
µKanren: A Minimal Functional Core

for Relational Programming

Jason Hemann Daniel P. Friedman

Indiana University

{jhemann,dfried}@cs.indiana.edu

Abstract

This paper presents µKanren, a minimalist language in the

miniKanren family of relational (logic) programming lan-

guages. Its implementation comprises fewer than 40 lines of

Scheme. We motivate the need for a minimalist miniKanren

language, and iteratively develop a complete search strategy.

Finally, we demonstrate that through suf�cient user-level

features one regains much of the expressiveness of other

miniKanren languages. In our opinion its brevity and sim-

ple semantics make µKanren uniquely elegant.

Categories and Subject Descriptors D.3.2 [Language

Classi�cations]: Applicative (functional) languages, Con-

straint and logic languages

Keywords miniKanren, relational programming, logic pro-

gramming, Scheme

1. Introduction

miniKanren is the principal member of an eponymous fam-

ily of relational (logic) programming languages. Many of

its critical design decisions are a reaction to those of Prolog

and other well-known 5th-generation languages. One of the

differences is that, while a typical Prolog implementation

might be thousands of lines of C code, a miniKanren lan-

guage is usually implemented in somewhere under 1000

lines. Though there are miniKanren languages of varied

sizes and feature sets (see http://miniKanren.org), the

original published implementation was 265 lines of Scheme

code. In those few lines, it provides an expressiveness com-

parable to that of an implementation of a pure subset of

Prolog.

We argue, though, that deeply buried within that 265-

line miniKanren implementation is a small, beautiful, rela-

tional programming language seeking to get out. We believe

µKanren is that language. By minimizing the operators to

those strictly necessary to do relational programming and

placing much of the interface directly under the user's con-

trol, we have further simpli�ed the implementation and il-

luminated the role and interrelationships of the remaining

components. By making the implementation entirely func-

tional and devoid of macros, heretofore opaque sections of

the system's internals are made manifest. What is more, by

re-adjudicating what functions are properly the purview of

the end user, we develop an implementation that weighs in at

39 lines of Scheme. The presentation of the language and its

features follows. The complete implementation of µKanren

is found in the appendix.

2. The µKanren Language

Herein, we brie�y describe the syntax of µKanren programs,

with a focus on those areas in which µKanren differs from

earlier miniKanren languages. Readers intimately familiar

with miniKanren programming may lightly peruse this sec-

tion; readers seeking a thorough introduction to miniKanren

programming are directed to Byrd [3] and Friedman et. al

[4], from which the present discussion is adapted.

A µKanren program proceeds through the application of

a goal to a state. Goals are often understood by analogy to

predicates. Whereas the application of a predicate to an ele-

ment of its domain can be either true or false, a goal pursued

in a given state can either succeed or fail. A goal's success

may result in a sequence of (enlarged) states, which we term

a stream [12]. We use functions to simulate relations. An ar-

bitrary n-ary relation is viewed as an (n−1)-ary partial func-
tion, mapping tuples of domain elements into a linearized

submultiset of elements of the codomain over which the ini-

tial relation holds. A given collection of goals may be satis-

�ed by zero or more states. The result of a µKanren program

is a stream of satisfying states. The stream may be �nite or

in�nite, as there may be �nite or in�nitely many satisfying

states.

A program's resulting stream thus depends on the goals

that comprise that program. In µKanren there are four prim-

itive goal constructors: ≡ , call/fresh, disj, and conj.

The ≡ goal constructor is the primary workhorse of the sys-

tem; goals constructed from ≡ succeed when the two ar-

guments unify [1]. The success of goals built from ≡ may

cause the state to grow. Unlike the implementation of ≡ de-

tailed in Friedman et. al [4], that presented here does not

prohibit circularities in the substitution.

The call/fresh goal constructor creates a fresh (new)

logic variable. call/fresh's sole argument is a unary func-

http://miniKanren.org

tion whose binding variable is a fresh logic variable and

whose body is an expression over which the fresh variable's

binding is scoped and which evaluates to a goal.

The disj and conj goal constructors express a sort of

boolean logic over goals�they represent the binary disjunc-

tion and conjunction of goals, respectively. That is, both take

two goals as arguments. A goal constructed from disj re-

turns a non-empty stream if either of its two arguments are

successful, and a goal constructed from conj returns a non-

empty stream if the second argument can be achieved in the

stream generated by the �rst. Both the names and imple-

mentations of disj and conj are inspired by those forms

in Sokuza Kanren [6].

A state is a pair of a substitution (represented as an asso-

ciation list) and a non-negative integer representing a fresh-

variable counter. In µKanren, as in most miniKanren lan-

guages, we use triangular substitutions [1]. In a µKanren pro-

gram, the �rst variable will always be #(0) (a vector whose

only element is 0), although its binding will not always be

the initial entry in the substitution.

