (car e) r (lambda (v) (k (+ (car (cdr e)) v)))))))

The intention is that when an add-immediate expression (say (add-immediate x 3))

is evaluated, e will be bound to the arguments of the expression (in this case the list
(x 3)), r will be bound to the current environment, and k will be bound to the
current continuation. Then the body of the definition (the meaning expression) will
be executed. We refer to this process as reification. When reification occurs, the
contents of the interpreter registers, e, p, and x, are passed to the program itself,
suitably packaged (or reified) so the program can manipulate them. We think of
this process as converting program into data. We refer to a procedure of this sort as
a reifying procedure.

Conversely, reflection is the process by which values for an expression, an en-
vironment, and a continuation are reinstalled as the values of the interpreter regis-
ters. This process may be thought of as turning data into program. In our example,
the function meaning takes its arguments and installs them in the interpreter regis-

THE MYSTERY OF THE TOWER REVEALED 13

ters, so that the first subexpression (in the case of (add- immediate x 3) , the identifier
x) , is loaded into the expression register, the old environment is reloaded into the
environment register, and a suitable continuation is loaded into the continu-
ation register.

These transformations may be summarized as follows. Let us assume that the
identifier f is bound to a reifying procedure that might be represented as a closure
consisting of a body eo, a static environment po, and formal parameters (e r k).

Then reification may be summarized as

[f(f e, e 2 ... e n)]] plc = [[eo]j(Po[e (e, e2 . . . en), r
F—

p ^ , k F- xA
])K o

where p" and K' are suitably reified versions of p and K, and Ko iS an arbitrary
continuation.

Reflection, on the other hand, can be summarized as follows:

(meaning e, e 2 e 3)]]px

= meaning (e, p,, K t) K

= (a eP;
v

K
v

t

Here the procedure meaning is called on actual parameters e,, e,, and e 3 . These
parameters are evaluated, yielding values e, p,, and K t , which are an expression, a
representation of an environment, and a representation of a continuation, respec-
tively. These values are transformed back into real environments and con-
tinuations by the "down" operator (—)", installed in the interpreter registers, and
the computation proceeds.

In this model, reifying procedures are ordinary values, like regular procedures.
Thus, this model generalizes the conventional treatment of special forms by mak-
ing them first-class citizens. All this was done without having to introduce the con-
cept of reflective towers.

On the other hand, this model displays some disturbing asymmetries. If a
reification is followed by a reflection, then the choice of the continuation Ko is ar-
bitrary; one doesn't care what happens when the body of a reifying procedure
"runs off the end" without reinvoking meaning. Furthermore, if a reflection is
followed by a reification, one loses the context K in which the original reflection
occurred, and the choice of Ko may become significant.

These pathologies led us to consider the question of providing a reasonable
model of the tower itself. Reflective models (as in [9]) were unsatisfactory for foun-
dational reasons: they depended on an understanding of reflective towers in the
defining language, when that was precisely the feature we hoped to explain. The
only nonreflective models ([2, 8: Chapter 5]) were extremely operational. Indeed, it
was not clear whether the techniques of denotational semantics were adequate to
describe the tower.

Though Smith has argued eloquently for the desirability of reflective languages,
the lack of a denotational characterization has been an impediment to a deeper

14 WAND AND FRIEDMAN

understanding of the implications of reflection. In this paper, we attempt to
remedy this difficulty by showing how denotational semantics can be used to de-
scribe a tower of computations. Such a model may help provide a setting for
evaluation of the reflection concept.

2. Modeling the tower

3-LISP adds to the reflective structure a serious commitment to the idea of
metacircular interpreters. Every 3-LISP program is interpreted by a metacircular
interpreter, also written in 3-LISP, which in turn is interpreted by a metacircular
interpreter above it, and so on. This leads to an infinite tower of interpreters, each
manipulating an expression, an environment, and a continuation. Each inter-
preter runs in a context consisting of the states of the interpreters above it.

This yields a slightly different picture of reification and reflection. When reflec-
tion occurs (by invocation of the function meaning), a new interpreter is spawned
below the current one. When the lower interpreter exits, control returns to the in-
terpreter that spawned it. When the lower interpreter invokes a reifying procedure,
its registers are reified and passed to the body of the procedure, as in our earlier
model. In 3-LISP, however, the body of the reifying procedure is then executed as if
it were in the upper interpreter. Thus, reifying procedures in 3-LISP, like Lisp

'
s spe-

cial forms, effectively add new lines to the interpreter.
Our standard treatment of contextual information gives a straightforward way

of modeling this situation. We simply change the type of the semantic function so
that it takes, in addition to the usual expression, environment, and continuation, a
new piece of context information that we call a metacontinuation. Hence the type of
(is now

: Exp–.Env—K–). MK —A

A metacontinuation represents the state of the upper interpreter, and by im-
plication that of the tower above it. Thus execution always takes place in the bot-
tom interpreter of the tower.

We may now look at the transformations for reification and reflection in the
presence of a metacontinuation. Reification looks like

[[(f e, ... e„)l pK N = Deo]I(po[e F (e, ... en), r F p^, k F KA 1)
K I

where K, and µ, are a continuation and metacontinuation extracted (in a manner
yet to be determined) from Reflection becomes

f,' If(meaning e, ez e 3)]lpKM
= meaning (e, p,, K,) Kµ

~` ~e~ Pix4t ,

THE MYSTERY OF THE TOWER REVEALED 15

where p, is a new metacontinuation encapsulating x and p. If the extraction and
encapsulation processes are made invertible, then reification and reflection will
become symmetrical: reification passes representations of both the environment
and continuation to the upper interpreter, which can then dynamically recreate
the lower interpreter by performing the appropriate reflection.

