
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Breaking Through the Normalization Barrier:
A Self-Interpreter for F-omega

Matt Brown
UCLA

msb@cs.ucla.edu

Jens Palsberg
UCLA

palsberg@ucla.edu

Abstract
According to conventional wisdom, a self-interpreter for a
strongly normalizing λ-calculus is impossible. We call this
the normalization barrier. The normalization barrier stems
from a theorem in computability theory that says that a to-
tal universal function for the total computable functions is
impossible. In this paper we break through the normaliza-
tion barrier and define a self-interpreter for System Fω, a
strongly normalizing λ-calculus. After a careful analysis of
the classical theorem, we show that static type checking in
Fω can exclude the proof’s diagonalization gadget, leaving
open the possibility for a self-interpreter. Along with the
self-interpreter, we program four other operations in Fω, in-
cluding a continuation-passing style transformation. Our op-
erations rely on a new approach to program representation
that may be useful in theorem provers and compilers.
Categories and Subject Descriptors D.3.4 [Proces-
sors]: Interpreters; D.2.4 [Program Verification]: Correct-
ness proofs, formal methods
General Terms Languages; Theory
Keywords Lambda Calculus; Self Representation; Self In-
terpretation; Meta Programming

1. Introduction
Barendregt’s notion of a self-interpreter is a program that
recovers a program from its representation and is imple-
mented in the language itself [4]. Specifically for λ-calculus,
the challenge is to devise a quoter that maps each term
e to a representation e, and a self-interpreter u (for un-
quote) such that for every λ-term e we have (u e) ≡β e.
The quoter is an injective function from λ-terms to represen-
tations, which are λ-terms in normal form. Barendregt used
Church numerals as representations, while in general one can
use any β-normal terms as representations. For untyped λ-
calculus, in 1936 Kleene presented the first self-interpreter
[20], and in 1992 Mogensen presented the first strong self-
interpreter u that satisfies the property (u e) −→∗

β e [23]. In

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
POPL ’16,, January 20-22, 2016, St. Petersburg, FL, USA.
Copyright © 2016 ACM 978-1-4503-3549-2/16/01…$15.00.
http://dx.doi.org/10.1145/2837614.2837623

2009, Rendel, Ostermann, and Hofer [29] presented the first
self-interpreter for a typed λ-calculus (F∗

ω), and in previous
work [8] we presented the first self-interpreter for a typed λ-
calculus with decidable type checking (Girard’s System U).
Those results are all for non-normalizing λ-calculi and they
go about as far as one can go before reaching what we call
the normalization barrier.
The normalization barrier: According to conventional
wisdom, a self-interpreter for a strongly normalizing λ-
calculus is impossible.

The normalization barrier stems from a theorem in com-
putability theory that says that a total universal function
for the total computable functions is impossible. Several
books, papers, and web pages have concluded that the the-
orem about total universal functions carries over to self-
interpreters for strongly normalizing languages. For exam-
ple, Turner states that “For any language in which all pro-
grams terminate, there are always terminating programs
which cannot be written in it - among these are the in-
terpreter for the language itself” [37, pg. 766]. Similarly,
Stuart writes that “Total programming languages are still
very powerful and capable of expressing many useful compu-
tations, but one thing they can’t do is interpret themselves”
[33, pg. 264]. Additionally, the Wikipedia page on the Nor-
malization Property (accessed in May 2015) explains that a
self-interpreter for a strongly normalizing λ-calculus is im-
possible. That Wikipedia page cites three typed λ-calculi,
namely simply typed λ-calculus, System F, and the Calculus
of Constructions, each of which is a member of Barendregt’s
cube of typed λ-calculi [5]. We can easily add examples to
that list, particularly the other five corners of Barendregt’s
λ-cube, including Fω. The normalization barrier implies that
a self-interpreter is impossible for every language in the list.
In a seminal paper in 1991 Pfenning and Lee [26] considered
whether one can define a self-interpreter for System F or Fω

and found that the answer seemed to be “no”.
In this paper we take up the challenge presented by the

normalization barrier.
The challenge: Can we define a self-interpreter for a
strongly normalizing λ-calculus?
Our result: Yes, we present a strong self-interpreter for
the strongly normalizing λ-calculus Fω; the program repre-
sentation is deep and supports a variety of other operations.
We also present a much simpler self-interpreter that works
for each of System F, Fω, and F+

ω ; the program representa-
tion is shallow and supports no other operations.

Figure 1 illustrates how our result relates to other rep-
resentations of typed λ-calculi with decidable type check-

F Fω F+
ω U

normalization barrier

[this paper] [this paper][this paper] [8]

[26] [26] [8]

Figure 1: Four typed λ-calculi: → denotes “represented in.”

ing. The normalization barrier separates the three strongly-
normalizing languages on the left from System U on the
right, which is not strongly-normalizing. Pfenning and Lee
represented System F in Fω, and Fω in F+

ω . In previous
work we showed that F+

ω can be represented in System U,
and that System U can represent itself. This paper con-
tributes the self-loops on F, Fω, and F+

ω , depicting the first
self-representations for strongly-normalizing languages.

Our result breaks through the normalization barrier. The
conventional wisdom underlying the normalization barrier
makes an implicit assumption that all representations will
behave like their counterpart in the computability theorem,
and therefore the theorem must apply to them as well. This
assumption excludes other notions of representation, about
which the theorem says nothing. Thus, our result does not
contradict the theorem, but shows that the theorem is less
far-reaching than previously thought.

Our result relies on three technical insights. First, we ob-
serve that the proof of the classical theorem in computability
theory relies on a diagonalization gadget, and that a typed
representation can ensure that the gadget fails to type check
in Fω, so the proof doesn’t necessarily carry over to Fω. Sec-
ond, for our deep representation we use a novel extensional
approach to representing polymorphic terms. We use instan-
tiation functions that describe the relationship between a
quantified type and one of its instance types. Each instan-
tiation function takes as input a term of a quantified type,
and instantiates it with a particular parameter type. Third,
for our deep representation we use a novel representation
of types, which helps us type check a continuation-passing-
style transformation.

We present five self-applicable operations on our deep
representation, namely a strong self-interpreter, a continuation-
passing-style transformation, an intensional predicate for
testing whether a closed term is an abstraction or an appli-
cation, a size measure, and a normal-form checker. Our list
of operations extends those of previous work [8].

Our deep self-representation of Fω could be useful for
type-checking self-applicable meta-programs, with potential
for applications in typed macro systems, partial evaluators,
compilers, and theorem provers. In particular, Fω is a sub-
set of the proof language of the Coq proof assistant, and
Morrisett has called Fω the workhorse of modern compilers
[24].

Our deep representation is the most powerful self-
representation of Fω that we have identified: it supports
all the five operations listed above. One can define several
other representations for Fω by using fewer of our insights.
Ultimately, one can define a shallow representation that sup-
ports only a self-interpreter and nothing else. As a stepping
stone towards explaining our main result, we will show a
shallow representation and a self-interpreter in Section 3.3.
That representation and self-interpreter have the distinction

of working for System F, Fω and F+
ω . Thus, we have solved

the two challenges left open by Pfenning and Lee [26].
Rest of the paper. In Section 2 we describe Fω, in Sec-

tion 3 we analyze the normalization barrier, in Section 4 we
describe instantiation functions, in Section 5 we show how
to represent types, in Section 6 we show how to represent
terms, in Section 7 we present our operations on program
representations, in Section 8 we discuss our implementation
and experiments, in Section 9 we discuss various aspects of
our result, and in Section 10 we compare with related work.
Proofs of theorems stated throughout the paper are provided
in an appendix that is available from our website [1].

2. System Fω

System Fω is a typed λ-calculus within the λ-cube [5]. It
combines two axes of the cube: polymorphism and higher-
order types (type-level functions). In this section we sum-
marize the key properties of System Fω used in this paper.
We refer readers interested in a complete tutorial to other
sources [5, 27]. We give a definition of Fω in Figure 2. It in-
cludes a grammar, rules for type formation and equivalence,
and rules for term formation and reduction. The grammar
defines the kinds, types, terms, and environments. As usual,
types classify terms, kinds classify types, and environments
classify free term and type variables. Every syntactically
well-formed kind and environment is legal, so we do not in-
clude separate formation rules for them. The type formation
rules determine the legal types in a given environment, and
assigns a kind to each legal type. Similarly, the term forma-
tion rules determine the legal terms in a given environment,
and assigns a type to each legal term. Our definition is sim-
ilar to Pierce’s [27], with two differences: we use a slightly
different syntax, and our semantics is arbitrary β-reduction
instead of call-by-value.

It is well known that type checking is decidable, and that
types of Fω terms are unique up to equivalence. We will write
e ∈ Fω to mean “e is a well-typed term in Fω”. Any well-
typed term in System Fω is strongly normalizing, meaning
there is no infinite sequence of β-reductions starting from
that term. If we β-reduce enough times, we will eventually
reach a term in β-normal form that cannot be reduced
further. Formally, term e is β-normal if there is no e′ such
that e −→ e′. We require that representations of terms be
data, which for λ-calculus usually means a term in β-normal
form.

3. The Normalization Barrier
In this section, we explore the similarity of a universal
computable function in computability theory and a self-
interpreter for a programming language. As we shall see,
the exploration has a scary beginning and a happy ending.
At first, a classical theorem in computability theory seems
to imply that a self-interpreter for Fω is impossible. Fortu-
nately, further analysis reveals that the proof relies on an
assumption that a diagonalization gadget can always be de-
fined for a language with a self-interpreter. We show this
assumption to be false: by using a typed representation, it is
possible to define a self-interpreter such that the diagonal-
ization gadget cannot possibly type check. We conclude the
section by demonstrating a simple typed self-representation
and a self-interpreter for Fω.

(kinds) κ ::= ∗ | κ1 → κ2

(types) τ ::= α | τ1 → τ2 | ∀α:κ.τ | λα:κ.τ | τ1 τ2

(terms) e ::= x | λx:τ.e | e1 e2 | Λα:κ.e | e τ
(environments) Γ ::= ⟨⟩ | Γ,(x:τ) | Γ,(α:κ)

Grammar

(α:κ) ∈ Γ

Γ ⊢ α : κ

Γ ⊢ τ1 : ∗ Γ ⊢ τ2 : ∗
Γ ⊢ τ1 → τ2 : ∗

Γ,(α:κ) ⊢ τ : ∗
Γ ⊢ (∀α:κ.τ) : ∗

Γ,(α:κ1) ⊢ τ : κ2

Γ ⊢ (λα:κ1.τ) : κ1 → κ2

Γ ⊢ τ1 : κ2 → κ Γ ⊢ τ2 : κ2

Γ ⊢ τ1 τ2 : κ

Type Formation

τ ≡ τ
τ ≡ σ
σ ≡ τ

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

τ1 ≡ σ1 τ2 ≡ σ2

τ1 → τ2 ≡ σ1 → σ2

τ ≡ σ
(∀α:κ.τ) ≡ (∀α:κ.σ)

τ ≡ σ
(λα:κ.τ) ≡ (λα:κ.σ)

τ1 ≡ σ1 τ2 ≡ σ2

τ1 τ2 ≡ σ1 σ2

(λα:κ.τ) ≡ (λβ:κ.τ [α := β]) (λα:κ.τ) σ ≡ (τ [α := σ])

Type Equivalence

(x:τ) ∈ Γ

Γ ⊢ x : τ

Γ ⊢ τ1 : ∗ Γ,(x:τ1) ⊢ e : τ2

Γ ⊢ (λx:τ1.e) : τ1 → τ2

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

Γ,(α:κ) ⊢ e : τ

Γ ⊢ (Λα:κ.e) : (∀α:κ.τ)

Γ ⊢ e : (∀α:κ.τ) Γ ⊢ σ : κ

Γ ⊢ e σ : τ[α:=σ]

Γ ⊢ e : τ τ ≡ σ Γ ⊢ σ : ∗
Γ ⊢ e : σ

Term Formation

(λx:τ.e) e1 −→ e[x := e1]
(Λα:κ.e) τ −→ e[α := τ]

e1 −→ e2
e1 e3 −→ e2 e3
e3 e1 −→ e3 e2
e1 τ −→ e2 τ

(λx:τ.e1) −→ (λx:τ.e2)
(Λα:κ.e1) −→ (Λα:κ.e2)

Reduction

Figure 2: Definition of System Fω

3.1 Functions from Numbers to Numbers
We recall a classical theorem in computability theory (The-
orem 3.2). The proof of the theorem is a diagonalization
argument, which we divide into two steps: first we prove a
key property (Theorem 3.1) and then we proceed with the
proof of Theorem 3.2.

Let Ndenote the set of natural numbers {0, 1, 2, . . .}. Let
· be an injective function that maps each total, computable
function in N → N to an element of N.

We say that u ∈ (N × N) ⇀ N is a universal function
for the total, computable functions in N → N, if for every
total, computable function f in N → N, we have ∀v ∈ N:
u(f,v) = f(v). The symbol ⇀ denotes that u may be a
partial function. Indeed, Theorem 3.2 proves that u must
be partial. We let Univ(N → N) denote the set of universal
functions for the total, computable functions in N → N.

Given a function u in (N×N) ⇀ N, we define the function
pu in N → N, where pu(x) = u(x,x) + 1.
Theorem 3.1. If u ∈ Univ(N → N), then pu isn’t total.

Proof. Suppose u ∈ Univ(N → N) and pu is total. Notice that
pu is a total, computable function in N → N so pu is defined.
We calculate:

pu(pu) = u(pu,pu) + 1 = pu(pu) + 1

Given that pu is total, we have that pu(pu) is defined; let us
call the result v. From pu(pu) = pu(pu) + 1, we get v = v +
1, which is impossible. So we have reached a contradiction,
hence our assumption (that u ∈ Univ(N → N) and pu is

total) is wrong. We conclude that if u ∈ Univ(N → N), then
pu isn’t total.

Theorem 3.2. If u ∈ Univ(N → N), then u isn’t total.

Proof. Suppose u ∈ Univ(N → N) and u is total. For ev-
ery x ∈ N, we have that pu(x) = u(x,x) + 1. Since u is
total, u(x,x) + 1 is defined, and therefore pu(x) is also de-
fined. Since pu(x) is defined for every x ∈ N, pu is total.
However, Theorem 3.1 states that pu is not total. Thus we
have reached a contradiction, so our assumption (that u ∈
Univ(N → N) and u is total) is wrong. We conclude that if
u ∈ Univ(N → N), then u isn’t total.

Intuitively, Theorem 3.2 says that if we write an inter-
preter for the total, computable functions in N → N, then
that interpreter must go into an infinite loop on some inputs.

3.2 Typed λ-Calculus: Fω

Does Theorem 3.2 imply that a self-interpreter for Fω is im-
possible? Recall that every well-typed term in Fω is strongly
normalizing. So, if we have a self-interpreter u for Fω and we
have (u e) ∈ Fω, then (u e) is strongly normalizing, which
is intuitively expresses that u is a total function. Thus, The-
orem 3.2 seems to imply that a self-interpreter for Fω is im-
possible. This is the normalization barrier. Let us examine
this intuition via a “translation” of Section 3.1 to Fω.

Let us recall the definition of a self-interpreter from
Section 1, here for Fω. A quoter is an injective function

from terms in Fω to their representations, which are β-
normal terms in Fω. We write e to denote the representation
of a term e. We say that u ∈ Fω is a self-interpreter for
Fω, if ∀e ∈ Fω: (u e) ≡β e. We allow (u e) to include
type abstractions or applications as necessary, and leave
them implicit. We use SelfInt(Fω) to denote the set of self-
interpreters for Fω.

Notice a subtle difference between the definition of a
universal function in Section 3.1 and the definition of a self-
interpreter. The difference is that a universal function takes
both its arguments at the same time, while, intuitively, a
self-interpreter is curried and takes its arguments one by
one. This difference plays no role in our further analysis.

Notice also the following consequences of the two require-
ments of a quoter. The requirement that a quoter must pro-
duce terms in β-normal form rules out the identity function
as a quoter, because it maps reducible terms to reducible
terms. The requirement that a quoter must be injective rules
out the function that maps each term to its normal form,
because it maps β-equivalent terms to the same β-normal
form.

The proof of Theorem 3.1 relies on the diagonalization
gadget (pu pu), where pu is a cleverly defined function. The
idea of the proof is to achieve the equality (pu pu) = (pu pu)
+ 1. For the Fω version of Theorem 3.1, our idea is to achieve
the equality (pu pu) ≡β λy.(pu pu), where y is fresh. Here,
λy plays the role of “+1”. Given u ∈ Fω, we define pu =
λx. λy. ((u x) x), where x,y are fresh, and where we omit
suitable type annotations for x,y. We can now state an Fω

version of Theorem 3.1.
Theorem 3.3. If u ∈ SelfInt(Fω), then (pu pu) ̸∈ Fω.

Proof. Suppose u ∈ SelfInt(Fω) and (pu pu) ∈ Fω. We cal-
culate:

pu pu
≡β λy. ((u pu) pu)
≡β λy. (pu pu)

From (pu pu) ∈ Fω we have that (pu pu) is strongly normal-
izing. From the Church-Rosser property of Fω, we have that
(pu pu) has a unique normal form; let us call it v. From
(pu pu) ≡β λy.(pu pu) we get v ≡β λy.v. Notice that v
and λy.v are distinct yet β-equivalent normal forms. Now
the Church-Rosser property implies that β-equivalent terms
must have the same normal form. Thus v ≡β λy.v implies v
≡α λy.v, which is false. So we have reached a contradiction,
hence our assumption (that u ∈ SelfInt(Fω) and (pu pu) ∈
Fω) is wrong. We conclude that if u ∈ SelfInt(Fω), then (pu
pu) ̸∈ Fω.

What is an Fω version of Theorem 3.2? Given that
every term in Fω is “total” in the sense described earlier,
Theorem 3.2 suggests that we should expect SelfInt(Fω) = ∅.
However this turns out to be wrong and indeed in this paper
we will define a self-representation and self-interpreter for
Fω. So, SelfInt(Fω) ̸= ∅.

We saw earlier that Theorem 3.1 helped prove Theo-
rem 3.2. Why does Theorem 3.3 fail to lead the conclusion
SelfInt(Fω) = ∅? Observe that in the proof of Theorem 3.2,
the key step was to notice that if u is total, also pu is total,
which contradicts Theorem 3.1. In contrast, the assumption
u ∈ SelfInt(Fω) produces no useful conclusion like (pu pu)
∈ Fω that would contradict Theorem 3.3. In particular, it
is possible for u and pu to be typeable in Fω, and yet for

(pu pu) to be untypeable. So, the door is open for a self-
interpreter for Fω.