The user of the system begins a program by applying

a goal to a state. That goal may be arbitrarily compli-

cated. Most frequently the initial goal is created from a

call/fresh. The value of applying that goal to a state is

a stream. A stream is conceptually a possibly-unbounded

list of states. While in principle the user of the system may

begin with any state, in practice the user almost always be-

gins with empty-state. empty-state is a user-level alias

for a state virtually devoid of information: the substitution is

empty, and the �rst variable will be indexed at 0. Consider

the below example µKanren query.

> (de�ne empty-state ' (() . 0))
> ((call/fresh (λ (q) (≡ q 5))) empty-state)
((((#(0) . 5)) . 1))

In the invocation presented above, the result is the value

of the goal (call/fresh (λ (q) (≡ q 5))) in the

empty-state. This is a stream. Here this result is a stream

of exactly one resulting state. In this state, the substitution

binds a single variable #(0) to 5. The 1 denotes the other

part of the state, the variable counter: here 1 is the next

available variable index for the next call/fresh. The cdr

is (), the empty stream, which means there are no further

results. µKanren programs, in general, are not guaranteed to

terminate, and so may not return with a result. A second ex-

ample demonstrates the use of the remaining primitive goal

constructors.

> (de�ne a-and-b
(conj
(call/fresh (λ (a) (≡ a 7)))
(call/fresh (λ (b) (disj (≡ b 5) (≡ b 6))))))

> (a-and-b empty-state)
((((#(1) . 5) (#(0) . 7)) . 2)
(((#(1) . 6) (#(0) . 7)) . 2))

In this example, the outermost goal of the query is

not built from call/fresh. Instead it is a conjunction of

queries. The resulting stream contains two results, which

represent ways to jointly satisfy both queries. The �rst result

produced is the state whose substitution represents the uni�-

cation of the �rst variable with the number 7, and the second

with 5; the next state's substitution is that representing still

the uni�cation of the �rst variable with 7, but the second

variable this time with 6. The user may wish to view these

results with respect to the �rst variable, the second variable,

both, or neither�µKanren leaves that decision to the user.

This example also demonstrates a µKanren relation glob-

ally de�ned as one might an ordinary Scheme function. As

µKanren is embedded in Scheme, users may de�ne goals and

specify relations in Scheme and use them in the execution of

a µKanren program.

3. Design Philosophy

Though the µKanren design draws a great deal of inspiration

from that of Friedman et. al [4], certain philosophical con-

cerns mandate a number of signi�cant changes to the design

and interface of the system. We �rst describe those motiva-

tions and with them in mind step through the implementa-

tion.

Though the µKanren implementation presented herein is

short, and we consider its size a virtue, it isn't short for

brevity's sake. Designing a pure and simple functional pro-

gram will bring essentials to the fore. This entails stripping

away interface components that, while desirable, properly

ought to be the purview of the user. Doing so helps to crys-

tallize the architecture of a miniKanren-like language's ker-

nel.

When attempting to understand the implementation of

a typical miniKanren language, the scope and complexity

of the system can be overwhelming, for students and sea-

soned developers alike. Even if µKanren isn't the language in

which one will program, understanding the internals of this

implementation will clarify the inner workings of miniKan-

ren languages generally. Too, we argue by example that

µKanren may provide a more straightforward platform on

which to add features than a monolithic architecture.

The adjective monolithic and the name µKanren are cho-

sen advisedly. One of the design metaphors of µKanren is

that of a microkernel operating system. A microkernel con-

sists of the minimum or near-minimum amount of software

required to implement an operating system [2]. In addition

to security assurances, microkernels, by virtue of their small

size and limited scope, tend to be easier to maintain, easier

to keep free of bugs, and easier to understand. To borrow

another metaphor, this time from software engineering, min-

imizing of the responsibilities of the kernel and pushing all

that can be into user space loosens coupling and increases

the cohesion of the system, and helps eliminate inappropri-

ate intimacy among submodules. The resulting system is by

design more clearly correct, with fewer pieces to consider

simultaneously and a clear delineation of responsibilities.

4. µKanren Implementation

The entire system is comprised of a handful of functions for

the implementation of variables, streams themselves, the in-

terface for creating and combining streams, and four primi-

tive goal constructors.

Variables themselves are represented as vectors that hold

their variable index. Variable equality is determined by co-

incidence of indices in vectors.

(de�ne (var c) (vector c))
(de�ne (var? x) (vector? x))
(de�ne (var=? x1 x2) (= (vector-ref x1 0) (vector-ref x2 0)))

The walk operator searches for a variable's value in the

substitution; the ext-s operator extends the substitution

with a new binding. When a non-variable term is walked,

the term itself is returned. When extending the substitution,

the �rst argument is always a variable, and the second is

an arbitrary term. In Friedman et. al [4], ext-s performs a

check for circularities in the substitution; here there is no

such prohibition.