The first problem is characterizing the domain MK. We may think of a metacon-
tinuation as waiting for a result from the lower interpreter. Thus, MK will have
the form

MK=R-3A

where R is the domain of interpreter results.
Our next task is to determine the domain R. To do this, we will consider what

happens when the lower interpreter invokes a reifying procedure and returns to
the next level.

When the lower interpreter executes a reifying procedure, the body of the pro-
cedure is run at the place the meaning function was called in the upper interpreter.
What do we mean here by "body? " Clearly we mean an object built from an ex-
pression (the body of the procedure) and an environment (built from the lexical
environment of the procedure extended with the formal parameters bound to the
actuals)—in other words, a thunk. Looking at the functionality of we see that
combining an expression and an environment gives us an object of type K -~ MK

A. When a reflective procedure is invoked, the appropriate thunk is built and
passed to the metacontinuation. Thus the domain of metacontinuations should
be

MK= [K—MK-~A]-~A

How is this thunk built? It is an object built from the body of the procedure and
an environment consisting of the lexical environment of the procedure with the
formal parameters bound to the actuals. In the case of a reflective procedure, the
actuals are the e, p, and K, suitably packaged (or reified) so that the body can
use them.

What do we mean here by "place?" We mean the continuation (and metacon-
tinuation) in force at the time meaning was called. When a new interpreter is
spawned at continuation x and metacontinuation p, we expect it to return a thunk
6 which will be run on continuation x and metacontinuation p. Thus, the lower in-
terpreter should be run with metacontinuation

XO.OKp

That is, the operation of building this new metacontinuation is

meta-cons = ~,Kp6.OKp

16 WAND AND FRIEDMAN

In Scheme, this might be written as

(define meta-cons

(lambda (k)

(lambda (mk)

(lambda (theta)

((theta k) mk)))))

This combinator is just Church 's pairing combinator [l, p. 129], so it is not far
wrong to think of a metacontinuation as a list of interpreters (or continuations).
Writing this functionally, however, allows us to form an infinite tower using the
standard fixpoint combinator:

g- = Y(X .i.meta-cons Ko µ)

where Ko is the initial continuation used to initialize each interpreter in the tower.
In Scheme, this might be written as

(define tower

(letrec

([loop

(lambda (n)

(lambda (theta)

((theta (R-E-P n)) (loop (addl n)))))])

(loop 0)))

where (R-E-P n) generates the initial continuation (a read-eval-print loop) for the
interpreter at level n. Thus each interpreter begins with a continuation that is a
read-eval-print loop.

The only two legal operations on metacontinuations are the operations of push-
ing and popping continuations off the metacontinuation. To ensure that these are
the only operations we perform, we introduce two new abstractions for performing
these operations.

The first is shifting up, or sending a thunk to the current metacontinuation. If
the metacontinuation was built by meta-cons, then the thunk will be run with the
continuation and subsequent metacontinuation (the "meta-car" and "meta-cdr")
of the metacontinuation. We express this as follows:

(define shift-up

(lambda (theta)

(lambda (mk)

(mk theta))))

The argument theta of shift-up is a function that expects a continuation with
which to run some code. It then takes a metacontinuation. The metacontinuation

THE MYSTERY OF THE TOWER REVEALED 17

contains the continuation from "the level above." Access to this continuation is
obtained by invoking the metacontinuation on theta. The type of shift-up is thus
[K~MK—A] -->MK –. A.

By expanding the definition of meta-cons, we may deduce

((shift-up theta) ((meta-cons k) mk)) = ((theta k) mk)

We can use shift-up to define extraction operations as well:

(define meta-car (shift-up (lambda (v) (lambda (mk) v))))

(define meta-cdr (shift-up (lambda (v) (lambda (mk) mk))))

By expanding these definitions, we may deduce

(meta-car ((meta-cons k) mk)) = k

(meta-cdr ((meta-cons k) mk)) = mk

Conversely, we could have defined meta-car and meta-cdr by explicitly passing
the appropriate functions to mk:

(define meta-car

(lambda (mk)

(mk (lambda (k) (lambda (mk) k)))))

(define meta-cdr

(lambda (mk)

(mk (lambda (k) (lambda (mk) mk)))))

Then we could define shift-up in terms of meta-car and meta-cdr:

(define shift-up

(lambda (th)

(lambda (mk)

((th (meta-car mk)) (meta-cdr mk)))))

These relationships are useful in understanding the use of shift-up in the code
of the model later.

The other shifting operation is shifting down, that is, starting a new lower level
by pushing the current continuation onto the metacontinuation and running in a
different continuation. We express this as follows:

(define shift-down

(lambda (d)

(lambda (k)

18 WAND AND FRIEDMAN

(lambda (mk)

(d ((meta-cons k) mk))))))

The first argument to shift-down is the code to be run at "the level below. " To
shift down we must have access to the current continuation that will be pushed
onto the tower. Hence, the next argument to shift-down is a continuation. We can
think of ((shift-down d) k) as an operation that pushes the continuation k onto the
tower and starts a new interpreter specified by d.

The relationships between shift-up and shift-down may be expressed by the
following equations, which can be derived easily from the definitions:

((shift-up (shift-down d)) ((meta-cons k) mk)) = (d ((meta-cons k) mk))

(shift-down (shift-up theta)) = theta

Thus, in the context of a metacontinuation formed by meta-cons, these two
functions are inverses.