3.3 A Self-Interpreter for Fω

Inspired by the optimism that emerged in Section 3.2, let
us now define a quoter and a self-interpreter for Fω. The
quoter will support only the self-interpreter and nothing else.
The idea of the quoter is to use a designated variable id to
block the reduction of every application. The self-interpreter
unblocks reduction by substituting the polymorphic identity
function for id. Below we define the representation e of a
closed term e.

Γ ⊢ x : τ � x

Γ,(x:τ1) ⊢ e : τ2 � q
Γ ⊢ (λx:τ1.e) : τ1 → τ2 � (λx:τ1.q)

Γ ⊢ e1 : τ2 → τ � q1 Γ ⊢ e2 : τ2 � q2
Γ ⊢ e1 e2 : τ � id (τ2 → τ) q1 q2

Γ,α:κ ⊢ e : τ � q
Γ ⊢ (Λα:κ.e) : (∀α:κ.τ) � (Λα:κ.q)

Γ ⊢ e : (∀α:κ.τ1) � q Γ ⊢ τ2 : κ

Γ ⊢ e τ2 : (τ1[α := τ2]) � id (∀α:κ.τ1) q τ2

Γ ⊢ e : τ � q τ ≡ σ Γ ⊢ σ : ∗
Γ ⊢ e : σ � q

⟨⟩ ⊢ e : τ � q
e = λid:(∀α:∗. α → α). q

Our representation is defined in two steps. First, the rules
of the form Γ ⊢ e : τ � q build a pre-representation q from
the typing judgment of a term e. The types are needed
to instantiate each occurrence of the designated variable
id. The representation e is defined by abstracting over
id in the pre-representation. Our self-interpreter takes a
representation as input and applies it to the polymorphic
identity function:

unquote : ∀α:∗. ((∀β:∗.β → β) → α) → α
= Λα:∗. λq:(∀β:∗.β → β) → α.
q (Λβ:∗. λx:β. x)

Theorem 3.4.
If ⟨⟩ ⊢ e : τ , then ⟨⟩ ⊢ e : (∀α:∗. α → α) → τ and e is
in β-normal form.

Theorem 3.5.
If ⟨⟩ ⊢ e : τ , then unquote τ e −→∗e.

This self-interpreter demonstrates that it is possible to
break through the normalization barrier. In fact, we can
define a similar self-representation and self-interpreter for
System F and for System F+

ω . However, the representation
supports no other operations than unquote: parametricity
implies that the polymorphic identity function is the only
possible argument to a representation e [38]. The situation
is similar to the one faced by Pfenning and Lee who ob-
served that “evaluation is just about the only useful func-
tion definable” for their representation of Fω in F+

ω . We call
a representation shallow if it supports only one operation,
and we call representation deep if it supports a variety of
operations. While the representation above is shallow, we

have found it to be a good starting point for designing deep
representations.

In Figure 3 we define a deep self-representation of Fω that
supports multiple operations, including a self-interpreter, a
CPS-transformation, and a normal-form checker. The keys
to why this works are two novel techniques along with typed
Higher-Order Abstract Syntax (HOAS), all of which we
will explain in the following sections. First, in Section 4
we present an extensional approach to representing poly-
morphism in Fω. Second, in Section 5 we present a sim-
ple representation of types that is sufficient to support our
CPS transformation. Third, in Section 6 we present a typed
HOAS representation based on Church encoding, which sup-
ports operations that fold over the term. Finally, in Section
7 we define five operations for our representation.

4. Representing Polymorphism
In this section, we discuss our extensional approach to rep-
resenting polymorphic terms in our type Higher-Order Ab-
stract Syntax representation. Our approach allows us to de-
fine our HOAS representation of Fω in Fω itself. Before pre-
senting our extensional approach, we will review the inten-
sional approach used by previous work. As a running exam-
ple, we consider how to program an important piece of a
self-interpreter for a HOAS representation.

Our HOAS representation, like those of Pfenning and Lee
[26], Rendel et al. [29], and our own previous work [8], is
based on a typed Church encoding. Operations are defined
by cases functions, one for each of λ-abstraction, application,
type abstraction, and type application. Our representation
differs from the previous work in how we type check the
case functions for type abstraction and type applications.
Our running example will focus just on the case function for
type applications. To simplify further, we consider only the
case function for type applications in a self-interpreter.

4.1 The Intensional Approach
The approach of previous work [8, 26, 29] can be demon-
strated by a polymorphic type-application function, which
can apply any polymorphic term to any type in its domain.
The function tapp+ defined below is a polymorphic type
application function for System F+

ω . System F+
ω extends Fω

with kind abstractions and applications in terms (written
Λκ.e and e κ respectively), and kind-polymorphic types
(written ∀+κ.τ):

tapp+ : (∀+κ.∀β:κ→∗.(∀α:κ. β α) → ∀γ:κ.β γ)
tapp+ = Λ+κ.Λβ:κ→∗.λe:(∀α:κ.β α). Λγ:κ.e γ

The variables κ and β respectively range over the do-
main and codomain of an arbitrary quantified type. The
domain of (∀α1:κ1.τ1) is the kind κ1, and the codomain is
the type function (λα1:κ1.τ1) since τ1 depends on a type
parameter α1 of kind κ1. Since the body of a quantified
type must have kind ∗, the codomain function (λα1:κ1.τ1)
must have kind (κ1 → ∗). A quantified type can be ex-
pressed in terms of its domain and codomain: (∀α1:κ1.τ1)
≡ (∀α:κ1. (λα1:κ1.τ1) α). Similarly, any instance of the
quantified type can be expressed as an application of the
codomain to a parameter: (τ1[α1:=τ2]) ≡ (λα1:κ1.τ1)
τ2. We use these equivalences in the type of tapp+: the
quantified type (∀α:κ. β α) is expressed in terms of an ar-
bitrary domain κ and codomain β, and the instantiation β
γ is expressed as an application of the codomain β to an
arbitrary parameter γ.

We call this encoding intensional because it encodes the
structure of a quantified type by abstracting over its parts
(its domain κ and codomain β). This ensures that e can only
have a quantified type, and that γ ranges over exactly the
types to which e can be applied. In other words, γ can be
instantiated with τ2 if and only if e τ2 is well-typed.

Consider a type application e τ2 with the derivation:

Γ ⊢ e : (∀α1:κ1.τ1) Γ ⊢ τ2 : κ1

Γ ⊢ e τ2 : τ1[α1:=τ2]

We can encode e τ2 in F+
ω as tapp+κ1 (λα1:κ1.τ1) e τ2.

However, Fω does not support kind polymorphism, so tapp+
is not definable in Fω. To represent Fω in itself, we need a
new approach.

4.2 An Extensional Approach
The approach we use in this paper is extensional: rather
than encoding the structure of a quantified type, we en-
code the relationship between a quantified type and its in-
stances. We encode the relationship “(τ1[α:=τ2]) is an in-
stance of (∀α1:κ1.τ1)” with an instantiation function of
type (∀α1:κ1.τ1) → (τ1[α1:=τ2]). An example of such
an instantiation function is λx:(∀α1:κ1.τ1). x τ2 that in-
stantiates an input term of type (∀α1:κ1.τ1) with the type
τ2. For convenience, we define an abbreviation inst(τ,σ) =
λx:τ. x σ, which is well-typed only when τ is a quantified
type and σ is in the domain of τ .

The advantage of using instantiation functions is that all
quantified types and all instantiations of quantified types
are types of kind ∗. Thus, we can encode the rule for type
applications in Fω by abstracting over the quantified type,
the instance type, and the instantiation function for them:

tapp : (∀α:∗. α → ∀β:∗. (α → β) → β)
tapp = Λα:∗. λe:α. Λβ:∗. λinst:α → β. inst e

Using tapp we can encode the type application e τ2

above as
tapp (∀α1:κ1.τ1) e (τ1[α1:=τ2]) inst((∀α1:κ1.τ1),τ2)

Unlike the intensional approach, the extensional ap-
proach provides no guarantee that e will always have a
quantified type. Furthermore, even if e does have a quanti-
fied type, inst is not guaranteed to actually be an instanti-
ation function. In short, the intensional approach provides
two Free Theorems [38] that we don’t get with our exten-
sional approach. However, the extensional approach has the
key advantage of enabling a representation of Fω in itself.

5. Representing Types
We use type representations to type check term represen-
tations and operations on term representations. Our type
representation is shown as part of the representation of Fω

in Figure 3. The JτK syntax denotes the pre-representation
of the type τ , and τ denotes the representation. A pre-
representation is defined using a designated variable F, and
a representation abstracts over F.

Our type representation is novel and designed to support
three important properties: first, it can represent all types
(not just types of kind ∗); second, representation preserves
equivalence between types; third, it is expressive enough to
typecheck all our benchmark operations. The first and sec-
ond properties and play an important part in our represen-
tation of polymorphic terms.

JαK = αJτ1 → τ2K = F Jτ1K → F Jτ2KJ∀α:κ.τK = ∀α:κ. F JτKJλα:κ.τK = λα:κ. JτKJτ1 τ2K = Jτ1K Jτ2K
Pre-Representation of Types

τ = λF:∗ → ∗. JτK
Representation of Types

U = (∗ → ∗) → ∗
Op = λF:∗ → ∗. λα:U. F (α F)

Strip = λF:∗ → ∗. λα:∗.
∀β:*.(∀γ:*. F γ → β) → α → β

Abs = λF:∗→∗.
∀α:∗.∀β:∗.(F α → F β) → F (F α → F β)

App = λF:∗→∗.
∀α:∗.∀β:∗.F (F α → F β) → F α → F β

TAbs = λF:∗→∗.
∀α:∗. Strip F α → α → F α

TApp = λF:∗→∗.
∀α:∗.F α → ∀β:∗.(α → F β) → F β

Exp = λα:U. ∀F:∗ → ∗.
Abs F → App F → TAbs F → TApp F →
Op F α

Kind and Type Definitions

inst(τ,σ) = λx:τ. x σ

Instantiation Functions

∗ � (∀α:∗.α)
κ � σ

κ1 → κ � λα:κ1.σ
Kind Inhabitants

κ � σ

strip(F,κ,τ) = Λα:∗. λf:(∀β:∗. F β → α).
λx:(∀γ:κ.F (τ γ)). f (τ σ) (x σ)

Strip Functions

(x:τ) ∈ Γ

Γ ⊢ x : τ � x

Γ ⊢ τ1 : ∗ Γ,(x:τ1) ⊢ e : τ2 � q
Γ ⊢ (λx:τ1.e) : τ1 → τ2 � abs Jτ1K Jτ2K (λx:F Jτ1K.q)

Γ ⊢ e1 : τ2 → τ � q1 Γ ⊢ e2 : τ2 � q2
Γ ⊢ e1 e2 : τ � app Jτ2K JτK q1 q2

Γ, α : κ ⊢ e : τ � q
Γ ⊢ (Λα:κ.e) : (∀α:κ.τ) � tabs J∀α:κ.τK

strip(F,κ,Jλα:κ.τK)
(Λα:κ.q)

Γ ⊢ e : (∀α:κ.τ) � q Γ ⊢ σ : κ
Γ ⊢ e σ : τ [α:=σ] � tapp J∀α:κ.τK q Jτ[α:=σ]K

inst(J∀α:κ.τK,JσK)
Γ ⊢ e : τ � q τ ≡ σ Γ ⊢ σ : ∗

Γ ⊢ e : σ � q
Pre-Representation of Terms

⟨⟩ ⊢ e : τ � q
e = ΛF:∗ → ∗.

λabs :Abs F. λapp :App F.
λtabs:TAbs F. λtapp:TApp F.
q

Representation of Terms

Figure 3: Representation of Fω

Type representations support operations that iterate a
type function R over the first-order types – arrows and uni-
versal quantifiers. Each operation on representations pro-
duces results of the form R (JτK[F := R]), which we call
the “interpretation of τ under R”. For example, the interpre-
tation of (∀α:∗. α → α) under R is R (J∀α:∗. α → αK[F :=
R]) = R (∀α:∗. R (R α → R α)).

As stated previously, type representations are used to
typecheck representations of terms and their operations. In
particular, a term of type τ is represented by a term of type
Exp τ , and each operation on term representation produces
results with types that are interpretations under some R.

Let’s consider the outputs produced by unquote, size,
and cps, when applied to a representation of the polymor-
phic identity function, which has the type (∀α:∗. α → α).
For unquote, the type function R is the identity function
Id = (λα:∗.α). Therefore, unquote applied to the repre-
sentation of the polymorphic identity function will produce
an output with the type Id (∀α:∗. Id (Id α → Id α)) ≡
(∀α:∗.α → α). For size, R is the constant function KNat =
(λα:*.Nat). Therefore, size applied to the representation
of the polymorphic identity function will produce an output
with the type KNat (∀α:∗. KNat (KNat α → KNat α)) ≡

Nat. For cps, R is the function Ct = (λα:∗. ∀β:∗. (α →
β) → β), such that Ct α is the type of a continuation for
values of type α. Therefore, cps applied to the representa-
tion of the polymorphic identity function will produce an
output with the type Ct (∀α:∗. Ct (Ct α → Ct α)). This
type suggests that every sub-term has been transformed into
continuation-passing style.

We also represent higher-order types, since arrows and
quantifiers can occur within them. Type variables, abstrac-
tions, and applications are represented meta-circularly. In-
tuitively, the pre-representation of an abstraction is an ab-
straction over pre-representations. Since pre-representations
of κ-types (i.e. types of kind κ) are themselves κ-types,
an abstraction over κ-types can also abstract over pre-
representations of κ-types. In other words, abstractions are
represented as themselves. The story is the same for type
variables and applications.

Examples. The representation of (∀α:∗. α → α) is:
∀α:∗. α → α

= λF:∗→∗. J∀α:∗. α → αK
= λF:∗→∗. ∀α:∗. F (F α → F α)
Our representation is defined so that the representations

of two β-equivalent types are also β-equivalent. In other

words, representation of types preserves β-equivalence. In
particular, we can normalize a type before or after represen-
tation, with the same result. For example,

∀α:∗.(λγ:∗.γ → γ) α
= λF:∗→∗. J∀α:∗.(λγ:∗.γ → γ) αK
= λF:∗→∗. ∀α:∗. F ((λγ:∗.F γ → F γ) α)
≡β λF:∗→∗. ∀α:∗. F (F α → F α)
= ∀α:∗. α → α

Properties. We now discuss some properties of our type
representation that are important for representing terms.
First, we can pre-represent legal types of any kind and
in any environment. Since a representation abstracts over
the designated type variable F in a pre-representation, the
representation of a κ-type is a type of kind (∗ → ∗) → κ. In
particular, base types (i.e. types of kind ∗) are represented
by a type of kind (∗ → ∗) → ∗. This kind will be important
for representing terms, so in Figure 3 we define U = (∗ →
∗) → ∗.
Theorem 5.1. If Γ ⊢ τ : κ, then Γ ⊢ τ : (∗ → ∗) → κ.

Equivalence preservation relies on the following substitu-
tion theorem, which will also be important for our represen-
tation of terms.
Theorem 5.2. For any types τ and σ, and any type variable
α, we have JτK[α := JσK] = Jτ[α := σ]K.

We now formally state the equivalence preservation prop-
erty of type pre-representation and representation.
Theorem 5.3. τ ≡ σ if and only if τ ≡ σ.

6. Representing Terms
In this section we describe our representation of Fω terms.
Our representations are typed to ensure that only well-typed
terms can be represented. We typecheck representations of
terms using type representations. In particular, a term of
type τ is represented by a term of type Exp τ .

We use a typed Higher-Order Abstract Syntax (HOAS)
representation based on Church encodings, similar to those
used in previous work [8, 26, 29]. As usual in Higher-Order
Abstract Syntax (HOAS), we represent variables and ab-
stractions meta-circularly, that is, using variables and ab-
stractions. This avoids the need to implement capture-
avoiding substitution on our operations – we inherit it
from the host language implementation. As in our previous
work [8], our representation is also parametric (PHOAS) [14,
39]. In PHOAS representations, the types of variables are
parametric. In our case, they are parametric in the type
function F that defines an interpretation of types.

Our representation of Fω terms is shown in Figure 3.
We define our representation in two steps, as we did for
types. The pre-representation of a term is defined using
the designated variables F, abs, app, tabs, and tapp. The
representation abstracts over these variables in the pre-
representation.

While the pre-representation of types can be defined by
the type alone, the pre-representation of a term depends on
its typing judgment. We call the function that maps typing
judgments to pre-representations the pre-quoter. We write
Γ ⊢ e : τ � q to denote “given an input judgment Γ ⊢ e :
τ the pre-quoter outputs a pre-representation q”. The pre-
representation of a term is defined by a type function F
that defines pre-representations of types, and by four case
functions that together define a fold over the structure of a

term. The types of each case function depends on the type
function F. The case functions are named abs, app, tabs,
and tapp, and respectively represent λ-abstraction, function
application, type-abstraction, and type application.

The representation e of a closed term e is obtained by
abstracting over the variables F, abs, app, tabs, and tapp
in the pre-representation of e. If e has type τ , its pre-
representation has type F JτK, and its representation has
type Exp τ . The choice of τ can be arbitrary because typings
are unique up to β-equivalence and type representation
preserves β-equivalence.

Stripping redundant quantifiers. In addition to the
inst functions discussed in Section 4, our quoter embeds a
specialized variant of instantiation functions into representa-
tions. These functions can strip redundant quantifiers, which
would otherwise limit the expressiveness of our HOAS rep-
resentation. For example, our size operation will use them
to remove the redundant quantifier from intermediate values
with types of the form (∀α:κ.Nat). The type Nat is closed,
so α does not occur free in Nat. This is why the quantifier is
said to be redundant. This problem of redundant quantifiers
is well known, and applies to other HOAS representations
as well [29].

We can strip a redundant quantifier with a type applica-
tion: if e has type (∀α:κ.Nat) and σ is a type of kind κ,
then e σ has the type Nat. We can also use the instantia-
tion function inst(∀α:κ.Nat),σ, which has type (∀α:κ.Nat)
→ Nat. The choice of σ is arbitrary – it can be any type
of kind κ. It happens that in Fω all kinds are inhabited, so
we can always find an appropriate σ to strip a redundant
quantifier.