(de�ne (walk u s)
(let ((pr (and (var? u) (assp (λ (v) (var=? u v)) s))))
(if pr (walk (cdr pr) s) u)))

(de�ne (ext- s x v s) `((, x . , v) . , s))

The �rst of the four basic goal constructors, ≡ , takes

two terms as arguments and returns a goal1 that succeeds

if those two terms unify in the received state. If they unify, a

substitution, possibly extended, is returned. In this case, ≡
passes this new substitution, paired with the variable counter

to comprise a state, to unit. unit lifts the state into a stream

whose only element is that state. If those two terms fail

to unify in that state, the empty stream, mzero, is instead

returned.

(de�ne (≡ u v)
(λg (s/c)
(let ((s (unify u v (car s/c))))
(if s (unit `(, s . , (cdr s/c))) mzero))))

(de�ne (unit s/c) (cons s/c mzero))
(de�ne mzero '())

Terms of the language are de�ned by the unify operator.

Here, terms of the language consist of variables, objects

deemed identical under eqv?, and pairs of the foregoing.

To unify two terms in a substitution, both are walked in

that substitution. If the two terms walk to the same variable,

the original substitution is returned unchanged. When one

of the two terms walks to a variable, the substitution is

extended, binding the variable to which that term walks

with the value to which the other term walks. If both terms

walk to pairs, the cars and then cdrs are uni�ed recursively,

succeeding if uni�cation succeeds in the one and then the

1We use the names λg and λ
$
(formerly λf) to convey information to the

reader and for consistency with other miniKanren implementations. The $

in λ
$
is for �stream� and the g in λg is for �goal�. In the code both are

written lambda.

other. Finally, non-variable, non-pair terms unify if they

are identical under eqv?, and uni�cation fails otherwise.

The de�nition of unify and the terms of the language are

orthogonal to the presentation of µKanren: both could be

changed with limited consequence for the rest of the system.

(de�ne (unify u v s)
(let ((u (walk u s)) (v (walk v s)))
(cond
((and (var? u) (var? v) (var=? u v)) s)
((var? u) (ext- s u v s))
((var? v) (ext- s v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))
(and s (unify (cdr u) (cdr v) s))))

(else (and (eqv? u v) s)))))

The second basic goal constructor is call/fresh. The

call/fresh goal constructor takes a unary function f

whose body is a goal, and itself returns a goal. This returned

goal, when provided a state s/c, binds the formal parameter

of f to a new logic variable (built with the variable construc-

tor operator var), and passes a state, with the substitution it

originally received and a newly incremented fresh-variable

counter, c, to the goal that is the body of f.

(de�ne (call/fresh f)
(λg (s/c)
(let ((c (cdr s/c)))
((f (var c)) `(, (car s/c) . , (+ c 1))))))

The �nal two basic goal constructors are disj and conj.

The disj goal constructor takes two goals as arguments and

returns a goal that succeeds if either of the two subgoals suc-

ceed. The conj goal constructor similarly takes two goals as

arguments and returns a goal that succeeds if both goals suc-

ceed for that state.

(de�ne (disj g1 g2) (λg (s/c) (mplus (g1 s/c) (g2 s/c))))
(de�ne (conj g1 g2) (λg (s/c) (bind (g1 s/c) g2)))

These are implemented in terms of the mplus and bind

operators, respectively2. It is through these two operators

that the search strategy of µKanren is encoded.We iteratively

develop versions of these operators, which in their �nal form

will provide a complete search.

We begin with an implementation that is correct for �nite

relations. The addition of two lines yields the capacity to

return streams of in�nitely-many results. A slight change to

this implementation results in a breadth-�rst search strategy

typical of miniKanren implementations.

4.1 Finite Depth-First Search

The mplus operator is responsible for merging streams. In

a goal constructed from disj, the resulting stream contains

the states that result from success of either of the two goals.

mplus simply appends the list returned as the result of the

�rst call to that returned as the result of the second. In this

form it is simply an implementation of append.

2 For those who perfer to think in terms of monads, these de�nitions of bind,

and mplus, together with the implementation of unit and mzero, comprise

something akin to the list monad.

.

(de�ne (mplus $1 $2)
(cond
((null? $1) $2)
(else (cons (car $1) (mplus (cdr $1) $2)))))

As a consequence, if the invocation of either of the two goals

on the state results in an in�nite stream, the invocation of

disj will not complete (because Scheme is call-by-value).

bind is required in the implementation of conj.