What about termination of the lower interpreter? Let us imagine that we want to
terminate the lower interpreter with value v. To do this, we must pass v to the con-
tinuation x waiting in the upper interpreter. Thus we must pass to the metacon-
tinuation a thunk that given x, passes v to it. This can be done by invoking a con-
tinuation terminate-level defined as follows:

(define terminate-level

(lambda (v)

(shift-up (lambda (k) (k v)))))

3. Up and down the tower

In this section we will give a glimpse of some of the programming techniques that
are made possible in the tower, and try to compare these with the towerless reifica-
tion of 14]. Our understanding of this powerful tool is still sketchy, but we will at-
tempt to share what we do understand.

We call this language Brown. Its surface syntax is familiar. It has identifiers,
abstractions (for which we use the notation (lambda (id . . .) body)), and com-
binations of any number of arguments. This much of the language behaves like
the conventional applicative-order language.

Reflection is built into the language through two primitives, meaning and make-

reifier. meaning takes three arguments: an expression, an environment, and a con-
tinuation, and starts a new interpreter with these three values as the initial contents
of the registers. make-reifier takes a three-argument abstraction and turns it into a
reifying procedure that, when called, reifies the registers e, p, and x into Brown
values, creates a suitable thunk, and passes it to the metacontinuation. Such a

THE MYSTERY OF THE TOWER REVEALED 19

reifying procedure behaves as if its body were being executed by the interpreter.
Consider, for example,

(make-reifier

(lambda (e r k)

(meaning (car (cdr e)) r

(lambda (v)

(k (set-cell! (r (car e)) v))))))

This builds a reifier, which, when invoked on an expression consisting of two
arguments, does the following. First, the second argument is evaluated, yielding a
value v. Then the environment is queried using the first argument (unevaluated) to
supply a cell, the resulting cell is modified (using the primitive set-cell!) and the
resulting value sent to the continuation k. This would be an appropriate reifier to
be bound to the name set!. We can do this by using it on itself, in the following
code (to be executed in Brown!):

((lambda (setter)

(setter set! setter))

(make-reifier

(lambda (e r k)

(meaning (car (cdr e)) r

(lambda (v)

(k (set cell! (r (car e)) v)))))))

Once we have defined set!, we can do all further definition inside the language.
Hence in this paper, all definitions performed with set! are in Brown, and all
definitions with define are in Scheme. So, for example, we can execute the follow-
ing in Brown:

(set! if

(make-reifier

(lambda (e r k)

(meaning (car e) r

(lambda (v)

(meaning

(ef v

(car (cdr e))

(car (cdr (cdr e))))

r k))))))

This code defines if so that in (if expO expl exp2), expO is evaluated first, in a con-
tinuation that evaluates either expl or exp2, depending on the value returned by
expO. The code uses the "extensional if' function ef [9], which takes a Boolean and

20 WAND AND FRIEDMAN

two values and returns one of the two values. Unlike if, ef is strict in all its
arguments; it may be defined in Scheme as

(define ef

(lambda (bool x y)

(if bool x y)))

We may now begin exploring the vagaries of the tower world. We begin with
quote, which may be defined as

(set! quote

(make-reifier

(lambda (e r k) (k (car e)))))

This function, when invoked, takes its first argument and passes it unevaluated
to the call-time continuation. This is, of course, just what quote is supposed to do.
Now consider

(set! jump

(make-reifier

(lambda (e r k) (car e))))

This function, when invoked, merely returns its first argument unevaluated. But
returns it to what? In a towerless world, this would simply terminate the computa-
tion. With the tower, however, the effect is to terminate the current interpreter and
return this value to the continuation waiting in the upper interpreter. Thus

>>> (boot-tower) ; start the tower

0:: starting-up

0-> (jump foo)

1:: foo

1-> (jump bar)

2:: bar

2-> (jump baz)

3:: baz

3->

and so on. A function that evaluates its argument and then exits might be written
as follows:

(set! exit

(lambda (x)

((make-reifier

(lambda (e r k) x)))))

THE MYSTERY OF THE TOWER REVEALED 21

When invoked, this function receives a value x. It then creates and immediately
invokes a reifier that exits from the current interpreter with x as its value.

We can open up a new read-eval-print loop using openloop:

(set! openloop

(lambda (prompt)

((readloop prompt) 'starting-up)))

Here readloop is a primitive function that takes a prompt and produces a Brown
continuation (see Section 4.6 below). We invoke readloop to create the continuation
and then invoke it with an arbitrary value, starting-up, which is printed as the first
response of the readloop.

Thus we might get the following dialog:

0:: starting-up

0-> (exit 'foo) ; exit from this reader and go up the tower.

1:: foo ; here we are at level 1.

1-> (exit 'bar) ; let's do it again.

2:: bar

2-> (exit 'baz)

	

; and again.

3:: baz

3-> (openloop 'N)

	

; now let's open up a new loop under loop

; number 3. Prompts are arbitrary.

N:: starting-up

N-> (exit 'bow) ; now we'll go back to the creator of this loop,

3:: bow ; which is number 3, as expected.