Our quoter generates a single strip function for each type
abstraction in a term and embeds it into the representation.
At the time of quotation most quantifiers are not redundant
– redundant quantifiers are introduced by certain operations
like size. Whether a quantifier will become redundant de-
pends on the result type function F for an operation. In our
operations, redundant quantifiers are introduced when F is
a constant function. The operation size has results typed
using the constant Nat function KNat = (λα:∗.Nat). Each
strip function is general enough to work for multiple opera-
tions that introduce redundant quantifiers, and to still allow
operations like unquote that need the quantifier.

To provide this generality, the strip functions take some
additional inputs that help establish that a quantifier is
redundant before stripping it. Each strip function will have a
type of the form Strip F J∀α:κ.τK ≡ (∀β:∗. (∀γ:∗. F γ
→ β) → J∀α:κ.τK → β). The type F is the type function
defines an interpretation of types. The type J∀α:κ.τK is
the quantified type with the redundant quantifier to be
stripped. Recall that J∀α:κ.τK = (∀α:κ.F JτK). The type
term of type (∀γ:∗. F γ → β) shows that F is a constant
function that always returns β. The strip function uses it
to turn the type (∀α:κ.F JτK) into the type (∀α:κ.β)
where α has become redundant. For size, we will have F
= KNat = (λα:∗.Nat). We show that KNat is the constant
Nat function with an identity function (Λγ:∗.λx:KNat γ.
x). The type of this function is (∀γ:∗.KNat γ → KNat γ),
which is equivalent to (∀γ:∗.KNat γ → Nat).

Types of case functions. The types of the four case
functions abs, app, tabs, and tapp that define an interpre-
tation, respectively Abs, App, TAbs, and TApp, are shown
in Figure 3. The types of each function rely on invariants
about pre-representations of types. For example, the type
App F uses the fact that the pre-representation of an ar-

row type Jτ1 → τ2K is equal to F Jτ1K → F Jτ2K. In other
words, App F abstracts over the types Jτ1K and Jτ2K that can
change, and makes explicit the structure F α → F β that is
invariant. These types allow the implementation of each case
function to use this structure – it is part of the “interface”
of representations, and plays an important role in the im-
plementation of each operation.

Building representations. The first rule of pre-re-
presentation handles variables. As in our type represen-
tation, variables are represented meta-circularly, that is,
by other variables. We will re-use the variable name, but
change its type: a variable of type τ is represented by a
variable of type F JτK. This type is the same as the type
of a pre-representation. In other words, variables in a pre-
representation range over pre-representations.

The second rule of pre-representation handles λ-abstract-
ions. We recursively pre-quote the body, in which a variable
x can occur free. Since variables are represented meta-
circularly, x can occur free in the pre-representation q of the
body. Therefore, we bind x in the pre-representation. This is
standard for Higher-Order Abstract Syntax representations.
Again, we change of the type of x from τ1 to F Jτ1K. It may
be helpful to think of q as the “open pre-representation of
e”, in the sense that x can occur free, and to think of (λx:FJτ1K. q) as the “closed pre-representation of e”. The open
pre-representation of e has type F Jτ2K in an environment
that assigns x the type F Jτ1K. The closed pre-representation
of e has type F Jτ1K → F Jτ2K. The pre-representation of
(λx:τ1. e) is built by applying the case function abs to
the types Jτ1K and Jτ2K and the closed pre-representation of
e.

The third rule of pre-representation handles applications.
We build the pre-representation of an application e1 e2 by
applying the case function app to the types Jτ2K and JτK and
the pre-representations of e1 and e2.

The fourth rule of pre-representation handles type ab-
stractions. As for λ-abstractions, we call q the open pre-
representation of e, and abstract over α to get the closed
pre-representation of e. Unlike for λ-abstractions, we do not
pass the domain and codomain of the type to the case func-
tion tabs, since that would require kind-polymorphism as
discussed in Section 4. Instead, we pass to tabs the pre-
representation of the quantified type directly. We also pass
to tabs a quantifier stripping function that enables tabs to
remove the quantifier from J∀α:κ. F τK in case F is a con-
stant function. Note that the strip function is always defined,
since J∀α:κ. F τK = ∀α:κ.F JτK.

The fifth rule of pre-quotation handles type applications.
We build the pre-representation of a type application e σ
by applying the case function tapp to the pre-representation
of the quantified type J∀α:κ.τK, the pre-representation of
the term e, the pre-representation of the instantiation typeJτ[α:=σ]K, and the instantiation function inst(J∀α:κ.τK,JσK),
which can apply any term of type J∀α:κ.τK to the type JσK.
Since J∀α:κ.τK = (∀α:κ.F JτK), the instantiation function
has type J∀α:κ.τK → F Jτ[α:=σ]K.

The last rule of pre-quotation handles the type-conversion
rule. Unsurprisingly, the pre-representation of e is the same
when e has type σ as when it has type τ . When e has type τ ,
its pre-representation will have type F JτK. When e has type
σ, its pre-representation will have type F JσK. By Theorem
5.3, these two types are equivalent, so q can be given either
type.

Examples. We now give two example representations.
Our first example is the representation of the polymorphic
identity function Λα:∗.λx:α.x:

ΛF:∗ → ∗.
λabs:Abs F. λapp:App F.
λtabs:TAbs F. λtapp:TApp F.
tabs J∀α:∗. α → αK strip(F,∗,Jλα:∗.α→αK)
(Λα:∗. abs α α (λx:F α. x))

We begin by abstracting over the type function F that de-
fines an interpretation of types, and the four case functions
that define an interpretation of terms. Then we build the
pre-representation of Λα:∗.λx:α.x. We represent the type
abstraction using tabs, the term abstraction using abs, and
the variable x as another variable also named x.

Our second example is representation of (λx:(∀α:∗. α
→ α). x (∀α:∗. α → α) x), which applies an input term
to itself.

ΛF:∗ → ∗.
λabs:Abs F. λapp:App F.
λtabs:TAbs F. λtapp:TApp F.
abs J∀α:∗. α → αK J∀α:∗. α → αK
(λx: F J∀α:∗. α → αK.
app J∀α:∗. α → αK J∀α:∗. α → αK
(tapp J∀α:∗. α → αK xJ(∀α:∗. α → α) → (∀α:∗. α → α)K

inst(J∀α:∗.α→αK,J∀α:∗.α→αK))
x)

The overall structure is similar to above: we begin with
the five abstractions that define interpretations of types
and terms. We then use the case functions to build the
pre-representation of the term. The instantiation function
inst(J∀α:∗.α→αK,J∀α:∗.α→αK) has the type J∀α:∗. α → αK →
F J(∀α:∗. α → α) → (∀α:∗. α → α)K. Here, the quanti-
fied type being instantiated is J∀α:∗. α → αK = ∀α:∗.
F Jα → αK, the instantiation parameter is also J∀α:∗. α
→ αK, and the instantiation type is F J(∀α:∗. α → α) →
(∀α:∗. α → α)K. By lemma 5.2, we have:

(F Jα → αK)[α := J∀α:∗. α → αK]
= F (Jα → αK[α := J∀α:∗. α → αK])
= F J(α → α)[α := ∀α:∗. α → α]K
= F J(∀α:∗. α → α) → (∀α:∗. α → α)K

Properties. We typecheck pre-quotations under a mod-
ified environment that changes the types of term variables
and binds the variables F, abs, app, tabs, and tapp. The
bindings of type variables are unchanged.

The environment for pre-quotations of closed terms only
contains bindings for F, abs, app, tabs, and tapp. The rep-
resentation of a closed term abstracts over these variables,
and so can be typed under an empty environment.
Theorem 6.1. If ⟨⟩ ⊢ e : τ , then ⟨⟩ ⊢ e : Exp τ .

Our representations are data, which for Fω means a β-
normal form.
Theorem 6.2. If ⟨⟩ ⊢ e : τ , then e is β-normal.

Our quoter preserves equality of terms up to equivalence
of types. That is, if two terms are equal up to equivalence of
types, then their representations are equal up to equivalence
of types as well. Our quoter is also injective up to equivalence
of types, so the converse is also true: if the representations

of two terms are equal up to equivalence of types, then the
terms are themselves equal up to equivalence of types.
Definition 6.1 (Equality up to equivalence of types). We
write e1 ∼ e2 to denote that terms e1 and e2 are equal up
to equivalence of types.

x ∼ x

τ ≡β τ ′ e ∼ e′

(λx:τ.e) ∼ (λx:τ ′.e′)
e1 ∼ e′1 e2 ∼ e′2
(e1 e2) ∼ (e′2 e′2)

e ∼ e′

(Λα:κ.e) ∼ (Λα:κ.e′)
e ∼ e′ τ ≡β τ ′

(e τ) ∼ (e′ τ ′)
Now we can formally state that our quoter is injective up

to equivalence of types.
Theorem 6.3. If ⟨⟩ ⊢ e1 : τ , and ⟨⟩ ⊢ e2 : τ , then
e1 ∼ e2 if and only if e1 ∼ e2.

7. Operations
Our suite of operations is given in Figure 4. It consists of
a self-interpreter unquote, a simple intensional predicate
isAbs, a size measure size, a normal-form checker nf,
and a continuation-passing-style transformation cps. Our
suite extends those of each previous work on typed self-
representation[8, 29]. Rendel et al. define a self-interpreter
and a size measure, while in previous work we defined a
self-interpreter, the intensional predicate isAbs, and a CPS
transformation. Our normal-form checker is the first for a
typed self-representation.

Each operation is defined using a function foldExp for
programming folds. We also define encodings of booleans,
pairs of booleans, and natural numbers that we use in our
operations. We use a declaration syntax for types and terms.
For example, the term declaration x : τ = e asserts that e
has the type τ (i.e. ⟨⟩ ⊢ e : τ is derivable), and substitutes
e for x (essentially inlining x) in the subsequent declarations.
We have machine checked the type of each declaration.

We give formal semantic correctness proofs for four of
our operations: unquote, isAbs, size, and nf. The proofs
demonstrate qualitatively that our representation is not only
expressive but also easy to reason with. In the remainder of
this section we briefly discuss the correctness theorems.

Each operation has a type of the form ∀α:U. Exp α →
Op R α for some type function R. When α is instantiated
with a type representation τ , the result type Op R τ is an
interpretation under R:
Theorem 7.1. Op R τ ≡ R (JτK[F := R]).

Each operation is defined using the function foldExp that
constructs a fold over term representations. An interpreta-
tion of a term is obtained by substituting the designated
variables F, abs, app, tabs, and tapp with the case func-
tions that define an operation. The following theorem states
that a fold constructed by foldExp maps representations to
interpretations:
Theorem 7.2. If f = foldExp R abs′ app′ tabs′ tapp′,
and ⟨⟩ ⊢ e : τ � q, then f τ e. −→∗ (q[F:=R, abs:=abs′,
app:=app′, tabs:=tabs′, tapp:=tapp′]).

unquote. Our first operation on term representations
is our self-interpreter unquote, which recovers a term from
its representation. Its results have types of the form Op Id

τ . The type function Id is the identity function, and the
operation Op Id recovers a type from its representation.

Theorem 7.3. If Γ ⊢ τ : ∗, then Op Id τ ≡ τ .

Notice that unquote has the polymorphic type (∀α:U.
Exp α → Op Id α). The type variable α ranges over repre-
sentations of types, and the result type Op Id α recovers
the type α represents. Thus, when α is instantiated with a
concrete type representation τ , we get the type Exp τ → τ .

Theorem 7.4. If ⟨⟩ ⊢ e : τ , then unquote τ e −→∗ e.

isAbs. Our second operation isAbs is a simple inten-
sional predicate that checks whether its input represents an
abstraction or an application. It returns a boolean on all
inputs. Its result types are interpretations under KBool, the
constant Bool function. The interpretation of any type un-
der KBool is equivalent to Bool:

Theorem 7.5. If Γ ⊢ τ : ∗, then Op KBool τ ≡ Bool.

Theorem 7.6. Suppose ⟨⟩ ⊢ e : τ . If e is an abstraction
then isAbs τ e −→∗true. Otherwise e is an application and
isAbs τ e −→∗false.

size. Our third operation size measures the size of its
input representation. Its result types are interpretations
under KNat, the constant Nat function. The interpretation
of any type under KNat is equivalent to Nat:

Theorem 7.7. If Γ ⊢ τ : ∗, then Op KNat τ ≡ Nat.

The size of a term excludes the types. We formally define
the size of a term in order to state the correctness of size.

Definition 7.1. The size of a term e, denoted |e|, is de-
fined as:

|x| = 1
λx:τ.e	= 1 +	e		
e1 e2	= 1 +	e1	+	e2
Λα:κ.e	= 1 +	e		
e τ	= 1 +	e		

The results of size are Church encodings of natural
numbers. We define a type Nat and a zero element and
a successor function succ. We use the notation churchn to
denote the Church-encoding of the natural number n. For
example, church0 = zero, church1 = succ zero, church2
= succ (succ zero), and so on.

Theorem 7.8.
If ⟨⟩ ⊢ e : τ and |e|=n, then size τ e −→∗churchn

nf. Our fourth operation nf checks whether its input
term is in β-normal form. Its results have types that are
interpretations under KBools, the constant Bools function,
where Bools is the type of pairs of boolean values.

Theorem 7.9. If Γ ⊢ τ : ∗, then Op KBools τ ≡ Bools.

We program nf in two steps: first, we compute a pair of
booleans by folding over the input term. Then we return
the first component of the pair. The first boolean encodes
whether a term is β-normal. The second encodes whether
a term is normal and neutral. Intuitively, a neutral term is
one that can be used in function position of an application
without introducing a redex. We provide a formal definition
of normal and neutral in the Appendix.

Bool : * = ∀α:*. α → α → α
true : Bool = Λα:*. λt:α. λf:α. t
false : Bool = Λα:*. λt:α. λf:α. f
and : Bool → Bool → Bool =

λb1:Bool. λb2:Bool. Λα:*. λt:α. λf:α.
b1 α (b2 α t f) f

Bools : * = ∀α:*. (Bool → Bool → α) → α
bools : Bool → Bool → Bools =

λb1:Bool. λb2:Bool.
Λα:*. λf:Bool → Bool → α. f b1 b2

fst : Bools → Bool =
λbs:Bools. bs Bool (λb1:Bool. λb2:Bool. b1)

snd : Bools → Bool =
λbs:Bools. bs Bool (λb1:Bool. λb2:Bool. b2)

Nat : * = ∀α:*. α → (α → α) → α
zero : Nat = Λα:*. λz:α. λs:α → α. z
succ : Nat → Nat =

λn:Nat. Λα:*. λz:α. λs:α → α. s (n α z s)
plus : Nat → Nat → Nat =

λm:Nat. λn:Nat. m Nat n succ
Definitions and operations of Bool, Bools, and Nat.

foldExp : (∀F:∗ → ∗.
Abs F → App F → TAbs F → TApp F →
∀α:U. Exp α → Op F α) =

ΛF:∗ → ∗.
λabs : Abs F. λapp : App F.
λtabs : TAbs F. λtapp : TApp F.
Λα:U. λe:Exp α. e F abs app tabs tapp

Implementation of foldExp

Id : ∗ → ∗ = λα:∗.α

unAbs : Abs Id = Λα:∗.Λβ:∗.λf:α→β.f
unApp : App Id = Λα:∗.Λβ:∗.λf:α→β.λx:α.f x
unTAbs : TAbs Id = Λα:∗.λs:Strip Id α.λf:α.f
unTApp : TApp Id = Λα:∗.λf:α.Λβ:∗.λg:α→β.g f

unquote : (∀α:U. Exp α → Op Id α) =
foldExp Id unAbs unApp unTAbs unTApp

Implementation of unquote

KBool : ∗ → ∗ = λα:∗. Bool

isAbsAbs : Abs KBool =
Λα:∗. Λβ:∗. λf:Bool → Bool. true

isAbsApp : App KBool =
Λα:∗. Λβ:∗. λf:Bool. λx:Bool. false

isAbsTAbs : TAbs KBool =
Λα:∗. λstrip:Strip KBool α. λf:α. true

isAbsTApp : TApp KBool =
Λα:∗. λf:Bool. Λβ:∗. λinst:α → Bool. false

isAbs : (∀α:U. Exp α → Bool) =
foldExp KBool isAbsAbs isAbsApp

isAbsTAbs isAbsTApp
Implementation of isAbs.

KNat : ∗ → ∗ = λα:∗. Nat

sizeAbs : Abs KNat =
Λα:∗. Λβ:∗. λf:Nat → Nat. succ (f (succ zero))

sizeApp : App KNat =
Λα:∗. Λβ:∗. λf:Nat. λx:Nat. succ (plus f x)

sizeTAbs : TAbs KNat =
Λα:∗. λstrip:Strip KNat α. λf:α.
succ (strip Nat (Λα:∗. λx:Nat. x) f)

sizeTApp : TApp KNat =
Λα:∗. λf : Nat. Λβ:∗. λinst:α → Nat. succ f

size : (∀α:U. Exp α → Nat) =
foldExp KNat sizeAbs sizeApp sizeTAbs sizeTApp

Implementation of size.

KBools : ∗ → ∗ = λα:∗. Bools

nfAbs : Abs KBools =
Λα:∗. Λβ:∗. λf:Bools → Bools.
bools (fst (f (bools true true))) false

nfApp : App KBools =
Λα:∗. Λβ:∗. λf:Bools. λx:Bools.
bools (and (snd f) (fst x)) (and (snd f) (fst x))

nfTAbs : TAbs KBools =
Λα:∗. λstrip:Strip KBools α. λf:α.
bools (fst (strip Bools (Λα:∗.λx:Bools.x) f))

false
nfTApp : TApp KBools =

Λα:∗. λf:Bools. Λβ:∗. λinst:(α → Bools).
bools (snd f) (snd f)

nf : (∀α:U. Exp α → Bool) =
Λα:U. λe:Exp α.
fst (foldExp KBools nfAbs nfApp nfTAbs nfTApp e)

Implementation of nf.

Ct : ∗ → ∗ = λα:∗. ∀β:∗. (α → β) → β
CPS : U → ∗ = Op Ct

cpsAbs : Abs Ct =
Λα:∗. Λβ:∗. λf:(Ct α → Ct β).
ΛV:∗. λk : (Ct α → Ct β) → V.
k f

cpsApp : App Ct =
Λα:∗. Λβ:∗. λf:Ct (Ct α → Ct β). λx:Ct α.
ΛV:∗. λk:β → V.
f V (λg:Ct α → Ct β. g x V k)

cpsTAbs : TAbs Ct =
Λα:∗. λstrip:Strip Ct α. λf: α.
ΛV:∗. λk:α → V.
k f

cpsTApp : TApp Ct =
Λα:∗. λf: Ct α.
Λβ:∗. λinst:α → Ct β.
ΛV:∗. λk:β → V.
f V (λe:α. inst e V k)

cps : (∀α:U. Exp α → CPS α) =
foldExp Ct cpsAbs cpsApp cpsTAbs cpsTApp

Implementation of cps.