(de�ne (bind $ g)
(cond
((null? $) mzero)
(else (mplus (g (car $)) (bind (cdr $) g)))))

When a goal constructed from conj is invoked, the goal g1
is invoked on the current state; the result of this invocation

is a �nite stream (represented as a proper �nite list). The

resulting stream is by de�nition �nite, as those which spawn

an in�nite number of results fail to return. bind receives

this resulting stream and the goal g2. In bind that goal (g)

is invoked on each element of the stream. If the stream of

results of g1 is empty or becomes exhausted mzero, the

empty stream, is returned. If instead the stream contains a

state and potentially more, then g is invoked on the �rst state.

The stream which is the result of that invocation is merged to

a stream containing the invocation of the rest of the $ passed

in the second goal g. The results of these invocations in bind

form the result of the conj. The bind operator is essentially

an implemementation of append-map [10], though with its

arguments reversed.

The search strategy these operators implement is a depth-

�rst search strategy limited to a �nite search space. The

implementation here is similar in many respects to that of

Sokuza Kanren [6]. Limiting queries to a �nite search space,

however, is an unfortunate and severe restriction. Consider

the de�nition of the goal constructor fives below and the

query that follows it.

> (de�ne (�ves x) (disj (≡ x 5) (�ves x)))
> ((call/fresh �ves) empty-state)

This query will fail to terminate, as the call to disj will

invoke mplus to collect all results and returns them as a list.

For an in�nite relation, such as fives above, collecting all

the results before returning any of them ensures no results

are returned. A slightly more sophisticated approach to com-

bining streams yields an ability to return streams of in�nitely

many results.

4.2 In�nite Streams

To remedy this limitation, mplus and bind must be aug-

mented with an ability to return a stream without computing

the answers it contains. These we term immature streams.

When returning a �nite number of in�nitely many results,

the result is a partially computed stream, with an immature

stream in the cdr of the last pair.

A µKanren stream is then de�ned to be either the empty

stream, an immature stream, or a mature stream, a pair of a

state and a stream, which together comprise the stream's �rst

and remaining states.

The rede�nition of mplus below and the introduction of

λ
$
both warrant explanation. The changes from the previous

de�nition are highlighted.

(de�ne (mplus $1 $2)
(cond
((null? $1) $2)
.((procedure? $1) (λ

$
() (mplus ($1) $2))).

(else (cons (car $1) (mplus (cdr $1) $2)))))

Immature streams are implemented as λ
$
s. The added

procedure? line matches immature streams. The invoca-

tion of a goal on a state still yields a stream of results, now

potentially in�nite. In the case that the invocation of a goal

g returns a non-empty stream, it must be either an immature

stream, or a pair consisting of some state and a stream (either

mature or immature). When the cdr of $1 (in the third cond

clause of mplus) is an immature stream, the recursive in-

vocation of mplus will match the second cond clause. This

then returns a λ
$
which, when invoked, will continue the

search for more results in that stream. The λ
$
is required to

ensure termination at each invocation.

The bind operator is modi�ed similarly, to correspond

with the change to mplus. Since streams may also now be

procedures, the procedure? line is added to account for

that. Like in mplus, the λ
$
is wrapped around the right-hand

side to ensure termination.

(de�ne (bind $ g)
(cond
((null? $) mzero)
.((procedure? $) (λ

$
() (bind ($) g))).

(else (mplus (g (car $)) (bind (cdr $) g)))))

Making use of this capacity requires intervention on the

part of the user, as in the following example. Consider again

the de�nition of fives from Section 4.1. Though we now

have the ability to return streams of in�nitely many results,

with this de�nition the query will still fail to terminate be-

cause of Scheme's call-by-value semantics. If fives is in-

stead de�ned as below, the query will instead return.

(de�ne (�ves x)
(disj (≡ x 5) .(λg (s/c) (λ

$
() (.(�ves x) .s/c))).))

The act of performing an inverse-η on a goal and then wrap-

ping its body in a λ
$
we refer to as inverse-η-delay. Invers-

η-delay is an operation that takes a goal and returns a goal,

as the result of doing so on any goal g is a function from a

state to a stream.

(λg (s/c)
g ⇒η−1−delay (λ

$
()

(g s/c)))

In order to ensure termination, when designing poten-

tially non-terminating goal-constructors, such as (mutually)

recursively-de�ned goal constructors, serious calls in the

body of such goal-constructors must be inverse-η-delayed in
order for the µKanren search to properly terminate. Induc-

ing a delay may also be of use in relations which are �nite

.

but multitudinous. Unlike in miniKanren, properly inverse-

η-delaying serious goals is the responsibility of the user.
As a consequence of this change, executions of µKanren

programs can now also return an immature stream as part

of a result. The user may manually advance the computation

by invoking the immature stream, or more likely, invoke a

user-level operator to advance a stream until it matures, as

described in Section 5.