3->

Now we can define call-with-current-continuation [7], which we abbreviate call/

cc, as follows:

(set! call/cc

(lambda (f)

((make-reifier

(lambda (e r k) (k (f k)))))))

This function receives a function, immediately reifies (as exit did above), and
applies f to the continuation k. If the invocation of f returns normally, control
should return to the continuation k. Thus

(call/cc (lambda (k) '3))

should be the same as ' 3. What happens, however, if k is invoked within f? In a
towerless world, the invocation of a continuation is a "black hole" : the current con-
tinuation is thrown away and the new one is installed in its place. In the tower

22 WAND AND FRIEDMAN

model, things are not so simple. Consider the following example [des Rivieres,
private communication]:

0:: starting-up

0-> (call/cc

(lambda (k)

(cons (k '2) (k '3))))

0:: 2

Here k becomes bound to the level-0 readloop. Then (cons (k '2) (k '3)) is

evaluated by the upper interpreter. When it invokes k on 2, it prints the 2 and con-
tinues with the level-0 readloop, remembering (via meta-cons) that the lower inter-
preter was invoked from inside the cons. Thus, when the lower interpreter ter-
minates, the value it returns will be passed as the first argument to cons. The next
step is to evaluate the second argument to cons, in this case (k '3). Again, since k is

bound to the level-0 readloop, level 0 is started again. So, if we do an exit, we do not
get to the level-1 readloop, but we immediately bounce down to level 0 again:

0-> (exit 'foo)

0:: 3 ; instead of 1:: foo

If we cause the level-0 readloop to exit, its termination value becomes the value
of (k '3). Level 1 then does the cons, and passes the value to k, which restarts the
level-0 readloop (for the third time):

0-> (exit 'bar)

0:: (foo . bar)

0->

What would happen if we used a different variant of call/cc, closer to that
analyzed in [3]?

(set! new-call/cc

(lambda (f)

((make-reifier (lambda (e r k) (f k))))))

This is similar to the previous version, except that it expects (f k) to terminate by
invoking k. This will behave in exactly the same way as the previous example, ex-
cept that when the cons terminates it sends its value to the level-1 readloop instead
of reinvoking level 0, so that the last few lines would be

0-> (exit 'bar)

1:: (foo . bar)

1->

THE MYSTERY OF THE TOWER REVEALED 23

Other bizarre things are possible. Consider

(set! strange

(lambda ()

(new-call/cc

(lambda (k) (set! new-k k)))))

This is a function that, when invoked, sets a global variable new-k to the current
readloop and then exits the current readloop. A subsequent invocation of new-k

will jump back to the readloop from which strange was called. If that readloop is
terminated (via exit or even via strange again) then control will return to the
readloop from which new-k was called.

Clearly we have only begun to explore the possibilities inherent in the tower
model.

4. The model

In this section, we begin a commented tour of the model. We have expressed it in
"pure" Scheme, without side effects or call/cc, except for use in the interface be-
tween the implementation and the outside world. We believe that this is suffi-
ciently close to denotational semantics to allow a relatively straightforward
transcription. The model as presented here is also complete and testable. Most of
the code is included in the text; a few help functions are left for an appendix.

4.1. Currying

Almost every function in the semantics is fully curried. This allows us to delete ex-
traneous arguments, as is typically done in semantic specifications. To make this
easier, we begin with some syntactic extensions that allow us to proceed without
fully parenthesizing all the applications and nested lambdas. We do this using the
macro-declaration tool declare-syntax [5, 6].

(declare-syntax (C)

[(C m n) (m n)]

[(Cmnp . . .) (C(mn)p ...)])

(declare-syntax (curry)

[(curry (i) b . . .) (lambda (i) b .. .)]

[(curry (i j . . .) b . . .)

(lambda (i)

(curry (j . . .) b . . .))])

With these, we can rewrite meta-cons as

24 WAND AND FRIEDMAN

(define meta-cons

(curry (k mk theta)

(C theta k mk)))

4.2 Denotations

The main function in the semantics is denotation, which branches on the syntactic
type of an expression and then dispatches to one of three semantic functions:

(define denotation

(lambda (e)

(cond

[(atom? e) (denotation-of-identifier e)]

[(eq? (first e) 'lambda) (denotation-of-abstraction e)]

[else (denotation-of-application e)])))

In keeping with the functionalities discussed above, each semantic function is of
type

Exp Env–0K—MK—A

An expression is represented as a list structure in the usual way. An environment is
represented as a function of two (curried) arguments: an identifier and a continua-
tion waiting for the L-value associated with that identifier. A continuation or
metacontinuation is represented as a function of one argument. Metacon-
tinuations do not appear in the semantic functions, since (for the moment) we are
modeling only a single interpreter. They will appear in some of the primitives,
since it is through the primitives that reflection and reification occur. (This is
analogous to the conventional presentation of denotational semantics, in which,
for example, a store argument almost always appears in the definitions of the
primitives, rather than in the main semantic equations. This is one way in which
the equations may be made modular).

If the expression is an identifier, then the identifier is passed to the environment,
along with a continuation to dereference the returned cell. By convention, a cell is
returned even for an unbound identifier.

(define denotation-of-identifier

(curry (e r k)

(C r e

(lambda (cell)

(let ([v (deref-cell cell)])

(if (eq? v 'UNASSIGNED)

(wrong (list "Brown: unbound id " e))

(k v)))))))

THE MYSTERY OF THE TOWER REVEALED 25

To accomodate reification, Brown uses call-by-text. A Brown function has
functionality

BF=Exp*->Env—K->MK—A

It gets the text of the actual parameters, the call-time environment, and the call-
time continuation and metacontinuation, and from this information computes
an answer:

(define denotation-of-application

(curry (e r k)

(C denotation (first e) r

(lambda (f) (C f (rest e) r k)))))

If the expression is an abstraction, we produce the usual procedure object—a
function that accepts a sequence of values and then evaluates the body of the
abstraction in a suitably extended environment—convert it to a call-by-text func-
tion using the auxiliary F->BF, and pass the result to the continuation:

(define denotation-of-abstraction

(curry (e r k)

(k (F->BF

(lambda (v*)

(C denotation (third e)

(extend r (second e) v*)))))))

The function F->BF takes an element ofF (= V-~ K -3 MK A) and turns it into
a Brown function that evaluates its actual parameters in the call-time environment
and passes the list of results to the function:

(define F->BF

(curry (fun e r k)

(C Y (curry (eval-args e k)

(if (null? e) (k '())

(C denotation (first e) r

(lambda (v)

(C eval-args (rest e)

(lambda (w)

(k (cons v w))))))))

e (curry (v* mk) (C fun v* k mk)))))

This code uses the applicative-order Y combinator (see Appendix).