Figure 4: Five operations on representations of Fω terms.

Theorem 7.10. Suppose ⟨⟩ ⊢ e : τ .
1. If e is β-normal, then nf τ e −→∗true.
2. If e is not β-normal, then nf τ e −→∗false.

cps. Our fifth operation cps is a call-by-name continuat-
ion-passing-style transformation. Its result types are inter-
pretations under Ct. We have also implemented a call-by-
value CPS transformation, though we omit the details be-
cause it is rather similar to our call-by-name CPS. We do not
formally prove the correctness of our CPS transformation.
However, being defined in Fω it is guaranteed to terminate
for all inputs, and the types of the case functions provide
some confidence in its correctness. Below, we show the result
of applying cps to each of the example representations from
Section 6. To aid readability, we use JτKCt to denote JτK[F
:= Ct].

The first example is the polymorphic identity function
Λα:∗.λx:α.x:

cps ∀α:∗. α → α Λα:∗.λx:α.x
≡β cpsTAbs J∀α:∗. α → αKCt stripCt,J∀α:∗.α→αK

(Λα:∗. cpsAbs α α (λx:Ct α. x))
≡β Λβ₁ : ∗.

λk₁ : Ct (∀α:∗. Ct (Ct α → Ct α))→ β₁.
k₁ (Λα:∗. Λβ₂:∗.

λk₂ : (Ct α → Ct α) → β₂.
k₂ (λx : Ct α. x))

The second example applies a variable of type ∀α:∗.α
→ α to itself:

cps (∀α:∗. α → α) → (∀α:∗. α → α)
λx:(∀α:∗. α → α).x (∀α:∗. α → α) x

≡β cpsAbs J∀α:∗. α → αKCt J∀α:∗. α → αKCt
(λx: Ct J∀α:∗. α → αKCt.
cpsApp J∀α:∗. α → αKCt J∀α:∗. α → αKCt
(cpsTApp J∀α:∗. α → αKCt xJ(∀α:∗. α → α) → (∀α:∗. α → α)KCt

instJ∀α:∗.α→αK,J∀α:∗.α→αK)
x)

≡β Λβ₁ : *.
λk₁ : (Ct (∀a:*. Ct (Ct a → Ct a)) →

Ct (∀a:*. Ct (Ct a → Ct a))) → β₁.
k₁ (
λx : Ct (∀a:*. Ct (Ct a → Ct a)).
Λβ₂ : *.
λk₂ : (∀a:*. Ct (Ct a → Ct a)) → β₂.
(x β₂ (λe : ∀a:*. Ct (Ct a → Ct a).

e (∀a:*. Ct (Ct a → Ct a)) β₂
(λg : Ct (∀a:*. Ct (Ct a → Ct a)) →

Ct (∀a:*. Ct (Ct a → Ct a)).
g x β₂ k₂))))

8. Experiments
We have validated our techniques using an implementation
of Fω in Haskell, consisting of a parser, type checker, evalu-
ator, β-equivalence checker, and our quoter. Each operation
has been programmed, type checked, and tested. We have
also confirmed that the representation of each operation type
checks with the expected type.

Each of our operations are self-applicable, meaning it can
be applied to a representation of itself. We have checked
that the self-application of each operation type checks with
the expected type. Further, we have checked that the self-
application of unquote is β-equivalent to itself:

unquote (∀α:U. Exp α → Op Id α) unquote
≡β unquote

Our implementation is available from the web site accom-
panying the paper[1].

9. Discussion
Terminology. The question of whether any language
(strongly normalizing or not) supports self-interpretation
depends fundamentally on how one defines “representation
function” and “interpreter”. There are two commonly used
definitions of “interpreter”. The first is a function that maps
the representation of a term to the term’s value (i.e. the left-
inverse of a particular representation function), like eval in
JavaScript and Lisp [2, 4, 7, 9, 13, 21, 23, 26, 29]. For clar-
ity, we will sometimes refer to this as an unquoter, since the
representation function is often called a quoter. Our self-
interpreter in particular is an unquoter. The other possible
definition is a function that maps a representation of a term
to the representation of its value. This is sometimes called
an interpreter [25, 30] but also sometimes differentiated
from a self-interpreter: Mogensen calls this a self-reducer
[23], Berarducci and Böhm call it a reductor [7], Jay and
Palsberg call it a self-enactor [18].

Some qualitative distinctions between interpreters can
also be made, which might also affect the possibility of self-
interpretation. A notable example is whether an interpreter
is meta-circular. Unfortunately, the term “meta-circular”
also has multiple meanings. Reynolds defines a meta-circular
interpreter to be one which “defines each feature of the de-
fined language by using the corresponding feature of the
defining language” [30]. Abelson and Sussman state “an
evaluator that is written in the same language that it evalu-
ates is said to be metacircular” [2]. Here “evaluator” is used
to mean an unquoter. Reynolds’ definition allows for meta-
circular interpreters that are not self-interpreters, and self-
interpreters that are not meta-circular. According to Abel-
son and Sussman, all self-interpreters are meta-circular and
vice versa. Our self-interpreter is meta-circular according to
both definitions.

Many different representation schemes have been used
to define interpreters. Terms can be represented as num-
bers, S-expressions, Church-encodings, or some user-defined
data type. With respect to the treatment of variables, there
is first-order, higher-order, and parametric higher-order ab-
stract syntax. For representations of statically typed lan-
guages, use of typed representation ensures that only well-
typed terms can be represented. Typed representation uses
a family of types for representations, indexed by the type
of the represented term, while untyped representation uses
a single type for all representations. We use a typed para-
metric higher-order abstract syntax representation based on
Church encoding. As far as we know, all unquoters defined
in statically typed meta-languages are based on typed repre-
sentation. Indeed, typed representation seems to be required
to define an unquoter in a statically typed meta-language.

There are some properties common to all of these rep-
resentation schemes: the representation function must be
total (all legal terms can be represented) and injective (two
terms are identical if and only if their representations are),
and must produce data (e.g. normal forms). These are the
requirements we have used in this paper. It is possible to
strengthen the definition further. For example, we might
want to require that a representation be deep. In such a

case, only our deep representation would qualify as a repre-
sentation.

Deep and Shallow Representation. We use the terms
deep and shallow to differentiate representations supporting
multiple operations (interpretations) from those supporting
only one. This is analogous to deep versus shallow embed-
dings [16], but we emphasize a key difference between rep-
resentation and embedding: a representation is required to
be a normal form. This is generally not required of embed-
dings; indeed, shallow embeddings typically do not produce
normal forms. A shallow embedding translates a term in one
language into its interpretation defined in another language.
In summary, a shallow representation supports one interpre-
tation, while a shallow embedding is one interpretation.

Every language trivially supports shallow self-embedding,
but the same is not true for shallow self-representation.
For example, a shallow self-embedding for the simply-typed
lambda calculus can simply map each term to itself. This
is not a self-representation because the result may not be
a normal form. The shallow self-representation in Section
3.3 relies on polymorphism, so it would not would work for
simply typed lambda calculus.

Limitations. There are some limits to the operations we
can define on our representation. For example, we cannot
define our representation functions (Figure 3) in Fω itself.
This is necessarily so because the representation functions
are intensional and Fω is extensional. Stump [34] showed
that it is possible to define a self-representation function
within a λ-calculus extended with some intensional opera-
tions. There is a trade-off between extensional and inten-
sional calculi: intensionality can support more expressive
meta-programming, but extensionality is important for se-
mantic properties like parametricity.

Another limitation is that representations need to be
statically type checked, which limits dynamic generation of
representations. For example, it is unlikely we could im-
plement a ”dynamic type checker” that maps an untyped
representation to a typed representation. Something sim-
ilar may be possible using stages interleaved with type
checking, where an untyped representation in one stage be-
comes a typed representation in the next. Kiselyov calls this
“Metatypechecking” [19].

Universe Hierarchies. Our techniques can be used
for self-representation of other strongly-normalizing calculi
more powerful than Fω. For example, we conjecture that
using kind-instantiation functions could enable a deep self-
representation of F+

ω . We would only need to use the exten-
sional approach for representing kind polymorphism, since
the kind polymorphism of F+

ω would enable the intensional
approach to representing type polymorphism. More gener-
ally, our techniques could be used to represent a language
with a hierarchy of n universes of types, with lowest universe
being impredicative and the others predicative. We could use
the intensional approach for the lowest n− 1 universes, and
tie the knot of self-representation by using the extensional
approach for the nth universe.

Type Equivalence. Our formalization of Fω supports
type conversion based on β-equivalence. In other words, two
types are considered equivalent if they are beta-equivalent.
This is standard – Barendregt[5] and Pierce[28] each use β-
equivalence as well. Our representation would also work with
a type conversion rule based on β, η-equivalence. Our key
theorems 6.1 and 6.2 would be unaffected, and Theorem 6.3
would also hold assuming we update Definition 6.1 (equality
of terms up to equivalence of types) accordingly.

Injective Representation Function. Intuitively, our
result shows that our quoter is injective because it has
a left inverse unquote. In practice, we proved injectivity
in Theorem 6.3 before we went on to define unquote in
Section 7. The reason is that we used injectivity to prove
the correctness of unquote. We leave to future work to first
define and prove correctness of unquote and then use that
to prove that our quoter is injective.

10. Related Work
Typed Self-Interpretation. Pfenning and Lee [26] stud-
ied self-interpretation of Systems F and Fω. They concluded
that it seemed to be impossible for each language, and de-
fined representations and unquoters of System F in Fω and
of Fω in F+

ω . They used the intensional approach to repre-
senting polymorphism that discussed in Section 4.

Rendel, et al. [29] presented the first typed self-represent-
ation and self-interpreter. Their language System F∗

ω ex-
tends Fω with a Type:Type rule that unifies the levels of
types and kinds. As a result, F∗

ω is not strongly-normalizing,
and type checking is undecidable. Their representation also
used the intensional approach to representing polymor-
phism. They presented two operations, an unquoter and
a size measure. Their implementation of size relied on a
special ⊥ type to strip redundant quantifiers. The type ⊥
inhabits every kind, but is not used to type check terms.
We strip redundant quantifiers using special instantiation
functions that are generated by the quoter.

Jay and Palsberg [18] presented a typed self-representation
and self-interpreter for a combinator calculus, with a λ-
calculus surface syntax. Their calculus had undecidable type
checking and was not strongly normalizing.

In previous work [8] we presented a typed self-represent-
ation for System U, which is not strongly normalizing but
does have decidable type checking. This was the first self-
representation for a language with decidable type checking.
The representation was similar to those of Pfenning and Lee
[26] and Rendel, et al. [29] and also used the intensional ap-
proach to representing polymorphism. We presented three
operations on the representation of System U terms – un-
quote, isAbs, and cps. Not all System U kinds are inhab-
ited, so redundant quantifiers couldn’t be stripped. This
prevented operations like size or nf. We also represented
System U types of kind ∗, but did not have a substitution
theorem like Theorem 5.2. As a result, the representation
of a type application could have the wrong type, which we
corrected using a kind of coercion. Our representation of Fω

types is designed to avoid the need for such coercions, which
simplifies our representation and the proofs of our theorems.

Representation Technique. We mix standard repre-
sentation techniques with a minimal amount of novelty
needed to tie the knot of self-representation. At the core
is a typed Higher-order Abstract Syntax (HOAS) based on
Church encoding. Similar representations were used in pre-
vious work on typed representation [8, 9, 26, 29].

Our previous work [8] showed self-representation is pos-
sible using only the intensional approach to representing
polymorphism requires and two impredicative universes (the
types and kinds of System U). Our extensional approach
presented here allows us to use only a single impredicative
universe (the types of Fω).

The shallow representation of System F also requires
impredicativity to block type applications. We leave the
question whether self-representation is possible without any
impredicativity for future work.

Typed Meta-Programming. Typed self-interpretation
is a particular instance of typed meta-programming, which
involves a typed representation of one language in a possibly
different language, and operations on that representation.
Typed meta-programming has been studied extensively, and
continues to be an active research area. Chen and Xi [11, 12]
demonstrated that types can make meta-programming less
error-prone.

Carette et al. [9] introduced tagless representations,
which are more efficient than other techniques and use sim-
pler types. Our representation is also tagless, though we
use ordinary λ-abstractions to abstract over the case func-
tions of an operation, while they use Haskell type classes or
OCaml modules. The object languages they represented did
not include polymorphism. Our extensional technique could
be used to program tagless representations of polymorphic
languages in Haskell or OCaml.

MetaML [35] supports generative typed meta-programming
for multi-stage programming. It includes a built-in unquoter,
while we program unquote as a typed Fω term.

Trifonov et al. [36] define a language with fully reflex-
ive intensional type analysis, which supports type-safe run-
time type introspection. Instead of building representations
of types, their language includes special operators to sup-
port iterating over types. They programmed generic pro-
grams like marshalling values for transmission over a net-
work. Generic programming and meta-programming are dif-
ferent techniques: generic programs operate on programs or
program values, and meta-programs operate on representa-
tions of programs. These differences mean that each tech-
nique is suited to some problems better than the other.

Dependently-Typed Representation. Some typed
representations use dependent types to ensure that only
well-typed terms can be represented. For example, Harper
and Licata [17] represented simply-typed λ-calculus in LF,
and Schürmann et al. [31] represented Fω in LF. Chapman
[10] presented a meta-circular representation of a dependent
type theory in Agda. These representations are quite useful
for mechanized meta-theory – machine-checked proofs of the
meta-theorems for the represented language. The demands
of mechanized metatheory appear to be rather different from
those of self-interpretation. It is an open question whether
a dependently-typed self-representation can support a self-
interpreter.

Dependent Types. Dependent type theory is of par-
ticular interest among strongly-normalizing languages, as
it forms the basis of proof assistants like Coq and Agda.
While dependent type theory generally includes dependent
sum and product types, modern variants also support in-
ductive definitions, an infinite hierarchy of universes, and
universe polymorphism. A self-representation of such a lan-
guage would need to represent all of these features, each of
which comes with its own set of challenges.

Altenkirch and Kaposi [3] formalize a simple depen-
dent type theory in another type theory (Agda extended
with some postulates). They focus on the key problem of
defining a typed representation of dependent type theory:
that the types, terms, type contexts, and type equality are
all mutually-dependent. Their solution relies on Quotient-
Inductive Types (QITs), a special case of Higher-Inductive
Types from Homotopy Type Theory. Their work is an im-
portant step towards a self-representation of dependently
type theory. To achieve full self-representation, one would
need to represent QITs themselves, which the authors cite
as an open challenge.

Untyped Representation. The literature contains
many examples of untyped representations for typed lan-
guages, including for Coq [6] and Haskell [25]. Untyped
representations generally use a single type like Exp to type
check all representations, and permit ill-typed terms to be
represented. Template Haskell [32] uses an untyped repre-
sentation and supports user-defined operations on repre-
sentations. Since representations are not guaranteed to be
well-typed by construction, generated code needs to be type
checked.

Coercions. Our instantiation functions are similar to
coercions or retyping functions: they change the type of a
term without affecting its behavior. Cretin and Rémy [15]
studied erasable coercions for System Fη [22], including co-
ercions that perform instantiations. We conjecture that our
self-representation technique would work for an extension
of Fω with erasable instantiation coercions, and that these
coercions could replace instantiation functions in our exten-
sional approach to representing polymorphism. This could
provide some advantages over the instantiation functions
used in this paper. In particular, a weakness of instantia-
tion functions is that their types overlap with those of other
terms. Therefore, it is possible to use something other than
instantiation function (e.g. a constant function) where one is
expected. As a result, we can write a closed term of type Exp
τ (for some τ) that is not the representation of any term.
The types of Cretin and Rémy’s coercions do not overlap
with the types of terms, so replacing instantiation functions
with instantiation coercions could eliminate this problem.

11. Conclusion
We have solved two open problems posed by Pfenning and
Lee. First, we have defined a shallow self-representation
technique that supports self-interpretation for each of Sys-
tem F and System Fω. Second, we have defined a deep self-
representation for System Fω that supports a variety of op-
erations including a self-interpreter.

Our result is consistent with the classical theorem that
the universal function for the total computable functions
cannot be total. The reason is that the theorem assumes that
terms are represented as numbers using Gödel numbering.
We show that a typed representation can ensure that the
diagonalization gadget central to the proof fails to type
check.

Our result opens the door to self-representations and
self-interpreters for other strongly normalizing languages.
Our techniques create new opportunities for type-checking
self-applicable meta-programs, with potential applications
in typed macro systems, partial evaluators, compilers, and
theorem provers.

Some open questions include:

• Is a self-reducer possible in a strongly normalizing lan-
guage?

• Is it possible to define a self-interpreter or self-reducer
using a first-order representation (for example, based on
SK combinators) in a strongly normalizing language?

Acknowledgments. We thank John Bender, Neal Glew,
Bob Harper, Todd Millstein, and the POPL reviewers for
helpful comments, discussions, and suggestions. This mate-
rial is based upon work supported by the National Science
Foundation under Grant Number 1219240.

References
[1] The webpage accompanying this paper is available at

http://compilers.cs.ucla.edu/popl16/. The full paper with
the appendix is available there, as is the source code for our
implementation of System Fω and our operations.

[2] H. Abelson and G.J. Sussman. Structure and Interpretation
of Computer Programs. MIT electrical engineering and
computer science series. MIT Press, 1987.

[3] Thorsten Altenkirch and Ambrus Kaposi. Type theory in
type theory using quotient inductive types. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’16. ACM,
2016.

[4] Henk Barendregt. Self-interpretations in lambda calculus. J.
Funct. Program, 1(2):229–233, 1991.

[5] HP Barendregt. Handbook of Logic in Computer Science
(vol. 2): Background: Computational Structures: Abramski,
S. (ed), chapter Lambda Calculi with Types. Oxford Univer-
sity Press, Inc., New York, NY, 1993.

[6] Bruno Barras and Benjamin Werner. Coq in coq. Technical
report, 1997.

[7] Alessandro Berarducci and Corrado Böhm. A self-interpreter
of lambda calculus having a normal form. In CSL, pages 85–
99, 1992.