Since the basic goals and every goal constructed by one

of the basic goal constructors are guaranteed to terminate,

and since we require that every serious call be inverse-η-
delayed, this seems to be a wholly satisfactory way to search

for results.

4.3 Interleaving Streams

Though µKanren will return with a stream, the stream may

be such that it will contain results which in principle can

never be returned. Depth-�rst search over in�nite relations is

an incomplete search strategy. Consider the relation sixes

and the associated query below.

> (de�ne (sixes x)
(disj (≡ x 6) (λg (s/c) (λ

$
() ((sixes x) s/c)))))

> (de�ne �ves-and-sixes
(call/fresh (λ (x) (disj (�ves x) (sixes x)))))

> (�ves-and-sixes empty-state)

In this call, all answers returned will be states with the

�rst variable bound to 5. This is despite the fact that another

branch also containing satisfying results is waiting in the

wings. In order to achieve a wider spread of answers, it is

important that a mature stream be able to yield control.

One method to accomplish the hand-off of control be-

tween two or more procedures is a binary trampoline. A

trampoline [5] provides the ability to share control between

procedures. In a binary trampoline, two procedures each

take a �step��a bounded amount of computation�and then

yield control to the other. In the case of the binary trampoline

this �step�handoff�step�handoff� sequence continues until

one of the two produces a value. Implementing a trampoline

through mplus will cause every path in the search to termi-

nate after a bounded amount of work�a single �bounce� on

the trampoline�and then yield control to the next waiting

possible direction of the computation. The addition of a bi-

nary trampoline is accomplished by a small change to the

de�nition of mplus.

Consider again the de�nition of mplus above. When the

search starts upon a path, it has no way to deviate until it

exhausts a stream. If instead, the search along a particular

path is mandated to hand-off control after a bounded amount

of work, then no one branch will monopolize control, and the

search will then be complete.

(de�ne (mplus $1 $2)
(cond
((null? $1) $2)
((procedure? $1) (λ

$
() (mplus .$2 ($1).)))

(else (cons (car $1) (mplus (cdr $1) $2)))))

With the change highlighted here, we achieve a complete

search strategy. Where before we would have returned an

immature stream which, when invoked, would continue the

search as it was to be invoked, we now instead hand-off

control to the waiting stream, while also taking a step with

the one which had previously been in control. As every

�nite stream will eventually be exhausted, and the user will

inverse-η-delay invocations of recursive goals, this change

means that no branch can continue to monopolize the search,

and thus this version of mplus implements a complete search

strategy.

The complete µKanren search strategy amounts to some-

thing on the order of a tree of trampolines. Results emerge

ordered roughly by the number of trampoline bounces re-

quired to �nd them in a search tree, and approximates per-

forming the search in parallel. Another analogy is that of a

juggler juggling jugglers, where each juggler is an mplus,

and the act of juggling is represented by the handoff of con-

trol in the second cond line of mplus. It is the search strat-

egy of almost all miniKanren implementations, and until re-

cently [11] it was at least the default choice of all published

miniKanren implementations.

5. User-level Functionality

Although, as demonstrated above, one can program in the

core µKanren language, a user may rightly desire a more

sophisticated set of tools with which to program and through

which to view the results. A sample set of such tools is

provided. These can certainly be further augmented to suit

a particular user's needs. Indeed, we believe it is a virtue of

the µKanren approach that the user can readily and easily

augment this system to regain much of the functionality of a

standard miniKanren implementation.

5.1 Recovering miniKanren's control operators

To begin with, manually performing the inverse-η-delay can
quickly become tedious. The user can instead employ the

below macro Zzz (pronounced �snooze�) to relieve some of

the tedium.

(de�ne-syntax Zzz
(syntax- rules ()
((_ g) (λg (s/c) (λ

$
() (g s/c))))))

Too, manually nesting calls to conj and disj can quickly

grow tiresome. The macros conj+ and disj+ introduced

below provide the conj and disj of one or more goals.

(de�ne-syntax conj+
(syntax- rules ()
((_ g) (Zzz g))
((_ g0 g . . .) (conj (Zzz g0) (conj+ g . . .)))))

(de�ne-syntax disj+
(syntax- rules ()
((_ g) (Zzz g))
((_ g0 g . . .) (disj (Zzz g0) (disj+ g . . .)))))

Although not strictly necessary, we choose to Zzz each of the

goals. A user writing only in terms of conj+ and disj+ will

not need to manually Zzz the goals. With the de�nition of

Zzz provided this entails a delay around every goal, whereas

strictly speaking it is only required around the invocation of

serious goals. A more sophisticated implementation of Zzz

that forgoes delaying goals constructed from ≡ and simply

recurs on subgoals of goals constructed from disj, conj,

and call/fresh would come closer to the ideal.