26 WAND AND FRIEDMAN

4.3. Reification

We next turn to the reifying functions. These functions take objects from the un-
derlying domains K and Env, and turn them into Brown functions that can be
manipulated [4]. An environment is turned into a one-argument Brown function
that evaluates its argument and passes the result (the evaluated actual parameter)
to the environment:

(define U->BF

(curry (rl e r k)

(if (= (length e) 1)

(C denotation (first e) r

(lambda (var) (C rl var k)))

(wrong (list

"U->BF: wrong number of args"

e)))))

Continuations are treated similarly. Here kl is the continuation to be converted,
and e, r, and k are the Brown interpreter 's registers at the point that kl is invoked.
Since a continuation is regarded as restarting a lower interpreter, we save the con-
tinuation k by putting it in the metacontinuation with shift-down, as discussed in
Section 2:

(define K->BF

(curry (kl e r k)

(if (= (length e) 1)

(C denotation (first e) r

(lambda (v) (C shift-down (ki v) k)))

(wrong (list

"K->BF: wrong number of args"

e)))))

Here is where the tower model begins to be radically different from the non-
tower model. We have two continuations to deal with, but without the tower we
have only one continuation register. The presence of the metacontinuation gives
us a place to save the second continuation. In the corresponding function schemeK-

to- brown in [4], we simply threw away the continuation k corresponding to the point
that (K->BF kl) was invoked.

4.4. Building reaming procedures

We need to write a function that takes a simple Brown function and converts it into
a reifying procedure: a Brown function that reifies its arguments and passes the
resulting thunk to the metacontinuation. A first try at this might be

THE MYSTERY OF THE TOWER REVEALED 27

(define make-reifier

(curry (bf e r k)

(shift-up (bf (list e (U->BF r) (K->BF k))))))

where U->BF and K->BF reify environments and continuations, respectively.
This version does not quite work, however. The problem is that bf is a call-by-

text function which takes a sequence of texts (the actual parameters), not a list
of values.

How can we fool a call-by-text function like bf into taking values instead? We
assume that bf is a simple abstraction, which will evaluate its arguments. In that
case, one approach, which we used extensively in [4], was to wrap the values in
quote. This fails in the current context because we would like to define quote using
make- reif ier. An approach which does work is to pass to bf three identifiers and an
environment in which those identifiers are bound to the right values. This ap-
proach is preferable even where quote would work (as in the reflection functions
below), because it is no longer dependent on the correct definition of quote, and it
furthermore avoids the use of handles [8]. This leads to the following definition:

(define make-reifier

(let ([ERK '(E R K)])
(curry (bf e r k)

(shift-up (C bf ERK
(extend r ERK (list e (U->BF r) (K->BF k))))))))

Here E, R, and K are the three identifiers that are bound to the right values. This
defines make-reifier as a primitive operation in Scheme, of type BF—~ BF. It may
then be imported into the initial environment by the techniques explained in Sec-
tion 4.7.

This code assumes that bf is a simple abstraction. It is possible to do a variety of
interesting things by writing code in which bf is not a simple abstraction. For ex-
ample, the names of the formal parameters E, R, and K may be detected by invoking
the following expression:

((make-reifier

(lambda (a b c)

((make-reifier

(make-reifier

(lambda (x y z) (c x))))))))

In [8, 91, analogous techniques may be used to detect essentially all of the text of
the interpreter; thus, as Smith points out, any change to the 3-LISP interpreter, no
matter how minor (including change of bound variables), results in a different
language. By restricting such access in Brown, we get the benefits of a tower model
while maintaining the traditional distinction between the defined language and

28 WAND AND FRIEDMAN

defining language. By this choice, we learn more about the design space for reflec-
tive languages.

4.5. Reflection

We next turn to the reflection functions. These take Brown functions and turn
them back into objects of type K or Env. As with make-reifier, the technical prob-
lem here is that the Brown function bf will typically be a call-by-text function that
evaluates its arguments (probably created by evaluating an expression of the form
(lambda (. . .) ...)). As we did with make - reifier,wesolvethisproblembypass-
ing to the function an identifier as an actual parameter, along with an environ-
ment in which that identifier is bound to the correct value:

(define BF->K
(let ([z '(v)])

(curry (bf v)
(shift-up

(C bf z
(extend global-env z (list v)))))))

Recall that a continuation takes a value and a metacontinuation as its argu-
ments. Thus, (BF->K bf) should be a continuation. It takes a value and then in-
vokes shift-up. shift-up, in turn, takes the current metacontinuation as an argu-
ment, and runs a thunk which invokes the Brown function bf on the appropriate
environment, using the continuation at the top of the metacontinuation (i.e., at the
bottom of the tower). A slightly less roundabout version of the code might be

(define BF->K

(let ([z '(v)])
(curry (bf v mk)

(C bf z (extend global-env z (list v))
(meta-car mk)
(meta-cdr mk)))))

where meta-car and meta-cdr extract the appropriate pieces from the metacon-
tinuation.