[8] Matt Brown and Jens Palsberg. Self-Representation in Gi-
rard’s System U. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’15, pages 471–484, New York, NY,
USA, 2015. ACM.

[9] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Fi-
nally tagless, partially evaluated: Tagless staged interpreters
for simpler typed languages. Journal of Functional Program-
ming, 19(5):509–543, 2009.

[10] James Chapman. Type theory should eat itself. Electronic
Notes in Theoretical Computer Science, 228:21–36, 2009.

[11] Chiyan Chen and Hongwei Xi. Meta-Programming through
Typeful Code Representation. In Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional
Programming, pages 275–286, Uppsala, Sweden, August
2003.

[12] Chiyan Chen and Hongwei Xi. Meta-Programming through
Typeful Code Representation. Journal of Functional Pro-
gramming, 15(6):797–835, 2005.

[13] A. Chlipala. Certified Programming with Dependent Types:
A Pragmatic Introduction to the Coq Proof Assistant. MIT
Press, 2013.

[14] Adam Chlipala. Parametric higher-order abstract syntax for
mechanized semantics. In Proceedings of the 13th ACM SIG-
PLAN International Conference on Functional Program-
ming, ICFP ’08, pages 143–156, New York, NY, USA, 2008.
ACM.

[15] Julien Cretin and Didier Rémy. On the power of coer-
cion abstraction. In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’12, pages 361–372, New York, NY,
USA, 2012. ACM.

[16] Jeremy Gibbons and Nicolas Wu. Folding domain-specific
languages: Deep and shallow embeddings (functional pearl).
In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, pages
339–347, New York, NY, USA, 2014. ACM.

[17] Robert Harper and Daniel R. Licata. Mechanizing metathe-
ory in a logical framework. J. Funct. Program., 17(4-5):613–
673, July 2007.

[18] Barry Jay and Jens Palsberg. Typed self-interpretation by
pattern matching. In Proceedings of ICFP’11, ACM SIG-

PLAN International Conference on Functional Program-
ming, pages 247–258, Tokyo, September 2011.

[19] Oleg Kiselyov. Metatypechecking: Staged typed compilation
into gadt using typeclasses. http://okmij.org/ftp/tagless-
final/tagless-typed.html#tc-GADT-tc.

[20] Stephen C. Kleene. λ-definability and recursiveness. Duke
Math. J., pages 340–353, 1936.

[21] John McCarthy. Recursive functions of symbolic expressions
and their computation by machine, part i. Commun. ACM,
3(4):184–195, April 1960.

[22] John C. Mitchell. Polymorphic type inference and contain-
ment. Inf. Comput., 76(2-3):211–249, February 1988.

[23] Torben Æ. Mogensen. Efficient self-interpretations in lambda
calculus. Journal of Functional Programming, 2(3):345–363,
1992. See also DIKU Report D–128, Sep 2, 1994.

[24] Greg Morrisett. F-omega – the
workhorse of modern compilers.
http://www.eecs.harvard.edu/ greg/cs256sp2005/lec16.txt,
2005.

[25] Matthew Naylor. Evaluating Haskell in Haskell. The
Monad.Reader, 10:25–33, 2008.

[26] Frank Pfenning and Peter Lee. Metacircularity in the
polymorphic λ-calculus. Theoretical Computer Science,
89(1):137–159, 1991.

[27] Benjamin C. Pierce. Types and Programming Languages.
MIT Press, 2002.

[28] Benjamin C. Pierce. Types and Programming Languages.
MIT Press, Cambridge, MA, USA, 2002.

[29] Tillmann Rendel, Klaus Ostermann, and Christian Hofer.
Typed self-representation. In Proceedings of PLDI’09, ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 293–303, June 2009.

[30] John C. Reynolds. Definitional interpreters for higher-order
programming languages. In Proceedings of 25th ACM Na-
tional Conference, pages 717–740. ACM Press, 1972. The
paper later appeared in Higher-Order and Symbolic Compu-
tation, 11, 363–397 (1998).

[31] Carsten Schürmann, Dachuan Yu, and Zhaozhong Ni. A
representation of fω in lf. Electronic Notes in Theoretical
Computer Science, 58(1):79 – 96, 2001.

[32] Tim Sheard and Simon Peyton Jones. Template meta-
programming for haskell. SIGPLAN Not., 37(12):60–75,
December 2002.

[33] T. Stuart. Understanding Computation: Impossible Code
and the Meaning of Programs. Understanding Computation.
O’Reilly Media, Incorporated, 2013.

[34] Aaron Stump. Directly reflective meta-programming. Higher
Order Symbol. Comput., 22(2):115–144, June 2009.

[35] Walid Taha and Tim Sheard. Metaml and multi-stage pro-
gramming with explicit annotations. In Theoretical Com-
puter Science, pages 203–217. ACM Press, 1999.

[36] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflex-
ive intensional type analysis. SIGPLAN Not., 35(9):82–93,
September 2000.

[37] David Turner. Total functional programming. Journal of
Universal Computer Science, 10, 2004.

[38] Philip Wadler. Theorems for free! In Functional Program-
ming Languages and Computer Architecture, pages 347–359.
ACM Press, 1989.

[39] Geoffrey Washburn and Stephanie Weirich. Boxes go ba-
nanas: Encoding higher-order abstract syntax with paramet-
ric polymorphism. In Proceedings of the Eighth ACM SIG-
PLAN International Conference on Functional Program-
ming, ICFP ’03, pages 249–262, New York, NY, USA, 2003.
ACM.

A. Proofs
A.1 Section 3 Proofs
Theorem 3.4.
If ⟨⟩ ⊢ e : τ , then ⟨⟩ ⊢ e : (∀α:∗. α → α) → τ and e is
in β-normal form.

Proof. Straightforward.

Theorem 3.5.
If ⟨⟩ ⊢ e : τ , then unquote τ e −→∗e.

Proof. Straightforward.

A.2 Section 5 Proofs
Lemma A.1. If Γ ⊢ τ : κ, then F:∗ → ∗,Γ ⊢ JτK : κ.

Proof. By induction on the structure of τ . Let Γ′ = (F:∗ →
∗,Γ).

Suppose τ is a type variable α. Then JτK = JαK = α = τ ,
and the result is immediate.

Suppose τ is an arrow type τ1 → τ2. By the inversion
lemma, we have that κ=∗ and Γ ⊢ τ1 : ∗ and Γ ⊢ τ2 : ∗.
By definition, JτK = F Jτ1K → F Jτ2K. It is sufficent to show
that Γ′ ⊢ F Jτ1K → F Jτ2K : ∗. By induction, Γ′ ⊢ Jτ1K : ∗
and Γ′ ⊢ Jτ2K : ∗. Therefore, Γ′ ⊢ F Jτ1K → F Jτ2K : ∗, as
required.

Suppose τ is a quantified type (∀α:κ.τ1). By the inversion
lemma, we have that Γ,α:κ ⊢ τ1 : ∗. By definition, JτK =
∀α:κ. F Jτ1K. It is sufficient to show that Γ′ ⊢ (∀α:κ. FJτ1K) : ∗. By induction, we have that (Γ,α:κ) ⊢ Jτ1K : ∗.
Then Γ′,α:κ ⊢ F Jτ1K : ∗, so Γ′ ⊢ (∀α:κ. F Jτ1K) : ∗, as
required.

Suppose that τ is a λ-abstraction (λα:κ1.τ1). By the
inversion lemma, we have that κ = κ1 → κ2 and (Γ,α:κ1)
⊢ τ1 : κ2. By definition, JτK = Jλα:κ1.τ1K = λα:κ1.Jτ1K. It
is sufficient to show that Γ′ ⊢ (λα:κ1.Jτ1K) : κ1 → κ2. By
weakening, (Γ,α:κ1) ⊢ F : ∗ → ∗. Therefore, the induction
hypothesis gives (Γ′,α:κ1) ⊢ Jτ1K : κ2. Therefore, Γ′ ⊢
(λα:κ1.Jτ1K) : κ1 → κ2, as required.

Suppose τ is an application τ1 τ2. By the inversion
lemma, Γ ⊢ τ1 : κ2 → κ and Γ ⊢ τ2 : κ2. By definition,JτK = Jτ1 τ2K = Jτ1K Jτ2K. It is sufficient to show Γ ⊢ Jτ1KJτ2K : κ. By the induction hypothesis, Γ′ ⊢ Jτ1K : κ2 → κ and
Γ′ ⊢ Jτ2K : κ2. Therefore, Γ′ ⊢ Jτ1K Jτ2K : κ as required.

Theorem 5.1. If Γ ⊢ τ : κ, then Γ ⊢ τ : (∗ → ∗) → κ.

Proof. Suppose Γ ⊢ τ : κ. By definition, we have that τ
= λF:∗ → ∗.JτK. Without loss of generality via renaming,
assume F does not occur free in τ . Then by weakening,
Γ,F:∗ → ∗ ⊢ τ : κ. By Lemma A.1, Γ,F:∗ → ∗ ⊢ JτK : κ.
Therefore Γ ⊢ τ : (∗ → ∗) → κ.

Theorem 5.2. For any types τ and σ, and any type variable
α, we have JτK[α := JσK] = Jτ[α := σ]K.
Proof. By induction on the structure of τ .

Suppose τ is the type variable α. Then JτK = α, so JτK[α
:= JσK] = JσK. Also Jτ [α := σ]K = Jα[α := σ]K = JσK, as
required.

Suppose τ is a type variable β ̸= α. Then JτK = β, soJτK[α := JσK] = β[α := JσK] = β. Also Jτ [α := σ]K = Jβ[α
:= σ]K = JβK = β, as required.

Suppose τ is an arrow type τ1 → τ2. By induction, we
have that Jτ1K[α := JσK] = Jτ1[α := σ]K and Jτ2K[α := JσK] =

Jτ2[α := σ]K. By definition, JτK = F Jτ1K → F Jτ2K, so JτK[α
:= JσK] = F (Jτ1K[α := JσK]) → F (Jτ2K[α := JσK]) = FJτ1[α := σ]K → F Jτ2[α := σ]K. Also, Jτ [α := σ]K = J(τ1

→ τ2)[α := σ]K = J(τ1[α := σ]) → (τ2[α := σ])K = F Jτ1[α
:= σ]K → F Jτ2[α := σ]K, as required.

Suppose that τ is a quantified type ∀β:κ.τ1. By induction,
we have that Jτ1K[α := JσK] = Jτ1[α := σ]K. By definition,JτK = ∀β:κ. F Jτ1K, so JτK[α := JσK] = (∀β:κ. F Jτ1K)[α
:= JσK] = ∀β:κ. F (Jτ1K[α := JσK]) = ∀β:κ. F Jτ1[α :=
σ]K. Also, Jτ [α := σ]K = J(∀β:κ. τ1)[α := σ]K = J∀β:κ. (τ1[α
:= σ])K = ∀β:κ. F Jτ1[α := σ]K, as required.

Suppose that τ is a λ-abstraction λβ:κ.τ1. By induction,
we have that Jτ1K[α := JσK] = Jτ1[α := σ]K. By definition, JτK
= λβ:κ. Jτ1K, so JτK[α := JσK] = (λβ:κ. Jτ1K)[α := JσK]
= λβ:κ. (Jτ1K[α := JσK]) = λβ:κ. Jτ1[α := σ]K. Also,Jτ [α := σ]K = J(λβ:κ. τ1)[α := σ]K = Jλβ:κ. (τ1[α := σ])K
= λβ:κ. Jτ1[α := σ]K, as required.

Suppose τ is an application τ1 τ2. By induction, we have
that Jτ1K[α := JσK] = Jτ1[α := σ]K and Jτ2K[α := JσK] =Jτ2[α := σ]K. By definition JτK[α := JσK] = Jτ1 τ2K[α := JσK]
= (Jτ1K Jτ2K)[α := JσK] = (Jτ1K[α := JσK]) (Jτ2K[α := JσK])
= Jτ1[α := σ]K Jτ2[α := σ]K. Also Jτ [α := σ]K = J(τ1 τ2)[α
:= σ]K = J(τ1[α := σ]) (τ2[α := σ])K = Jτ1[α := σ]K Jτ2[α
:= σ]K, as required.

The following is an inductive definition of terms in normal
and neutral form.
Definition A.1 (β-Normal and β-Neutral Terms).

x is a variable.
x is β-normal and β-neutral.

e is β-normal.
(λx:τ.e) is β-normal.
(Λα:κ.e) is β-normal.

e1 is β-normal and β-neutral. e2 is β-normal.
(e1 e2) is β-normal and β-neutral.
(e1 τ) is β-normal and β-neutral.

Similarly, here is an inductive definition of β-normal and
β-neutral types. Intuitively, a β-normal type contains no β-
redexes.
Definition A.2 (β-Normal and β-Neutral Types).

α is a variable.
α is β-normal and β-neutral.

τ is β-normal.
(λx:κ.τ) is β-normal.

τ1 is β-normal and β-neutral. τ2 is β-normal.
(τ1 τ2) is β-normal and β-neutral.

Lemma A.2. If Γ ⊢ τ : κ, then there exists a β-normal τ ′

such that Γ ⊢ τ ′ : κ and τ ≡ τ ′.

Proof. Standard.

Lemma A.3. If Γ ⊢ τ1 : κ and Γ ⊢ τ2 : κ and τ1 ≡ τ2,
then τ1 = τ2.

Proof. Standard.

Lemma A.4.
1. If τ is normal, then JτK is normal.
2. If τ is normal and neutral, then JτK is normal and neutral.

Proof. By induction on the structure of τ .
Suppose τ is a variable α. We prove cases (1) and (2)

simultaneously. Since τ is variable, it is normal and neutral.
We have JτK = α, which is normal and neutral.

Suppose τ is an arrow τ1 → τ2. We prove cases (1)
and (2) simultaneously. Suppose that τ is normal. ThenJτK = F Jτ1K → F Jτ2K. We now show that F Jτ1K → F Jτ2K
is normal and neutral. Since τ is normal, τ1 and τ2 are
normal. By induction, Jτ1K and Jτ2K are normal. Since F is
a variable, it is normal and neutral. Therefore F Jτ1K and FJτ2K are normal and neutral, so F Jτ1K → F Jτ2K is normal
and neutral, as required.

Suppose τ is a quantified type ∀α:κ.τ1. We prove cases
(1) and (2) simultaneously. Suppose that τ is normal. Then
τ1 is normal. By the induction hypothesis, Jτ1K is normal.
By definition, JτK = ∀α:κ. F Jτ1K. Since F is a variable, it is
normal and neutral, so ∀α:κ. F Jτ1K is normal and neutral,
as required.

Suppose τ is a λ-abstraction λα:κ.τ1. Then τ is not
neutral, so we only consider case (1). Suppose τ is normal.
Then τ1 is normal. By the induction hypothesis, Jτ1K is
normal. By definition, JτK = λα:κ.Jτ1K. Since Jτ1K is normal,JτK is normal as required.

Suppose τ is an application τ1 τ2. We consider both cases
simultaneously. Suppose τ is normal. Then τ1 is neutral and
normal, and τ2 is normal. By the induction hypothesis, Jτ1K
is neutral and normal, and Jτ2K is normal. By definition, JτK
= Jτ1K Jτ2K. Since Jτ1K is neutral and normal and Jτ2K is
normal, JτK is neutral and normal, as required.

Definition A.3 (Normal form of a term). Suppose e1
−→∗e2 and e2 is in normal form. Then we say that e2 is
the normal form of e1.
Lemma A.5. If JτK = JσK, then τ = σ.

Proof. By induction on the structure of τ .
Suppose τ is a variable x. Then JτK = x = JσK. Therefore,

σ = x.
Suppose τ is an arrow type τ1 → τ2. Then Jτ1 → τ2K =

F Jτ1K → F Jτ2K = JσK. Therefore, σ=(σ1 → σ2), and Jτ1K
= Jσ1K, and Jτ2K = Jσ2K. By induction, τ1 = σ1 and τ2 =
σ2. Therefore, σ = (σ1 → σ2) = (τ1 → τ2) = τ .

Suppose τ is a quantified type ∀α:κ.τ1. Then JτK =J∀α:κ.τ1K = (∀α:κ.F Jτ1K). Therefore, JσK = (∀α:κ.FJτ1K), so σ = (∀α:κ.σ1) and Jτ1K = Jσ1K. By induction,
τ1 = σ1, so σ = (∀α:κ.σ1) = (∀α:κ.τ1) = τ .

Suppose τ is a λ-abstraction (λα:κ.τ1). Then JτK =Jλα:κ.τ1K = (λα:κ.Jτ1K). Therefore, JσK = (λα:κ.Jτ1K), so σ
= (λα:κ.σ1), and Jτ1K = Jσ1K. By induction, τ1 = σ1, so σ
= (λα:κ.σ1) = (λα:κ.τ1) = τ .

Suppose τ is a type application (τ1 τ2). Then JτK = Jτ1

τ2K = Jτ1K Jτ2K. Therefore, JσK = Jτ1K Jτ2K, so σ = (σ1 σ2)
and Jτ1K = Jσ1K and Jτ2K = Jσ2K. By induction, τ1 = σ1

and τ2 = σ2, so σ = (σ1 σ2) = (τ1 τ2).

Lemma A.6. τ ≡ σ if and only if JτK ≡ JσK.
Proof. (τ ≡ σ) =⇒ (JτK ≡ JσK):

By induction on the derivation of τ ≡ σ.
Suppose τ ≡ σ is by reflexivity. Then τ=σ, so JτK=JσK.

Suppose τ ≡ σ is by symmetry. Then σ ≡ τ , and by
induction JσK ≡ JτK. Therefore, JτK ≡ JσK follows by sym-
metry.

Suppose τ ≡ σ is by transitivity. Then τ ≡ τ ′ and τ ′ ≡
σ, and by induction, JτK ≡ Jτ ′K and Jτ ′K ≡ JσK. Therefore,JτK ≡ JσK follows by transitivity.

Suppose τ ≡ σ is by the rule for → types. Then τ = τ1 →
τ2, σ = σ1 → σ2, and τ1 ≡ σ1 and τ2 ≡ σ2. By induction,Jτ1K ≡ Jσ1K and Jτ2K ≡ Jσ2K. Therefore, JτK = Jτ1 → τ2K =
F Jτ1K → F Jτ2K) ≡ F Jσ1K → F Jσ2K = Jσ1 → σ2K = JσK.