With conj+, disj+, and the basic goal constructors of

µKanren, the conde and fresh forms familiar to miniKan-

ren programmers can be introduced as straightforward macros

as well.

(de�ne-syntax conde
(syntax- rules ()
((_ (g0 g . . .) . . .) (disj+ (conj+ g0 g . . .) . . .))))

(de�ne-syntax fresh
(syntax- rules ()
((_ () g0 g . . .) (conj+ g0 g . . .))
((_ (x0 x . . .) g0 g . . .)
(call/fresh (λ (x0) (fresh (x . . .) g0 g . . .))))))

conde is simply the disj+ of a (non-empty) sequence of

conj+s. The fresh of miniKanren, which introduces any

number of fresh variables into scope, is built as a recursive

macro using call/fresh and conj+.

The user, having augmented their system with these

higher-level features, can feel free to program with them,

and escape to µKanren for more �ne-grained control when

desired.

5.2 From Streams to Lists

Invoking an immature stream to return results needn't be

performed manually. With an operator like pull below, this

could instead be done automatically.

(de�ne (pull $) (if (procedure? $) (pull ($)) $))

This will simply advance the stream until it matures. pull

also returns () for the empty stream (i.e. mzero). This

model, in which the user gets one result at a time from the

system, is reminiscent of Prolog.

pull itself can be abstracted to operations that pull all

results or pull the �rst n results.

(de�ne (take-all $)
(let (($ (pull $)))
(if (null? $) ' () (cons (car $) (take-all (cdr $))))))

(de�ne (take n $)
(if (zero? n) ' ()
(let (($ (pull $)))
(cond
((null? $) ' ())
(else (cons (car $) (take (- n 1) (cdr $))))))))

take-all pulls all results from the stream, and take

pulls the �rst n or as many results as the stream contains,

whichever is least. The user is of course free to develop other

abstractions of their own. In the implementation correct only

for �nite relations, the call to pull is unnecessary but be-

nign, and in the later versions it ensures that the work of

take and take-all always occurs over a mature stream.

5.3 Recovering Rei�cation

Relational programming languages typically also introduce

a means by which the user can reify the results. Rei�cation is

the process by which the user sloughs off information from

the resulting stream in order to clarify the presentation of

that which is desired. Rei�cation, now in the user's domain,

is as a consequence more �exible than in many miniKanren

languages. By placing the rei�er under the user's control,

they are now no longer mandated to reify against the �rst

variable in the system, or limited to reifying the result once.

Now that the substitution can be bound and manipulated, the

user can reify along any number of dimensions for different

views of the data. They now also have the ability to choose

how the substitution should be presented, including a choice

between idempotent [7] or triangular views of the substitu-

tion. The Scheme operators null? and length can both be

seen as trivial rei�ers, for the user seeking to know simply

if any results were found or how many. The sample rei�er

presented here, mK-reify, is typical of other miniKanren

languages.

(de�ne (mK-reify s/c*)
(map reify-state/1st-var s/c*))

(de�ne (reify-state/1st -var s/c)
(let ((v (walk* (var 0) (car s/c))))
(walk* v (reify-s v ' ()))))

The rei�er here, mK-reify, rei�es a list of states s/c*

by reifying each state's substitution with respect to the �rst

variable. The reify-s, reify-name, and walk* helpers are

required for reify-state/1st-var.

(de�ne (reify-s v s)
(let ((v (walk v s)))
(cond
((var? v)
(let ((n (reify-name (length s))))
(cons `(, v . , n) s)))

((pair? v) (reify-s (cdr v) (reify-s (car v) s)))
(else s))))

(de�ne (reify-name n)
(string�symbol
(string -append "_" "." (number�string n))))

(de�ne (walk* v s)
(let ((v (walk v s)))
(cond
((var? v) v)
((pair? v) (cons (walk* (car v) s)

(walk* (cdr v) s)))
(else v))))

5.4 Recovering the Interface to Scheme

The conventions for calling programs and viewing the re-

sults can be similarly re�ned. We introduced empty-state

in Section 2 as an alias for a state devoid of information.

.

The de�nition is restated below. We introduce here as well

call/empty-state, an operator that takes a goal as an ar-

gument and attempts that goal in the empty-state. This

reduces slightly some of the boilerplate in invoking µKanren

program.

(de�ne empty-state ' (() . 0))
(de�ne (call/empty-state g) (g empty-state))

By making use of the above, the missing run and run*

interfaces of miniKanren are also recoverable3. run and

run* execute the provided goals, and call take or take-all

as appropriate. Here, mK-reify is encoded into the run and

run* macros; this could be replaced by a different rei�er,

or the de�nitions of run and run* could instead be parama-

terized over the rei�er and the choice left up to the ultimate

user.