We write BF->U similarly; it is less complicated because no shifting is necessary.

(define BF->U

(let ([z ' (v)])
(curry (bf v)

(C bf z
(extend global-env z (list v))))))

THE MYSTERY OF THE TOWER REVEALED 29

These functions are used when we start a lower interpreter. This is done via the
function meaning, which takes a list of Brown values representing an expression, an
environment, and a continuation, and which starts a new interpreter. The con-
tinuation at the time the new interpreter is started is built into the new metacon-
tinuation, as in K->BF:

(define meaning

(curry (erk)

(shift-down

(C denotation

(first erk)

(BF->U (second erk))

(BF->K (third erk))))))

4.6. The tower

We are now ready to write the read-eval-print loop and the tower. We rewrite the
tower here in our curried style.

(define R-E-P

(lambda (prompt)

(Y (curry (loop v)

(C denotation

(prompt&read

(print&prompt prompt v))

global-env

loop)))))

(define tower

((Y (curry (loop n theta)

(C theta (R-E-P n) (loop (add 1 n)))))

0))

We also define a version of readloop suitable for importing as a primitive
into Brown:

(define readloop

(lambda (prompt)

(K->BF (R-E-P prompt))))

We start the system by calling boot-tower:

(define boot-tower

(lambda ()

(C terminate-level 'starting-up tower)))

30 WAND AND FRIEDMAN

47. The initial environment

Before we can start the tower, we must supply it with a suitable global environ-
ment, which will be shared by all the interpreter levels.

We first define extend, which extends a given environment by binding a list of
names to new cells containing a list of values. This is relatively routine; the only
coding trick we have performed is to use a function rib- lookup which takes a name
to be looked up, a list of names, a list of corresponding cells, a success continua-
tion to which the matching cell is to be sent, and a failure continuation (a function
of no arguments) to be invoked in case of failure. In this code, a call of extend with
unequal numbers of names and values, produces an environment which signals
an error whenever it is invoked. This error could be detected at the time the en-
vironment is created by writing extend itself in continuation-passing style, and
modifying all the invocations of extend appropriately.

(define extend

(lambda (r names vals)

(if (= (length names) (length vals))

(let ([cells (map make-cell vals)])

(curry (name k)

(rib-lookup name names cells k

(lambda () (C r name k)))))

(curry (name k)

(wrong (list "extend:"

"Formals: " names

"Actuals: " vals)))))

(define rib-lookup

(lambda (id names cells sk fk)

(C Y (curry (lookup names cells)

(cond

[(null? names) (fk)]

[(eq? (first names) id) (sk (first cells))]

[else (C lookup (rest names) (rest cells))]))

names cells)))

We choose to import values from Scheme by name. To do this, we use the func-
tion id->BF. This takes an identifier, finds its global binding in Scheme, converts it
to an element of F (a function that takes a list of arguments and a continuation),
and then converts that to a simple Brown function:

(define id->BF

(let ([host->F

(curry (f v* k) (k (apply f v*)))])

(lambda (x)

(F->BF (host->F (host-value x))))))

THE MYSTERY OF THE TOWER REVEALED 31

We can now describe the creation of the initial environment. The function boot-
global-env creates an initial rib, consisting of a list of names and a corresponding
list of cells containing the appropriate values. The name list consists of a few spe-
cial cases along with a list of names, called primop-name-table, of functions that are
to be imported from the host. Corresponding to these names it creates a list of
cells; for the imported functions, the values are imported using id->BF.

The function global-env is then created; it is a function that merely calls rib-

lookup with this initial rib and with a failure continuation which specifies what to
do in case of a lookup of an identifier that does not appear in the global environ-
ment. This failure continuation adds a cell to the global environment correspond-
ing to the previously unknown identifier. This allows us to accomodate run-time
extension of the global environment, as in the definition of if above.

(define boot-global-env

(let ([id->F-cell (lambda (x) (make-cell (id->BF x)))])

(lambda ()

(let ([initnames

(append

(list 'nil 't 'wrong 'meaning)

primop-name-table)]

[initcells

(append

(map make-cell

(list nil t

(K->BF terminate-level)

(F->BF meaning)))

(map id->F-cell

primop-name-table))])

(define global-env

(curry (id k)

(rib-lookup

id initnames initcells k

(lambda ()

(let

([c (make-cell 'UNASSIGNED)])

(set! initnames (cons id initnames))

(set! initcells (cons c initcells))

(k c))))))))))

4.8. Side effects

Our language communicates with the outside world through side effects (such as
set! and the read-eval-print loop). The key problem in managing side effects is the
need to make sure that operations with side effects are done at the right time. In an

32 WAND AND FRIEDMAN

applicative-order language like Scheme, this is done by wrapping each possibly
destructive operation in a lambda; we are then assured that the operation is not per-
formed until the function is applied. In our case, we wrap each destructive opera-
tion in (lambda (mk) . . .), so no side effect is performed until the denotation is
really applied to a metacontinuation. Thus we report errors using

(define wrong

(curry (v mk)

(writeln "wrong: " v)

(C terminate-level 'wrong mk)))

and the error will not be reported until (wrong v) is applied to a metacontinuation.
Similarly, since arbitrary functions imported from Scheme may have side effects,
we made sure to write

(curry (v* mk) (C fun v* k mk))

in the definition of F ->BF; since F ->BF is used as part of the importation process, this
assures that no imported primitive is executed prematurely.