Suppose τ ≡ σ is by the rule for ∀ types. Then τ=(∀α:κ.τ1)
and σ=(∀α:κ.σ1) and τ1 ≡ σ1. By induction, we have thatJτ1K ≡ Jσ1K. Therefore, JτK = J∀α:κ.τ1K = (∀α:κ.F Jτ1K)
= (∀α:κ.F Jσ1K) = J∀α:κ.σ1K = JσK.

Suppose τ ≡ σ is by the rule for λ-abstractions. Then
τ=(λα:κ.τ1) and σ=(λα:κ.σ1) and τ1 ≡ σ1. By induction,
we have that Jτ1K ≡ Jσ1K. Therefore, JτK = Jλα:κ.τ1K =
(λα:κ.Jτ1K) = (λα:κ.Jσ1K) = Jλα:κ.σ1K = JσK.

Suppose τ ≡ σ is by the rule for type applications. Then
τ=(τ1 τ2) and σ=(σ1 σ2), and τ1 ≡ σ1 and τ2 ≡ σ2. By
induction, Jτ1K ≡ Jσ1K and Jτ2K ≡ Jσ2K. Therefore, JτK =Jτ1 τ2K = Jτ1K Jτ2K) ≡ Jσ1K Jσ2K = Jσ1 σ2K = JσK.

Suppose τ ≡ σ is by the rule for α-conversion. Then
τ=(λα:κ.τ1) and σ=(λβ:κ.τ1[α:=β]). We have that JτK
= Jλα:κ.τ1K=(λα:κ.Jτ1K) ≡ (λβ:κ.Jτ1K[α:=β]) = (λβ:κ.Jτ1K[α:=JβK]). By Theorem 5.2, (λβ:κ. Jτ1K[α:=JβK]) =
(λβ:κ.Jτ1[α:=β]K) = Jλβ:κ.τ1[α:=β]K = JσK.

Suppose τ ≡ σ is by the rule for β-reduction. Then
τ=((λα:κ.τ1)τ2) and σ=(τ1[α:=τ2]). We have that JτK =J((λα:κ.τ1)τ2)K = (J(λα:κ.τ1)K Jτ2K) = ((λα:κ.Jτ1K) Jτ2K)
≡ (Jτ1K[α:=Jτ2K]). By Theorem 5.2, (Jτ1K[α:=Jτ2K]) =Jτ1[α:=τ2]K = JσK.

(JτK ≡ JσK) =⇒ (τ ≡ σ):
Suppose (JτK ≡ JσK). By Lemma A.2, there exist β-

normal types τ ′ and σ′ such that τ ≡β τ ′ and σ ≡β σ′.
By (1) (τ ≡ σ) =⇒ (JτK ≡ JσK), we have that JτK ≡ Jτ ′K
and JσK ≡ Jσ′K. By transitivity, we have that Jτ ′K ≡ Jσ′K.
Therefore, it is sufficient to show that τ ′ ≡ σ′. By Lemma
A.4, Jτ ′K and Jσ′K are normal. Therefore, Lemma states thatJτ ′K = Jσ′K. By Lemma A.5, τ ′ = σ′. Therefore, τ ≡ σ.

Theorem 5.3. τ ≡ σ if and only if τ ≡ σ.

Proof. Follows from Lemma A.6.

Definition A.4 (Instances of a quantified type). We say
that a type σ is an instance of a quantified type τ if and only
if τ = (∀α:κ.τ1), and σ = (τ1[α:=τ2]), and there exists
an environment Γ such that Γ ⊢ (∀α:κ.τ1) : ∗ and Γ ⊢
(τ1[α:=τ2]) : ∗.
Lemma A.7. If Γ ⊢ τ : κ, then Γ ⊢ JτK : κ.

Proof. By induction on the structure of τ .
Suppose τ is a type variable α. Then (α:κ) ∈ Γ, and (α:κ)

∈ Γ, and JτK = α. Therefore, Γ ⊢ JτK : κ as required.
Suppose τ is an arrow type τ1 → τ2. Then κ = ∗, and Γ

⊢ τ1 : ∗, and Γ ⊢ τ2 : ∗. By induction, Γ ⊢ Jτ1K : ∗, and
Γ ⊢ Jτ2K : ∗, and JτK = F Jτ1K → F Jτ2K. By definition, we
have that (F:∗ → ∗) ∈ Γ. Therefore, Γ ⊢ F Jτ1K → F Jτ2K :
∗, as required.

Suppose τ is a quantified type ∀α:κ1.τ1. Then κ = ∗, and
Γ,α:κ1 ⊢ τ1 : ∗, and JτK = ∀α:κ1. F Jτ1K. By induction,
Γ,α:κ1 ⊢ Jτ1K : ∗. By definition, we have that (F:∗ → ∗)
∈ Γ,α:κ1. Therefore, Γ,α:κ1 ⊢ F Jτ1K : ∗. By definition, we

have that Γ,α:κ1 = Γ,α:κ1. Therefore, Γ ⊢ (∀α:κ1. F Jτ1K)
: ∗, as required.

Suppose τ is a λ-abstraction (λα:κ1.τ1). Then κ = κ1

→ κ2, and Γ,α:κ1 ⊢ τ1 : κ2, and JτK = (λα:κ1.Jτ1K). By
induction, Γ,α:κ1 ⊢ Jτ1K : κ2. By definition, we have that
Γ,α:κ1 = Γ,α:κ1. Therefore, Γ ⊢ (λα:κ1.Jτ1K) : κ1 → κ2,
as required.

Suppose τ is an application τ1 τ2. Then Γ ⊢ τ1 : κ1 →
κ and Γ ⊢ τ2 : κ1, and JτK = (Jτ1K Jτ2K). By induction, Γ
⊢ Jτ1K : κ1 → κ, and Γ ⊢ Jτ2K : κ1. Therefore, Γ ⊢ (Jτ1KJτ2K) : κ, as required.

Lemma A.8. If Γ ⊢ κ, then κ � σ for some σ.

Proof. By induction on the structure of κ.
Suppose κ is ∗. Then σ=(∀α:∗.α).
Suppose κ is κ1 → κ2. By induction, κ2 � σ2, and

σ=λα:κ1.σ2.

Lemma A.9. If κ � σ, then ⟨⟩ ⊢ σ : κ.

Proof. By induction on the structure of κ.
Suppose κ=∗. Then σ=(∀α:∗.α), and ⟨⟩ ⊢ σ : ∗ as re-

quired.
Suppose κ=κ1 → κ2. Then σ=(λα:κ1.σ2) and κ2 � σ2.

By induction, ⟨⟩ ⊢ σ2 : κ2. Therefore, ⟨⟩ ⊢ (λα:κ1.σ2) : κ1

→ κ2, as required.

A.3 Section 6 Proofs
Lemma A.10. If Γ ⊢ (∀α:κ.τ) : ∗, then
Γ ⊢ strip(F,κ,Jλα:κ.τK) : Strip F J∀α:κ.τK.
Proof. Suppose Γ ⊢ (∀α:κ.τ) : ∗. Then J∀α:κ.τK = (∀α:κ.FJτK). We want to show that then strip(F,κ,Jλα:κ.τK) has the
type (Strip F J∀α:κ.τK).

Since Γ ⊢ (∀α:κ.τ) : ∗, Lemma A.16 states that Γ,(α:κ)
⊢ τ : ∗. Therefore, Γ ⊢ (λα:κ.τ) : κ → ∗. By Lemma
A.7, Γ ⊢ J∀α:κ.τK : ∗ and Γ ⊢ Jλα:κ.τK : κ → ∗. By
Lemma A.8, there exists a type σ such that κ � σ. By
Lemma A.9, ⟨⟩ ⊢ σ : κ. Therefore, Γ ⊢ σ : κ.

We have that strip(F,κ,Jλα:κ.τK) = Λα:∗. λf:(∀β:∗.
F β → α). λx:(∀γ:κ.F (Jλα:κ.τK γ)). f (Jλα:κ.τK σ)
(x σ), so Γ ⊢ strip(F,κ,Jλα:κ.τK) : ∀α:∗. (∀β:∗. F β →
α) → (∀γ:κ.F (Jλα:κ.τK γ)) → α. Also, (∀γ:κ.F
(Jλα:κ.τK γ)) ≡ (∀α:κ.F (Jλα:κ.τK α)) ≡ (∀α:κ.F
((λα:κ.JτK) α)) ≡ (∀α:κ.F JτK) = J∀α:κ.τK. Therefore,
∀α:∗. (∀β:∗. F β → α) → (∀γ:κ.F ((λα:κ.JτK) γ)) →
α ≡ (∀α:∗. (∀β:∗. F β → α) → J∀α:κ.τK → α) ≡
(Strip F J∀α:κ.τK).

By the conversion typing rule, we have that
Γ ⊢ strip(F,κ,Jλα:κ.τK) : Strip F J∀α:κ.τK, as required.

Lemma A.11 (Semantics of strip functions). If κ � σ,
then strip(F,κ,τ1) τ2 (Λα:∗.λx:τ2.x) (Λβ:κ.e) −→∗

e[β:=σ].

Proof. Suppose κ � σ. Then
strip(F,κ,τ1) τ2 (Λα:∗.λx:τ2.x) (Λβ:κ.e)

= (Λα:∗.λf:(∀β:∗. F β → α).
λx:(∀γ:κ.F (τ1 γ)). f (τ1 σ) (x σ))
τ2 (Λα:∗.λx:τ2.x) (Λβ:κ.e)

−→3 (Λα:∗.λx:τ2.x) (τ1 σ) ((Λβ:κ.e) σ)
−→2 ((Λβ:κ.e) σ)
−→ e[β:=σ]

Lemma A.12 (Types of inst functions). If Γ ⊢ (∀α:κ.τ)
: ∗ and Γ ⊢ σ : κ, then Γ ⊢ inst(∀α:κ.τ),σ : (∀α:κ.τ) →
(τ[α:=σ]).

Proof. Straightforward.

Lemma A.13 (Semantics of inst functions). If Γ ⊢ e :
(∀α:κ.τ) and Γ ⊢ σ : κ, then inst(∀α:κ.τ),σ e ≡β e σ.

Proof. Straightforward.

Lemma A.14. If Γ ⊢ e : τ , then Γ ⊢ τ : ∗.

Proof. Straightforward.

Lemma A.15. If Γ,(α:κ1) ⊢ τ : κ2 and Γ ⊢ σ : κ1, then
Γ ⊢ (τ[α:=σ]) : κ2.

Proof. Standard.

Lemma A.16. 1. If Γ ⊢ τ1 → τ2 : ∗, then Γ ⊢ τ1 : ∗
and Γ ⊢ τ2 : ∗.

2. If Γ ⊢ (∀α:κ.τ) : ∗, then Γ,(α:κ) ⊢ τ : ∗.

Proof. Standard.

Lemma A.17. If Γ,(α:κ1) ⊢ τ : κ2 and Γ ⊢ σ : κ1, then
Γ ⊢ (τ[α:=σ]) : κ2.

Proof. Standard.

Definition A.5 (Environment for Pre-quotations).

⟨⟩ = (F:∗ → ∗),
(abs:Abs F),(app:App F),
(tabs:TAbs F),(tapp:TApp F)

Γ,x:τ = Γ,x:F JτK
Γ,α:κ= Γ,α:κ

Theorem A.1. If Γ ⊢ e : τ � q, then Γ ⊢ q : F JτK.
Proof. By induction on the height of the derivation Γ ⊢ e :
τ � q.

Suppose e is a variable x. Then (x:τ) ∈ Γ, and q = x.
Since (x:τ) ∈ Γ, (x:F JτK) ∈ Γ. Therefore, Γ ⊢ q : F JτK,
as required.

Suppose e is a λ-abstraction (λx:τ1.e1). Then τ = τ1

→ τ2, and JτK = F Jτ1K → F Jτ2K, and Γ,x:τ1 ⊢ e1 : τ2� q1, and q = abs Jτ1K Jτ2K (λx:F Jτ1K. q1). We want to
show that Γ ⊢ abs Jτ1K Jτ2K (λx:F Jτ1K. q1) : F (F Jτ1K
→ F Jτ2K). By the definition of Γ, we have (abs:Abs F)
∈ Γ. Therefore, Γ ⊢ abs : (∀α:∗. ∀β:∗. (F α → F β) →
F (F α → F β)). By Lemma A.14, Γ ⊢ τ1 → τ2 : ∗. By
Lemma A.16, Γ ⊢ τ1 : ∗ and Γ ⊢ τ2 : ∗. By Lemma A.7,
Γ ⊢ Jτ1K : ∗ and Γ ⊢ Jτ2K : ∗. By induction, Γ,(x:τ1)
⊢ q1 : F Jτ2K, so Γ ⊢ (λx:F Jτ1K. q1) : F Jτ1K → F Jτ2K.
Therefore, Γ ⊢ abs Jτ1K Jτ2K (λx:F Jτ1K. q1) : F (F Jτ1K
→ F Jτ2K), as required.

Suppose e is an application e1 e2. Then Γ ⊢ e1 : τ2

→ τ � q1, and Γ ⊢ e2 : τ2 � q2, and q = app Jτ2K JτK q1
q2. We want to show Γ ⊢ app Jτ2K JτK q1 q2 : F JτK. By
the definition of Γ, we have (app:App F) ∈ Γ. Therefore,
Γ ⊢ app : (∀α:∗. ∀β:∗. F (F α → F β) → F α → F β).
By Lemma A.14, Γ ⊢ τ2 : ∗ and Γ ⊢ τ : ∗. By Lemma
A.7, Γ ⊢ Jτ2K : ∗ and Γ ⊢ JτK : ∗. By induction, Γ ⊢ q1 :
F Jτ2 → τK, and Γ ⊢ q2 : F Jτ2K. Since Jτ2 → τK = F Jτ2K

→ F JτK, Γ ⊢ q1 : F (F Jτ2K → F JτK). Therefore Γ ⊢ appJτ2K JτK q1 q2 : F JτK, as required.
Suppose e is a type abstraction Λα:κ.e1. Then τ =

∀α:κ.τ1, and JτK = (∀α:κ. F Jτ1K), and Γ,(α:κ) ⊢ e1
: τ1 � q1, and

q = tabs J∀α:κ.τ1K
strip(F,κ,Jλα:κ.τ1K)
(Λα:κ.q)

We want to show Γ ⊢ q : F (∀α:κ. F Jτ1K). By the def-
inition of Γ, we have (tabs:TAbs F) ∈ Γ. Therefore,
Γ ⊢ tabs : (∀α:*. Strip F α → α → F α). By Lemma
A.14, Γ ⊢ (∀α:κ.τ1) : ∗. By Lemma A.7, we have that
Γ ⊢ J∀α:κ.τ1K : ∗. Then Γ ⊢ tabs J∀α:κ.τ1K : Strip FJ∀α:κ.τ1K → J∀α:κ. τ1K → F J∀α:κ.τ1K, so it suffices to
show that (1) Γ ⊢ strip(F,κ,Jλα:κ.τ1K) : Strip F J∀α:κ.τ1K,
and that (2) Γ ⊢ (Λα:κ.q) : J∀α:κ. τ1K.

(1) Is given by Lemma A.10.
(2) By induction, Γ,α:κ ⊢ q1 : F Jτ1K, so Γ ⊢ (Λα:κ.q1)

: (∀α:κ. F Jτ1K). By definition, (∀α:κ. F Jτ1K) =J∀α:κ.τ1K, as required.
Suppose e is a type application e1 σ. Then τ=(τ1[α:=σ]),

and Γ ⊢ e1 : (∀α:κ.τ1) � q1, and Γ ⊢ σ : κ, and
q = tapp (∀α:κ. F Jτ1K)

q1 Jτ1[α:=σ]K
inst(J∀α:κ.τ1K,σ)

By the definition of Γ, we have (tapp:TApp F) ∈ Γ. There-
fore, Γ ⊢ tapp : (∀α:*. F α → ∀β:∗. (α → F β) → F
β). Then Γ ⊢ tapp J∀α:κ.τ1K : F J∀α:κ.τ1K → ∀β:∗.
(J∀α:κ.τ1K → F β) → F β. We want to show: (1) Γ ⊢ q1
: F J∀α:κ.τ1K, and (2) Γ ⊢ Jτ1[α:=σ]K : ∗, and (3) Γ ⊢
inst(J∀α:κ.τ1K,σ) : J∀α:κ.τ1K → F Jτ1[α:=σ]K.
(1) is by the induction hypothesis.
For (2), we have Γ ⊢ (∀α:κ.τ1) : ∗, and by Lemma A.16
Γ,(α:κ) ⊢ τ1 : ∗. Since Γ ⊢ σ : κ, Lemma A.15 states
that Γ ⊢ (τ1[α:=σ]) : ∗. By Lemma A.7, Γ ⊢ Jτ1[α:=σ]K
: ∗, as required.
(3) is by Theorem A.12.

Theorem 6.1. If ⟨⟩ ⊢ e : τ , then ⟨⟩ ⊢ e : Exp τ .

Proof. Suppose ⟨⟩ ⊢ e : τ . Let q be such that ⟨⟩ ⊢ e : τ �
q. By Lemma A.1, we have ⟨⟩ ⊢ q : F JτK. By definition,

⟨⟩= (F:∗ → ∗),
(abs:Abs F),(app:App F),
(tabs:TAbs F),(tapp:TApp F)

The result follows from the definitions of e and Exp.

The following Lemma states that strip functions are
always normal forms. Recall that normal forms can have
redexes in the types.
Lemma A.18. For all kinds κ and types F, and τ ,
strip(F,κ,τ) is normal.

Proof. We have that strip(F,κ,τ) = Λα:∗. λf:(∀β:∗. F β
→ α). λx:(∀γ:κ.F (τ γ)). f (τ σ) (x σ). Since f and x
are variables, strip(F,κ,τ) is normal.

Lemma A.19. For any types τ and σ, inst(τ,σ) is normal.

Proof. inst(τ,σ) = (λx:τ. x σ). Since x is a variable,
inst(τ,σ) is normal.

Lemma A.20. If Γ ⊢ e : τ � q, then q is β-normal.

Proof. By induction on the structure of e.
Suppose e is a variable x. Then q = x, which is normal.
Suppose e is a λ-abstraction λx:τ1.e1. Then Γ,x:τ1 ⊢

e1 � q1, and q = abs Jτ1K Jτ2K (λx:F Jτ1K. q1). By the
induction hypothesis, q1 is normal. Then (λx:F Jτ1K. q1) is
normal, and since abs is a variable, it is normal and neutral.
Therefore, q is normal.