(de�ne-syntax run
(syntax- rules ()
((_ n (x . . .) g0 g . . .)
(mK-reify (take n (call/empty-state

(fresh (x . . .) g0 g . . .)))))))

(de�ne-syntax run*
(syntax- rules ()
((_ (x . . .) g0 g . . .)
(mK-reify (take-all (call/empty-state

(fresh (x . . .) g0 g . . .)))))))

Via the above, the user regains much of the expres-

siveness of other miniKanren languages. These are but a

few possible user-level additions to the language. The user

might, for instance, wish for a take-all/p, that pulls all

results that match a certain predicate.

6. The Road not Taken

Many enhancements to the functionality of the core language

are also possible. In a language with a pointer equality test

(e.g. eq?), such as Scheme or Lisp, it could be used instead

of var-eq? to test for the identity of variables. This would

dramatically decrease the cost of walk, though arguably at

the cost of a �side-effect� in the implementation.

We might instead implement the substitution using a per-

sistent hash-table [9] instead of a linked list. This would pro-

vide O(1) lookup of variables in the substitution and elim-

inate the use of assp (or assq) in walk. In the core.logic

implementation of miniKanren, Nolen [8] achieves signi�-

cant performance gains by implementing the substitution as

a persistent hash table.

Our implementation of unify, as mentioned in Sec-

tion 4, allows circularities in the substitution. miniKanren

languages typically prohibit this. Using occurs� in the re-

de�nition of ext-s below would make µKanren's behavior

in this regard correspond with miniKanren's.

3 The de�nitions of run and run* are not precisely those of miniKanren,

as they allow 0 or more variables in the list of query variables. These

de�nitions can be further constrainted to provide exactly miniKanren's

behavior.

(de�ne (occurs� x v s)
(let ((v (walk v s)))
(cond
((var? v) (var=? v x))

(else (and (pair? v) (or (occurs� x (car v) s)

(occurs� x (cdr v) s)))))))

(de�ne (ext- s x v s)
.(if (occurs� x v s) #f.`((,x . , v) . , s).).)

In the previous de�nition of mplus in Section 4.3, swap-

ping streams in the recursive call of the third cond clause in

addition to the second would lead to a fairer distribution of

answers over in�nite searches, and would obviate much of

the use for inverse-η-delay over �nite searches.

(de�ne (mplus $1 $2)
(cond
((null? $1) $2)
((procedure? $1) (λ

$
() (mplus $2 ($1))))

(else (cons (car $1) (mplus .$2 (cdr $1.))))))

The conj and disj goal constructors might also be de-

�ned differently, or equivalently, other core language prim-

itives for the conjunction and disjunction of goals might

be chosen in their stead. conj+ and disj+ (or conj* and

disj*, variants that represent the conjunction (disjunction)

of 0 or more goals) could replace conj and disj as prim-

itives. A number of different implementations of each are

possible; their precise de�nitions are left as exercises for the

interested reader.

7. Conclusions and Future Work

In this paper, we present µKanren, a �featherweight� im-

plementation of a pure relational (logic) programming lan-

guage. µKanren is the smallest in the miniKanren family

of languages. Its kernel is entirely functional, contains no

macros, and comprises but 14 de�nitions and 39 lines of

code. As such, we believe the implementation is both sim-

pler to understand and more directly portable than that of

other miniKanren languages.

As it is intended to be a bare-bones implementation, in-

evitably certain features don't make the cut. Absent are the

impure operators of the original miniKanren, constraints be-

yond the substitution, and cutting-edge operators of the more

expansive implementations. It does not come equipped with

a rei�er, and the user must take responsibility for Scheme

in�nite loops, and for inverse-η-delaying recursive goals. It

is nevertheless suf�cient to perform real relational program-

ming tasks, and general enough for end-users to abstract its

interface and build more powerful search tools.

µKanren provides what we believe is a reasonable �rst

introduction to the internals of a Kanren-like language. Stu-

dents, developers, and aspiring implementers alike may �nd

µKanren a worthwhile object of study before diving into the

internals of another implementation.

Too, the smaller and wholly functional core may in and

of itself encourage further adoption of miniKanren. A strong

hygienic macro system is absent from many major lan-

guages. A reference implementation that does not take ad-

vantage of those features may ease the burden of porting

to such languages. In so doing µKanren may help make

miniKanren-like languages the default choice for developers

looking to roll their own relational programming languages.

In future research, we hope to gain more experience ex-

tending µKanren's feature set without compromising the el-

egance of its model. We hope to implement other search

strategies in a similarly straightforward manner, and perhaps

develop a mechanism to change out search strategies during

the course of a search.

We believe that the language presented here expresses the

notion of a pure relational programming language in a more

concise manner than have earlier miniKanren implementa-

tions. The µKanren model�small, and conservative in its

feature set but easily extensible�may also suggest another

path forward for the miniKanren family of languages.