5. Are metacontinuations necessary?

One might ask whether the introduction of metacontinuations is neccessary, since
they are not reifiable and the tower maintains strict stack discipline: there is nothing
in the tower like the nonlocal jumps that mandated the introduction of conventional
continuations in the interpreter. One can, in fact, formulate a plausible "direct" se-
mantics for towers. In this semantics, rather than having f be tail-recursive with the
metacontinuation appearing as an argument, we would keep the old functionality of
(and have the lower interpreter spawned non-tail-recursively, via something like

g(~` QebK)

The initial metacontinuation (the tower) would be constructed as the value of

= Y(a.g.µ E{ eollPo K o))

This semantics would be far more appealing in Smith ' s methodology, as it
would avoid introducing a nonreifiable component. Unfortunately, the term for
g~ is an unsolvable term of the X-calculus. Thus it denotes the bottom element in
any model of the X-calculus that is sensible [1]. The class of sensible models in-
cludes all the standard models. Hence, making this semantics nontrivial would re-
quire a very nonstandard model of the A.-calculus.

6. Is lambda necessary?

In Section 3 we showed how the reifier set ! could be defined in Brown, using suit-
able primitive store manipulations and the reification mechanism. In this section

THE MYSTERY OF THE TOWER REVEALED 33

we do the same for lambda: we show how lambda can be defined in Brown. Thus we
could have presented Brown in Section 4 using only identifiers, application, and
some reifying primitives; without, in particular, having a line in denotation for
abstractions.

We do this in two steps. First, we show how to write a reifier that builds a one-
argument call-by-value abstraction, just like the one built by lambda. Then we show
how to eliminate lambda from that definition, so that it is properly bootstrappable.

Since one can write a denotational definition for a lambda term, one can
transcribe that definition into the definition of a reifier, just as we did for set!. If we
do that, we get the following:

(set! lambda-value

(make-reifier

(lambda (e r k)

(k (make-reifier

(lambda (el rl kl)

(meaning (car el) rl

(lambda (val)

(meaning

(car (cdr e)) ; the body

((lambda (cell-val)

(lambda (id)

(if (eq? id (car (car e))) ; the formal parameter

cell-val

(r id))))

(make-cell val))

kl)))))))))

Why is this code not bootstrappable? There are only three problems:

1. We have an occurrence of if, which is a defined reifier, not a primitive. This can
be replaced by the primitive function ef by replacing the (if . . .) expres-
sion by

((ef (eq? id (car (care)))

(lambda () cell-val)

(lambda () (r id))))

This idiom is necessary because evaluation of (r id) might fail if it is called
prematurely.

2. We have some occurrences of three-argument abstractions, all as arguments to
make-reifier. We can eliminate these by redesigning make-reifier to take its
argument in curried form.

3. The first two items have studiously ignored the obvious problem: all the oc-
currences of lambda itself. But these may be replaced by suitable combinators,
using the well-known techniques of bracket abstraction [1, p. 148]. The result is

34 WAND AND FRIEDMAN

a term using only functional combination of the combinators S and K and the
free variables meaning, ef, eq?, make-cell, car, cdr. Let us refer to this rather large
term as "--code for creating lambda--". (Though it is theoretically possible to
create this term using only S and K, the term is quite large (several hundred corn-
binators), and therefore it was necessary to use an efficient bracket-abstraction
algorithm, such as that in [10], when we performed the experiment.)

We can now use (make-reifier --code for creating lambda--) anywhere we need
something that behaves like lambda. For example, we can locally bind frotz to act
like lambda by writing

(((make-reifier --code for creating lambda--) (frotz) --body--)

(make-reifier --code for creating lambda--)) ,

just as we did for set! in Section 3.
To bootstrap the system, we use the expression for creating set!, as we did

before, but we first bind lambda before executing it:

(((make-reifier --code for creating lambda--) (lambda)

--code for creating set!--)

(make-reifier --code for creating lambda--))

We can then set the value of the identifier lambda:

(set! lambda (make-reifier --code for creating lambda--))

in the usual way. Note that in this system, lambda is also a first-class citizen,
whereas it was a special form (the only special form!) in the preceding versions.
Hence we can now write

((lambda (frotz) --body--)

lambda)

which was previously illegal. So in the presence of reification (and suitable
functional primitives), it is not necessary to have any built-in special forms: they
can all be defined.

Of course, other versions of abstraction can be defined in the usual way using
reifiers. Call-by-name, for example, could be defined as follows:

(set! lambda-name

(make-reifier

(lambda (e r k)

((lambda (var body)

(k (make-reifier

(lambda (el rl kl)

THE MYSTERY OF THE TOWER REVEALED 35

((lambda (r2)

(meaning body r2 kl))

((lambda (arg)

(lambda (id)

(if (eq? id var)

((make-reifier

(lambda (u v k2)

(meaning arg rl

(lambda (x)

(k2 (make-cell x)))))))

(r id))))

(car el)))))))

(car (car e))

(car (cdr e))))))

7. Conclusions and open problems

We have given a semantic account of Smith's tower of metacircular interpreters by
introducing a new context component, called a metacontinuation, that abstracts
the state of the tower above the current interpreter. This account relies entirely on
the nonimperative features of Scheme (except for the real-world interface dis-
cussed in Sections 4.7 and 4.8), makes a minimum of implementation decisions,
and does not employ reflection to explain reflection. A number of open problems
remain, however.