Suppose e is an application e1 e2. Then Γ ⊢ e1 : τ2 → τ� q1 and Γ ⊢ e2 : τ2 � q2, and q = app Jτ1K Jτ2K q1 q2.
By the induction hypothesis, q1 and q2 are normal. Since
app is a variable, it is normal and neutral. Therefore, q is
normal.

Suppose e is a Λ-abstraction Λα:κ.e1. Then τ =
(∀α:κ.τ1), and Γ ⊢ κ � σ, and Γ, α:κ ⊢ e1 : τ1 � q1,
and

q = tabs (∀α:κ. F Jτ1K)
strip(F,κ,λα:κ.JτK)
(Λα:κ.q1)

Since tabs is a variable, it is normal and neutral. By Lemma
A.18, strip(F,κ,λα:κ.JτK) is normal. By the induction hypoth-
esis, q1 is normal. Therefore, (Λα:κ.q1) is normal. There-
fore, q is normal.

Suppose e is a type application e1 σ. Then τ = τ1[α:=σ],
and Γ ⊢ e : (∀α:κ.τ1) � q1, and

q = tapp (∀α:κ. F Jτ1K) q1 Jτ1[α:=σ]K
inst(J∀α:κ.τ1K,σ)

Since tapp is a variable, it is normal and neutral. By in-
duction q1 is normal. By Lemma A.19, inst(J∀α:κ.τ1K,σ) is
normal. Therefore, q is normal.

Theorem 6.2. If ⟨⟩ ⊢ e : τ , then e is β-normal.

Proof. Suppose ⟨⟩ ⊢ e : τ . Then ⟨⟩ ⊢ e : τ � q, and

e = ΛF:∗ → ∗.
λabs :Abs F. λapp :App F.
λtabs:TAbs F. λtapp:TApp F.
q

By Lemma A.20, q is normal. Therefore, e is normal.

Definition A.6. We define a similarity relation between
environments that reflects that each environment assigns
term variables to equivalent types as follows:

⟨⟩ ∼ ⟨⟩

Γ ∼ Γ′ τ ≡ τ ′

Γ,(x:τ) ∼ Γ′,(x:τ ′)

Γ ∼ Γ′

Γ,(α:κ) ∼ Γ′,(α:κ)

Lemma A.21. If Γ ⊢ e : τ and Γ′ ⊢ e′ : τ ′, and Γ ∼ Γ′

and e ∼ e′, then τ ≡ τ ′.

Proof. By induction on the derivation Γ ⊢ e : τ .
Suppose Γ ⊢ e : τ is by the first rule. Then e is a variable

x, and so e′ is also x. We have (x:τ) ∈ Γ and (x:τ ′) ∈ Γ′,
and τ ≡ τ ′ follows from Γ ∼ Γ′.

Suppose e is by the second rule. Then e = (λx:τ1.e1),
and τ = τ1 → τ2, Γ,(x:τ1) ⊢ e1 : τ2. Since e ∼ e′, we
have that e′ = (λx:τ ′

1.e′1), and τ1 ≡ τ ′
1 and e1 ∼ e′1. Fur-

ther τ ′ = τ ′
1 → τ ′

2 and Γ,(x:τ ′
1) ⊢ e′1 : τ ′

2. Since Γ ∼ Γ′,
we have that Γ,(x:τ1) ∼ Γ′,(x:τ ′

1). Therefore, by induc-
tion, τ2 ≡ τ ′

2. Therefore, τ ≡ τ ′.

Suppose Γ ⊢ e : τ is by the third rule. Then e = (e1
e2), and Γ ⊢ e1 : τ2 → τ . Since e ∼ e′, we have that e′
= (e′1 e′2), and e1 ∼ e′1. Also, Γ′ ⊢ e′1 : τ ′

2 → τ ′, so by
induction we have that (τ2 → τ) ≡ (τ ′

2 → τ ′). Therefore,
τ ≡ τ ′.

Suppose Γ ⊢ e : τ is by the fourth rule. Then e =
(Λα:κ.e1), and τ = (∀α:κ.τ1), and Γ,(α:κ) ⊢ e1 : τ1.
Since e ∼ e′, e′ = (Λα:κ.e′1). Therefore, τ ′ = (∀α:κ.τ ′

1)
and Γ′,(α:κ) ⊢ e′1 : τ ′

1. Since Γ ∼ Γ′, we have that
Γ,(α:κ) ∼ Γ′,(α:κ). By induction, τ1 ≡ τ ′

1. Therefore,
(∀α:κ.τ1) ≡ (∀α:κ.τ ′

1), so τ ≡ τ ′.
Suppose Γ ⊢ e : τ is by the fifth rule. Then e = (e1

σ), and Γ ⊢ e1 : (∀α:κ.τ1), and τ = (τ1[α:=σ]). Since
e ∼ e′, we have that e′ = (e′1 σ′), and σ ≡ σ′. Since
Γ′ ⊢ e′ : τ ′, we have that Γ′ ⊢ e′1 : (∀α:κ.τ ′

1) and τ ′

= (τ ′
1[α:=σ′]). By induction, (∀α:κ.τ1) ≡ (∀α:κ.τ ′

1).
Therefore, τ1 ≡ τ ′

1, so (λα:κ.τ1) ≡ (λα:κ.τ ′
1), so

((λα:κ.τ1) σ) ≡ ((λα:κ.τ ′
1) σ′), so (τ1[α:=σ]) ≡

(τ ′
1[α:=σ′]), so τ ≡ τ ′.
Suppose Γ ⊢ e : τ is by the sixth rule. Then Γ ⊢ e : σ

and σ ≡ τ . By induction, σ ≡ τ ′. Therefore, τ ≡ τ ′.

Lemma A.22. If τ ≡ τ ′, then strip(F,κ,Jλα:κ.τK) ∼
strip(F,κ,Jλα:κ.τ ′K).
Proof. Straightforward.

Lemma A.23. If τ ≡ τ ′ and σ ≡ σ′, then inst(τ,σ) ∼
inst(τ ′,σ′).

Proof. Straightforward.

Lemma A.24. If Γ ⊢ e : τ � q, and Γ′ ⊢ e′ : τ ′ � q′,
and Γ ∼ Γ′, and e ∼ e′, then q ∼ q′.

Proof. By induction on the derivation e ∼ e′.
Suppose e ∼ e′ is x ∼ x. Then e = e′ = x, so q = q′ = x.

Therefore, q ∼ q′.
Suppose e ∼ e′ is (λx:τ.e1) ∼ (λx:τ ′.e1′). Then e =

(λx:τ1.e1) and τ = τ1 → τ2, and e′ = (λx:τ ′
1.e′1) and τ ′

= τ ′
1 → τ ′

2, and τ1 ≡ τ ′
1 and e1 ∼ e′1. Also, Γ,(x:τ1) ⊢

e1 : τ2 � q1, and q = abs Jτ1K Jτ2K (λx:F Jτ1K. q1), and
similarly, Γ′,(x:τ1

′) ⊢ e1′ : τ2
′ � q1′, and q′ = abs Jτ1

′KJτ2
′K (λx:F Jτ1

′K. q1′). Since Γ ∼ Γ′ and τ1 ∼ τ ′
1, we have

that Γ,(x:τ1) ∼ Γ′,(x:τ1
′). Therefore, the induction hy-

pothesis states that q1 ∼ q1′, and it is easily checked that
q ∼ q′.

Suppose e ∼ e′ is (e1 e2) ∼ (e1′ e2′). Then e = (e1
e2), and e′ = (e1′ e2′), and e1 ∼ e1′, and e2 ∼ e2′. There-
fore, Γ ⊢ e1 : τ2 → τ � q1, and Γ ⊢ e2 : τ2 � q2, and q
= app Jτ2K JτK q1 q2. Similarly, Γ′ ⊢ e1′ : τ2

′ → τ ′ � q1′,
and Γ′ ⊢ e2′ : τ2

′ � q2′, and q′ = app Jτ2
′K Jτ ′K q1′ q2′.

By induction q1 ∼ q1′, and q2 ∼ q2′, and it is easily checked
that q ∼ q′.

Suppose e ∼ e′ is (Λα:κ.e1) ∼ (Λα:κ.e1′). Then e
= (Λα:κ.e1), and e′ = (Λα:κ.e′1), and e1 ∼ e′1. There-
fore, τ = (∀α:κ.τ1), Γ,(α:κ) ⊢ e1 : τ1 � q1, and q =
tabs J∀α:κ.τ1K strip(F,κ,λα:κ.Jτ1K) (Λα:κ.q). Similarly,
τ ′ = (∀α:κ.τ ′

1), Γ,(α:κ) ⊢ e′1 : τ ′
1 � q′1, and q = tabsJ∀α:κ.τ ′

1K strip(F,κ,λα:κ.Jτ ′
1K) (Λα:κ.q′1). Since Γ ∼ Γ′,

we have that Γ,(α:κ) ∼ Γ′,(α:κ). Therefore, by induc-
tion we have that q1 ∼ q′1. By Lemma A.21 we have
that τ1 ∼ τ ′

1, so by Lemma A.22 strip(F,κ,λα:κ.Jτ1K) ∼
strip(F,κ,λα:κ.Jτ ′

1K). Therefore, it is easily checked that q
∼ q′.

Suppose e ∼ e′ is (e1 τ1) ∼ (e1′ τ1
′). Then e = (e1

τ1) and e′ = (e′1 τ ′
1), and e ∼ e′ and τ1 ≡ τ ′

1. There-
fore, Γ ⊢ e1 : (∀α:κ.τ2) � q1 and Γ ⊢ τ1 : κ and τ =
τ2[α:=τ1] and q = (tapp J∀α:κ.τ2K q1 Jτ2[α:=τ1]K
inst(J∀α:κ.τ2K,Jτ1K)). Similarly, Γ ⊢ e′1 : (∀α:κ.τ ′

2) � q′1
and Γ ⊢ τ ′

1 : κ and τ = τ ′
2[α:=τ ′

1] and q = tapp J∀α:κ.τ ′
2K

q′1 Jτ ′
2[α:=τ ′

1]K inst(J∀α:κ.τ ′
2K,Jτ ′

1K). By induction, we have
that q1 ∼ q′1. By Lemma A.21, we have that (∀α:κ.τ2)
≡ (∀α:κ.τ ′

2). By Theorem 5.3, J(∀α:κ.τ2)K ≡ J(∀α:κ.τ ′
2)K.

Therefore, by Lemma A.23, inst(J∀α:κ.τ2K,Jτ1K) ∼
inst(J∀α:κ.τ ′

2K,Jτ ′
1K). It is easily checked that q ∼ q′.

Lemma A.25. inst(τ1,σ1) ∼ inst(τ2,σ2), then τ1 ≡ τ2 and
σ1 ≡ σ2.

Proof. We have that inst(τ1,σ1) = (λx:τ1. x σ1), and
inst(τ2,σ2) = (λx:τ2. x σ2). Therefore, (λx:τ1. x σ1) ∼
(λx:τ2. x σ2), so τ1 ≡ τ2 and σ1 ≡ σ2.

Lemma A.26. If Γ ⊢ e : τ � q, and Γ′ ⊢ e′ : τ ′ � q′,
and Γ ∼ Γ′, and q ∼ q′, then e ∼ e′.

Proof. By induction on the derivation Γ ⊢ e : τ � q.
Suppose Γ ⊢ e : τ � q is by the first rule. Then q = e =

x, so since q ∼ q′, we have = q′ = e′ = x. Therefore, e ∼ e′.
Suppose Γ ⊢ e : τ � q is by the second rule. Then

e=(λx:τ1.e1), and τ=τ1 → τ2, and Γ,(x:τ1) ⊢ e1 : τ2� q1, and q = abs Jτ1K Jτ2K (λx:F Jτ1K. q1). Since q ∼
q′, we have that q′ = abs σ1 σ2 f, and Jτ1K ≡ σ1, and Jτ2K
≡ σ2 and (λx:F Jτ1K. q1) ∼ f. Since Γ′ ⊢ e′ : τ ′ : q′, it
must be the case that e′ = (λx:τ ′

1.e′1), and τ ′ = τ ′
1 →

τ ′
2, and Γ′,(x:τ ′

1) ⊢ e′1 : τ ′
2 � q′1, and q′ = abs Jτ ′

1K Jτ ′
2K

(λx:F Jτ ′
1K. q′1). So we have that Jτ1K ≡ Jτ ′

1K, and Jτ2K ≡Jτ ′
2K, and (λx:F Jτ1K. q1) ∼ (λx:F Jτ ′

1K. q′1). Therefore
q1 ∼ q′1. By Theorem 5.3, we have that τ1 ≡ τ2 and τ ′

1 ≡
τ ′
2. Therefore, (Γ,(x:τ1)) ∼ (Γ′,(x:τ ′

1)). By induction,
we have that e1 ∼ e′1. Therefore, e ∼ e′.

Suppose Γ ⊢ e : τ � q is by the third rule. Then e = e1
e2, and Γ ⊢ e1 : τ2 → τ � q1, and Γ ⊢ e2 : τ2 � q2, and
q = app Jτ2K JτK q1 q2. Since q ∼ q′, we have that q′ = app
σ1 σ2 a1 a2, and Jτ2K ≡ σ1, and JτK ≡ σ2 and q1 ∼ a1 and
q2 ∼ a2. Since Γ′ ⊢ e′ : τ ′ � q′, it must be the case that
e′ = e′1 e′2, and Γ′ ⊢ e′1 : τ ′

2 → τ ′ � q′1, and Γ′ ⊢ e′2 : τ ′
2� q′2, and q′ = app Jτ ′

2K Jτ ′K q′1 q′2. So Jτ2K ≡ Jτ ′
2K, and JτK

≡ Jτ ′K, and q1 ∼ q′1 and q2 ∼ q′2. By induction, we have
that e1 ∼ e′1 and e2 ∼ e′2. Therefore, e ∼ e′.

Suppose Γ ⊢ e : τ � q is by the fourth rule. Then e =
(Λα:κ.e1) and τ = (∀α:κ.τ1) and Γ,(α:κ) ⊢ e1 : τ1 �
q1, and q = tabs J∀α:κ.τ1K strip(F,κ,Jλα:κ.τ1K) (Λα:κ.q1).
From now on we abbreviate strip(F,κ,Jλα:κ.τ1K) as strip.
Since q ∼ q′, we have that q′ = tabs σ a1 a2, and J∀α:κ.τ1K
≡ σ, and strip ∼ a1, and (Λα:κ.q1) ∼ a2. Since Γ′ ⊢ e′
: τ ′ � q′, we have that e′ = (Λα:κ′.e′1), and τ ′=(∀α:κ′.τ ′

1),
and Γ′,(α:κ′) ⊢ e′1 : τ ′

1 : q′1, and q′ = tabs J∀α:κ′.τ ′
1K

strip(F,κ′,Jλα:κ′.τ1′K) (Λα:κ′.q′1), and (Λα:κ.q1) ∼
(Λα:κ′.q′1). Therefore, κ=κ′ and q1 ∼ q′1. Since Γ ∼ Γ′

and κ=κ′, we have that Γ,(α:κ) ∼ Γ′,(α:κ′). By induc-
tion, e1 ∼ e′1. Therefore, (Λα:κ.e1) ∼ (Λα:κ′.e′1) There-
fore, e ∼ e′.

Suppose Γ ⊢ e : τ � q is by the fifth rule. Then e = (e1
σ) and Γ ⊢ e1 : (∀α:κ.τ1) � q1 and τ = (τ1[α:=σ]),
and q = tapp J∀α:κ.τ1K q1 Jτ1[α:=σ]K inst(J∀α:κ.τ1K,JσK).
From now on we abbreviate inst(J∀α:κ.τ1K,JσK) as inst. Since
q ∼ q′, we have that q′ = tapp σ1 a1 σ2 a2, and J∀α:κ.τ1K
≡ σ1, and q1 ∼ a1, and Jτ1[α:=σ]K ≡ σ2 and inst ∼ a2.

Since Γ′ ⊢ e′ : τ ′ � q′, we have that e′ = (e′1 σ′), and Γ′

⊢ e′1 : (∀α:κ′.τ ′
1) � q′1, and τ ′ = (τ ′

1[α:=σ′]), and q′1 =
tapp J∀α:κ′.τ ′

1K q′1 Jτ ′
1[α:=σ′]K inst(J∀α:κ′.τ1′K,Jσ′K). From

now on we abbreviate inst(J∀α:κ′.τ1′K,Jσ′K) as inst′. So
we have that J∀α:κ.τ1K ≡ J∀α:κ′.τ ′

1K, and q1 ∼ q′1, andJτ1[α:=σ]K ≡ Jτ ′
1[α:=σ′]K, and inst ∼ inst′. By induc-

tion e1 ∼ e′1. By Theorem 5.3, we have that (∀α:κ.τ1)
≡ (∀α:κ′.τ ′

1) and (τ1[α:=σ]) ≡ (τ ′
1[α:=σ′]). Therefore

κ=κ′. Since inst ∼ inst′, Lemma A.25 states that σ ≡ σ′.
Therefore, e ∼ e′.

Suppose Γ ⊢ e : τ � q is by the sixth rule. Then Γ ⊢ e
: τ1 � q. By induction, e ∼ e′.

Theorem 6.3. If ⟨⟩ ⊢ e1 : τ , and ⟨⟩ ⊢ e2 : τ , then
e1 ∼ e2 if and only if e1 ∼ e2.

Proof. (e1 ∼ e2) =⇒ (e1 ∼ e2): Suppose e1 ∼ e2. By
Lemma A.24, we have that q1 ∼ q2. Therefore, e1 ∼ e2.

(e1 ∼ e2) =⇒ (e1 ∼ e2):
Suppose e1 ∼ e2. Then q1 ∼ q2. By Lemma A.26, we

have that e1 ∼ e2.

A.4 Section 7 Proofs
Theorem 7.1. Op R τ ≡ R (JτK[F := R]).

Proof.
Op R τ

= (λF:∗ → ∗. λα:U. α F) R τ
≡ R (τ R)
= R ((λF:∗ → ∗. JτK) R)
≡ R (JτK[F := R]).

Theorem 7.2. If f = foldExp R abs′ app′ tabs′ tapp′,
and ⟨⟩ ⊢ e : τ � q, then f τ e. −→∗ (q[F:=R, abs:=abs′,
app:=app′, tabs:=tabs′, tapp:=tapp′]).