Acknowledgments

We extend our thanks to Will Byrd and Will Ness for their

inspiration. We also thank Adam Foltzer and Andre Kulen-

schmidt for their comments and criticisms of earlier drafts.

We are especially grateful to Chung-chieh Shan, Jeremy

Siek, Cameron Swords, and Sam Tobin-Hochstadt for their

assistance clarifying the presentation of the present work.

References

[1] F. Baader and W. Snyder. Uni�cation theory. Handbook of

automated reasoning, 1:445�532, 2001.

[2] D. L. Black, D. B. Golub, D. P. Julin, R. F. Rashid, R. P.

Draves, R. W. Dean, A. Forin, J. Barrera, H. Tokuda,

G. Malan, et al. Microkernel operating system architecture

and Mach. Journal of information processing, 14(4):442�453,

1992.

[3] W. E. Byrd. Relational programming in miniKanren: tech-

niques, applications, and implementations. PhD thesis, Indi-

ana University, 2009.

[4] D. P. Friedman, W. E. Byrd, and O. Kiselyov. The Reasoned

Schemer. The MIT Press, July 2005. ISBN 0262562146.

[5] S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined

style. In Proc. 4th ACM SIGPLAN international conference

on Functional programming, pages 18�27. ACM Press, 1999.

[6] O. Kiselyov. The taste of logic programming, 2006.

URL http://okmij.org/ftp/Scheme/misc.html#

sokuza-kanren.

[7] J. W. Lloyd. Foundations of Logic Programming, 1st Edition.

Springer, 1984. ISBN 3-540-13299-6.

[8] D. Nolen. core.logic, 2013. URL https://github.com/

clojure/core.logic.

[9] C. Okasaki. Purely functional data structures. Cambridge

University Press, 1999.

[10] O. Shivers. List Library. Scheme Request for Implementa-

tion. SRFI-1, 1999. URL http://srfi.schemers.org/

srfi-1/srfi-1.html.

[11] C. Swords and D. Friedman. rKanren: Guided search in

miniKanren. Scheme and Functional Programming, 2013.

[12] P. Wadler. How to replace failure by a list of successes

a method for exception handling, backtracking, and pattern

matching in lazy functional languages. In Functional Pro-

gramming Languages and Computer Architecture, pages 113�

128. Springer, 1985.

Appendix: µKanren Implementation

..

(de�ne (var c) (vector c))
(de�ne (var? x) (vector? x))
(de�ne (var=? x1 x2) (= (vector-ref x1 0) (vector-ref x2 0)))

(de�ne (walk u s)
(let ((pr (and (var? u) (assp (λ (v) (var=? u v)) s))))
(if pr (walk (cdr pr) s) u)))

(de�ne (ext- s x v s) `((, x . , v) . , s))

(de�ne (≡ u v)
(λg (s/c)
(let ((s (unify u v (car s/c))))
(if s (unit `(, s . , (cdr s/c))) mzero))))

(de�ne (unit s/c) (cons s/c mzero))
(de�ne mzero '())

(de�ne (unify u v s)
(let ((u (walk u s)) (v (walk v s)))
(cond
((and (var? u) (var? v) (var=? u v)) s)
((var? u) (ext- s u v s))
((var? v) (ext- s v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))
(and s (unify (cdr u) (cdr v) s))))

(else (and (eqv? u v) s)))))

(de�ne (call/fresh f)
(λg (s/c)
(let ((c (cdr s/c)))
((f (var c)) `(, (car s/c) . , (+ c 1))))))

(de�ne (disj g1 g2) (λg (s/c) (mplus (g1 s/c) (g2 s/c))))
(de�ne (conj g1 g2) (λg (s/c) (bind (g1 s/c) g2)))

(de�ne (mplus $1 $2)
(cond
((null? $1) $2)
((procedure? $1) (λ

$
() (mplus $2 ($1))))

(else (cons (car $1) (mplus (cdr $1) $2)))))

(de�ne (bind $ g)
(cond
((null? $) mzero)
((procedure? $) (λ

$
() (bind ($) g)))

(else (mplus (g (car $)) (bind (cdr $) g)))))

http://okmij.org/ftp/Scheme/misc.html#sokuza-kanren
http://okmij.org/ftp/Scheme/misc.html#sokuza-kanren
https://github.com/clojure/core.logic
https://github.com/clojure/core.logic
http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-1/srfi-1.html

	Introduction
	The µKanren Language
	Design Philosophy
	µKanren Implementation
	Finite Depth-First Search
	Infinite Streams
	Interleaving Streams

	User-level Functionality
	Recovering miniKanren's control operators
	From Streams to Lists
	Recovering Reification
	Recovering the Interface to Scheme

	The Road not Taken
	Conclusions and Future Work