The presence of the tower gives yet another dimension to our design decisions.
As discussed in [4], one has considerable latitude in choosing how interpreter ob-
jects are to be reified. With the tower, one has the additional choice of what level of
the tower should be used for the invocation of these objects. Some of our code in-
corporates arbitrary choices on this issue. The rationale for these choices needs to
be understood more deeply.

A related issue is the algebra of reflection. The abstractions shift-up and shif t -

down obey a number of algebraic identities, some of which we discussed above.
These identities, along with the related identities for

A
and ", seem to be helpful in

understanding the behavior of reflective systems. We need to understand which of
the potential identities are important, and to develop reification strategies that
fully exploit this algebraic behavior.

Appendix: Help functions

This appendix lists all the help functions necessary to make the code in the
text runnable.

36 WAND AND FRIEDMAN

applicative-order Y combinator

(define Y

(lambda (f)

(let ([d (lambda (x)

(f (lambda (arg)

(C x x arg))))])

(d d))))

decomposing expressions

(define first car)

(define second cadr)

(define third caddr)

(define rest cdr)

cells

(define deref-cell car)

(define make-cell (lambda (x) (cons x '())))

(define set-cell!

(lambda (x y) (set-car! x y) y))

input/output with prompts

(define prompt&read

(lambda (prompt)

(print prompt) (print "-> ") (read)))

(define print&prompt

(lambda (prompt v)

(writeln prompt "::" v) prompt))

find the global binding of identifier

(define host-value

(lambda (id) (eval id)))

; list of names to import from host

(define primop-name-table

(list 'car 'cdr 'cons 'eq? 'atom? 'symbol?

'null? 'not 'addl 'subl 'zero? '+ '– '*
'set-car! 'set-cdr!

'print 'length 'read 'newline 'reset

'make-cell 'deref-cell 'set-cell!

'ef 'readloop 'make-reifier))

THE MYSTERY OF THE TOWER REVEALED 37

Loading Files (note added in proof)

One shortcoming of the system as presented here is that it is unable to perform a
load-file operation. The obvious solution, that of starting a new interpreter with
the read operation appropriately modified, does not work, because expressions
read from the file may cause subsequent expressions to be read by higher levels of
the tower. Thus reading from a file requires more cooperation between interpreter
levels than is easily accomplished in our model.

While such cooperation can in principle be obtained by suitable modification to
the system, the following interim solution, due to Kevin Likes and Julia Lawall,
will enhance the usability of the system. First, redefine prompt&read and R-E-P

as follows:

(define prompt&read

(curry (prompt k)

(display prompt) (display "-*") (k (read))))

(define R-E-P

(lambda (prompt)

(Y (curry (loop v)

((prompt&read (print&prompt prompt v))

(lambda (v)

(if (eof-object? v)

(lambda (mk) '---done---)

(C denotation v global-env loop))))))))

Then add the following:

(define brown-load

(lambda (file)

(with-input-from-file file boot-tower)))

and add brown-load to primop-name-table. When brown-load is invoked, it causes
Scheme to start an entirely new tower with its input at all levels taken from file.

The new tower communicates with the old one by side-effecting the shared store.
When an end-of-file is read, the new tower terminates and returns - - - done- -- as its
answer, which is reported to the old tower as the value of the call.

Acknowledgments

The authors acknowledge the contributions of Bruce Duba to this paper. In par-
ticular, the self-defining set! and the trick for avoiding the use of quote are his. Jim
des Rivieres patiently explained many of the difficult corners of 3-LISP to us, and
provided extensive comments on [4] and several versions of this paper. Thanks
also to Matthias Felleisen for his comments.

38 WAND AND FRIEDMAN

References

1. Barendregt, H.P. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amersterdam,
1981.

2. des Rivieres, J., and Smith, B.C. The Implementation of procedurally reflective languages. Cont ..
Rec. 1984 ACM Symp. on Lisp and Functional Programming, Austin, Texas, August 1984, pp. 331-
347.

3. Felleisen, M., Friedman, D.P., Kohlbecker, E., and Duha, B. A syntactic theory of sequential con-
trol. Theoretical Computer Science, 52 (1987), 205-237. Preliminary version appeared as: Reasoning
with continuations. Proceedings, First Annual IEEE Symposium on Logic in Computer Science, Cam-
bridge, MA, June 1986, pp. 131-141.

4. Friedman, D.P., and Wand, M. Reification: Reflection without metaphysics. Conf. Rec. 1984 ACM
Symp. on Lisp and Functional Programming, Austin, Texas, August 1984, pp. 348-355.

5. Kohlbecker, E. Syntactic Extensions in a Lexically Scoped Language. Ph.D. dissertation, Indiana Uni-
versity, Bloomington, 1986.

6. Kohlbecker, E., and Wand, M. Macro-by-example: Deriving syntactic transformations from their
specifications. Conf. Rec. 14th ACM Symp. on Principles of Programming Languages, Munich,
Germany, January 1987, pp. 77-84.

7. Rees, J., and Clinger, W., Eds. Revised 3 report on the algorithmic language Scheme, SIGPLAN
Notices 21, 12 (Dec. 1986), 37-79.

8. Smith, B.C., Reflection and Semantics in a Procedural Language. MIT-LCS-TR-272, MIT, Cambridge,
MA, T982.

9. Smith, B.C., Reflection and semantics in Lisp. Conf. Rec. 1 lth ACM Symp. on Principles of Pro-
gramming Languages, Salt Lake City, Utah, January 1984, pp. 23-35.

10. Turner, D.A. A new implementation technique for applicative languages. Software-Practice and Ex-
perience 9 (1979), 31-49.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