Proof. Suppose f = foldExp R abs′ app′ tabs′ tapp′, and
Γ ⊢ e : τ � q. Then,

f τ e
= (ΛF:∗ → ∗

λabs:Abs F. λapp:App F.
λtabs:TAbs F. λtapp:TApp F.
Λα:U. λe:Exp α.
e F abs app tabs tapp)
R abs′ app′ tabs′ tapp′ τ e

−→7 e R abs′ app′ tabs′ tapp′
= (ΛF:∗ → ∗.

λabs:Abs F. λapp:App F.
λtabs:TAbs F. λtapp:TApp F.
q) R abs′ app′ tabs′ tapp′

−→5 (q[F:=R, abs:=abs′, app:=app′,
tabs:=tabs′, tapp:=tapp′])

Lemma A.27. (JτK[F := Id]) −→∗ τ .

Proof. By induction on the structure of τ .
Suppose τ is a type variable α. Then JτK = α, so JτK[F

:= Id] = (α[F := Id]) = α, as required.
Suppose τ is an arrow type τ1 → τ2. Then JτK = FJτ1K → F Jτ2K, so (JτK[F := Id]) = (F Jτ1K → F Jτ2K)[F

:= Id] = Id (Jτ1K[F := Id]) → Id (Jτ2K[F := Id]). By
induction, (Jτ1K[F := Id]) −→∗ τ1, and (Jτ2K[F := Id])

−→∗ τ2, so JτK[F := Id] −→∗ Id τ1 → Id τ2 = (λα:∗. α)
τ1 → (λα:∗. α) τ2 −→2 τ1 → τ2 = τ , as required.

Suppose τ is a quantified type ∀α:κ.τ1. Then JτK =
∀α:κ. F Jτ1K, so JτK[F := Id] = ((∀α:κ. F J τ1K)[F :=
Id]) = (∀α:κ. Id (Jτ1K[F := Id])). By induction, (Jτ1K[F
:= Id]) −→∗ τ1, so (JτK[F := Id]) −→∗ ∀α:κ. Id τ1 =
∀α:κ. (λα:∗.α) τ1 −→ ∀α:κ.τ1 = τ , as required.

Suppose τ is a λ-abstraction λα:κ.τ1. Then JτK =
λα:κ.Jτ1K, so JτK[F := Id] = (λα:κ.(Jτ1K[F := Id])). By
induction, (Jτ1K[F := Id]) −→∗ τ1, so (JτK[F := Id]) =
λα:κ.τ1 = τ , as required.

Suppose τ is a type application τ1 τ2. Then JτK = Jτ1KJτ2K, so JτK[F := Id] = (Jτ1K[F := Id]) (Jτ2K[F := Id]).
By induction, (Jτ1K[F := Id]) −→∗ τ1, and Jτ2K[F := Id]
−→∗ τ2, so JτK[F := Id] −→∗ τ1 τ2 = τ , as required.

Theorem 7.3. If Γ ⊢ τ : ∗, then Op Id τ ≡ τ .

Proof. By Theorem 7.1, Op Id τ ≡ Id (JτK[F := Id]) ≡JτK[F := Id]. By Lemma A.27, (JτK[F := Id]) ≡ τ , as
required.

We introduce new notation for an abstract substitutions:
the application of substitution θ to a term e is written θ(e).
We write θ[x:=e] to denote an extention of θ. In particular,
(θ[x:=e1])(e2) = θ(e2[x:=e1]).

Lemma A.28. If Γ ⊢ e : τ � q, then q[F := Id, abs
:= unAbs, app := unApp, tabs := unTAbs, tapp := un-
TApp] −→∗e.

Proof. Suppose that ⟨⟩ ⊢ e : τ � q. Let θ = [F := Id, abs
:= unAbs, app := unApp, tabs := unTAbs, tapp := un-
TApp]. We want to show that θ(q) −→∗ e. We proceed
by induction on the structure of e.

Suppose that e is a variable x. Then q = x, so θ(q) = x
as required.

Suppose that e is a λ-abstraction λx:τ1.e1, and that
τ=τ1 → τ2. Then Γ,(x:τ1) ⊢ e1 : τ2 � q1, and q = absJτ1K Jτ2K (λx:F Jτ1K. q1). By induction, we have that
θ(q1) −→∗ e1. By Lemma A.27, θ(Jτ1K) −→∗τ1 and
θ(Jτ2K) −→∗τ2. Therefore,

θ(q)
= θ(abs Jτ1K Jτ2K (λx:F Jτ1K. q1))
= unAbs θ(Jτ1K) θ(Jτ2K) (λx:Id θ(Jτ1K). θ(q1))

−→∗ unAbs τ1 τ2 (λx:τ1. e1)
= (Λα:*. Λβ:*. λf: α → β. f) τ1 τ2 (λx:τ1. e1)

−→3 (λx:τ1. e1)
= e.
Suppose that e is an application e1 e2. Then Γ ⊢ e1 : τ1

→ τ � q1, and Γ ⊢ e2 : τ1 � q2, and cq = app Jτ1K JτK q1

q2. By Lemma A.27, θ(Jτ1K) −→∗τ1 and θ(JτK) −→∗τ . By
induction, θ(q1) −→∗e1 and θ(q2) −→∗e2. Therefore,

θ(q)
= θ(app Jτ1K JτK q1 q2)
= unApp θ(Jτ1K) θ(JτK) θ(q1) θ(q2)

−→∗ unApp τ1 τ e1 e2
= (Λα:*. Λβ:*. λf: α → β. f) τ1 τ2 e1 e2

−→3 e1 e2
= e.
Suppose that e is a Λ-abstraction Λα:κ.e1. Then τ =

∀α:κ.τ1, and Γ,(α:κ) ⊢ e1 : τ1 � q1, and q = tabs τ2

strip (Λα:κ.q1), for some some term strip. By induc-
tion, θ(q1) −→∗e1. Therefore,

θ(q)
= θ(tabs τ2 strip (Λα:κ. q1))
= unTAbs θ(τ2) θ(strip) (Λα:κ. θ(q1))

−→∗ unTAbs θ(τ2) θ(strip) (Λα:κ. e1)
= (Λα:*. λs:Strip F α. λf:α. f)

τ2 strip (Λα:κ. e1)
−→3 (Λα:κ. e1)

= e.
Suppose that e is a type application e1 σ. Then Γ ⊢

e1 : (∀α:κ.τ), and Γ ⊢ σ : κ, and τ = τ1[α:=σ], and
q = tapp J∀α:κ.τ1K q1 JτK (λx:J∀α:κ.τ1K. x JσK) By
Lemma A.27, θ(J∀α:κ.τ1K) −→∗J∀α:κ.τ1K, and θ(JσK)−→∗σ,
and θ(Jτ1[α:=σ]K) −→∗(τ1[α:=σ]). By induction, θ(q1)
−→∗e1. Therefore,

θ(q)
= θ(tapp J∀α:κ.τ1K q1 Jτ1[α:=σ]K

(λx:J∀α:κ.τK. x JσK))
= unTApp θ(J∀α:κ.τ1K) θ(q1) θ(Jτ1[α:=σ]K)

(λx:θ(J∀α:κ.τK). x θ(JσK)))
−→∗ unTApp (∀α:κ.τ1) e1 (τ1[α:=σ])

(λx:(∀α:κ.τ). x σ)
= (Λα:*. λf:α. Λβ:*. λg:α → β. g f)

(∀α:κ.τ1) e1 (τ1[α:=σ]) (λx:(∀α:κ.τ). x σ)
−→4 (λx:(∀α:κ.τ). x σ) e1
−→1 e1 σ

= e

Theorem 7.4. If ⟨⟩ ⊢ e : τ , then unquote τ e −→∗ e.

Proof. Suppose ⟨⟩ ⊢ e : τ . Let q be such that ⟨⟩ ⊢ e : τ �
q. By Theorem 7.2, we have that unquote τ e −→∗ q[F :=
Id, abs := unAbs, app := unApp, tabs := unTAbs, tapp
:= unTApp].

By Lemma A.28, q[F := Id, abs := unAbs, app := un-
App, tabs := unTAbs, tapp := unTApp] −→∗e. Therefore
unquote τ e −→∗e.

Theorem 7.5. If Γ ⊢ τ : ∗, then Op KBool τ ≡ Bool.

Proof. By Theorem 7.1, we have that Op KBool τ ≡ KBool
(JτK[F := KBool]) = (λα:∗. Bool) (JτK[F := KBool]) ≡
Bool.

Theorem 7.6. Suppose ⟨⟩ ⊢ e : τ . If e is an abstraction
then isAbs τ e −→∗true. Otherwise e is an application and
isAbs τ e −→∗false.

Proof. Suppose ⟨⟩ ⊢ e : τ . Let q be such that ⟨⟩ ⊢ e : τ� q. By Theorem 7.2, we have that isAbs τ e −→∗ q[F
:= KBool, abs := isAbsAbs, app := isAbsApp, tabs :=
isAbsTAbs, tapp := isAbsTApp].

Let θ = [F := KBool, abs := isAbsAbs, app := isAb-
sApp, tabs := isAbsTAbs, tapp := isAbsTApp].

We now want to show that θ(q) −→∗ true if e is an
abstraction, and that θ(q) −→∗ false if e is an application.
We proceed by case analysis on the structure of e.

Suppose e is a variable x. Then (x:τ) ∈ ⟨⟩, which is a
contradiction. Therefore our assumption that e is a variable
is false.

Suppose e is a λ-abstraction (λx:τ1.e1). Then τ = τ1

→ τ2, and ⟨⟩,x:τ1 ⊢ e1 : τ2 � q1, and

θ(q)
= θ(abs Jτ1K Jτ2K (λx:F Jτ1K. q1))
= isAbsAbs θ(Jτ1K) θ(Jτ2K) θ(λx:F Jτ1K. q1)
= (Λα:∗. Λβ:∗. λf:Bool → Bool. true)

θ(Jτ1K) θ(Jτ2K) θ(λx:F Jτ1K. q1)
−→3 true
Suppose e is an application e1 e2. Then Γ ⊢ e1 : τ2 →

τ � q1, and Γ ⊢ e2 : τ2 � q2, and
θ(q)

= θ(app Jτ2K JτK q1 q2)
= isAbsApp θ(Jτ2K) θ(JτK) θ(q1) θ(q2)
= (Λα:∗. Λβ:∗. λf:Bool. λx:Bool. false)

θ(Jτ2K) θ(JτK) θ(q1) θ(q2)
−→4 false
If e is a type abstraction (Λα:κ.e1), then τ = (∀α:κ.τ1),

and ⟨⟩,(α:κ) ⊢ e1 : τ1 � q1, and
θ(q)

= θ(tabs JτK strip (Λα:κ.q1))
= isAbsTAbs θ(JτK) θ(strip) θ(Λα:κ.q1)
= (Λα:∗. λstrip:Strip KBool α. λf:α. true)

θ(JτK) θ(strip) θ(Λα:κ.q1)
−→3 true
Suppose e is a type application e1 σ. Then ⟨⟩ ⊢ e1 :

(∀α:κ.τ1) � q1, and τ = (τ1[α:=σ]). Therefore,
θ(q)

= θ(tapp Jτ1K q1 JτK inst)
= isAbsTApp θ(Jτ1K) θ(q1) θ(JτK) θ(inst)
= (Λα:∗. λf:Bool. Λβ:∗. λinst:α → Bool.

false)
θ(Jτ1K) θ(q1) θ(JτK) θ(inst)

−→4 false

Theorem 7.7. If Γ ⊢ τ : ∗, then Op KNat τ ≡ Nat.

Proof. Similar to the proof of Theorem 7.5.

Lemma A.29. churchn −→∗(Λα:∗. λz:α. λs:α → α.
sn z).

Proof. By induction on n.
If n=0, then churchn = zero = (Λα:∗. λz:α. λs:α →

α. z) = (Λα:∗. λz:α. λs:α → α. s0 z).
Suppose n>0. By induction, churchn−1 −→∗(Λα:∗.

λz:α. λs:α → α. sn−1 z). We have that churchn = succ
churchn−1 −→∗succ (Λα:∗. λz:α. λs:α → α. sn−1 z)
−→ Λα:*. λz:α. λs:α → α. s ((Λα:∗. λz:α. λs:α →
α. sn−1 z) α z s) −→3 Λα:*. λz:α. λs:α → α. s (sn−1

z) = Λα:*. λz:α. λs:α → α. sn z

Lemma A.30. plus churchm churchn −→∗churchm+n.

Proof.
plus churchm churchn

= churchm Nat churchn succ
−→∗ succm churchn

= churchm+n

Lemma A.31. If Γ ⊢ e : τ � q, and Γ binds term vari-
ables x1, . . . , xn, and θ=[F := KNat, abs := sizeAbs,
app := sizeApp, tabs := sizeTAbs, tapp := sizeTApp,
x1 := church1, x2 := church1, . . . xn := church1], then
θ(q) −→∗church|e|.

Proof. Suppose Γ ⊢ e : τ : q, and θ is of the required form
for Γ.

We proceed by induction on the structure of the deriva-
tion Γ ⊢ e : τ � q.

Suppose e is a variable x. Then |e| = 1 and (x:τ) ∈ Γ, so
θ maps x to church1. We have that θ(q) = θ(x) = church1
as required.

Suppose e is an abstraction (λx:τ1.e1). Then τ = τ1

→ τ2, and Γ,(x:τ1) ⊢ e1 : τ2 � q1, and Let θ′ = θ[x :=
church1]. Then θ′ is of the required form for Γ,(x:τ1). By
induction, θ′(q1) −→∗church|e1|. Therefore,

θ(q)
= θ(abs Jτ1K Jτ2K (λx:F Jτ1K.q1))
= sizeAbs θ(Jτ1K) θ(Jτ2K) (λx:KNat θ(Jτ1K).θ(q1))

−→∗ succ ((λx:Nat.θ(q1)) (succ zero))
−→∗ succ θ(q1[x := succ zero])

= succ θ(q1[x := succ zero])
= succ (θ[x := succ zero])(q1)
= succ (θ[x := church1])(q1)
= succ θ′(q1)

−→∗ succ church|e1|
= church1+|e1|
= church|e|.

Suppose e is an application e1 e2. Then Γ ⊢ e1 : τ2 → τ
: q1 and Γ ⊢ e2 : τ2 : q2. By induction, θ(q1) −→∗church|e1|
and θ(q2) −→∗church|e2|. Therefore,

θ(q)
= θ(app Jτ2K JτK q1 q2)
= sizeApp θ(Jτ2K) θ(JτK) θ(q1) θ(q2)

−→∗ succ (plus θ(q1) θ(q2))
−→∗ succ (plus church|e1| church|e2|)
−→∗ succ church|e1|+|e2| (By Lemma A.30)

= church1+|e1|+|e2|
= church|e1 e2|.

Suppose e is a type abstraction Λα:κ.e1. Then τ=
(∀α:κ.τ1), and Γ,(α:κ) ⊢ e1 : τ1 � q1, and q = tabsJτK strip(F,κ,Jλα:kappa.τ1K) (Λα:κ.q1). From now on we
use strip to refer to strip(F,κ,Jλα:kappa.τ1K). We have
that θ is of the required form for Γ,(α:κ), so by induc-
tion, θ(q1) −→∗church|e1|. By Lemma A.11, we have that
(θ(strip) Nat (Λα:∗. λx:Nat. x) (Λα:κ.church|e1|))
−→∗church|e1|[α:=σ] = church|e1|, where κ � σ. Now,
we have that

θ(q)
= θ(tabs JτK strip (Λα:κ.q1))
= sizeTAbs θ(JτK) θ(strip) (Λα:κ.θ(q1))

−→∗ succ (θ(strip) Nat (Λα:∗. λx:Nat. x)
(Λα:κ.θ(q1)))

−→∗ succ (θ(strip) Nat (Λα:∗. λx:Nat. x)
(Λα:κ.church|e1|))

−→∗ succ (church|e1|)
= church1+|e1|
= church|e|.

Suppose e is a type application e1 σ. Then Γ ⊢ e1 :
(∀α:κ.τ1) � q1 and q = sizeTApp J∀α:κ.τ1K q1 Jτ1[α:=σ]K
inst(J∀α:κ.τK,JσK). From now on, we use inst to refer
to inst(J∀α:κ.τK,JσK). By induction, θ(q1) −→∗church|e1|.
Therefore,

θ(q)
= θ(tapp J∀α:κ.τ1K q1 Jτ1[α:=σ]K inst)
= sizeTApp θ(J∀α:κ.τ1K) θ(q1)

θ(Jτ1[α:=σ]K) θ(inst)
−→∗ succ θ(q1)
−→∗ succ church|e1|

= church1+|e1|
= church|e|.

Theorem 7.8.
If ⟨⟩ ⊢ e : τ and |e|=n, then size τ e −→∗churchn

Proof. Now, suppose ⟨⟩ ⊢ e : τ . By Theorem 7.2, we have
that size τ e −→∗q[F := KNat, abs := sizeAbs, app :=
sizeApp, tabs := sizeTAbs, tapp := sizeTApp]. Let θ =
[F := KNat, abs := sizeAbs, app := sizeApp, tabs :=
sizeTAbs, tapp := sizeTApp]. Since e is closed, the θ
maps each free variable in e to church1. Therefore, by
Lemma A.31, θ(q) −→∗church|e|.

Theorem 7.9. If Γ ⊢ τ : ∗, then Op KBools τ ≡ Bools.

Proof. Similar to the proof of Theorem 7.5.

Lemma A.32. 1. If λx:τ.e is not normal, then e is not
normal.

2. If Λα:κ.e is not normal, then e is not normal.
3. If e1 e2 is normal, then e1 e2 is neutral.
4. If e τ is normal, then e τ is neutral.
5. If e τ is not normal, then e is not normal and neutral.

Proof. (1) Suppose (λx:τ.e) is not normal, and suppose
further that e is normal. Then (λx:τ.e) is normal. Contra-
diction. Therefore, our assumption e is normal is false.

(2) Similar to (1).
(3) Suppose e1 e2 is normal. Then e1 is normal and

neutral, and e2 is normal. Therefore, e1 e2 is normal and
neutral.

(4) Similar to (3).
(5) Suppose e τ is not normal. Suppose further that e is

normal. Then e τ is normal. Contradiction. Therefore, our
assumption e is normal is false.

Lemma A.33. If Γ ⊢ e : τ � q, and Γ binds terms
variables x1 . . . xn, and θ=[F := KNat, abs := nfAbs,
app := nfApp, tabs := nfTAbs, tapp := nfTApp, x1 :=
bools true true, x2 := bools true true, . . . xn := bools
true true], then one of the following is true:
1. e is normal and neutral and θ(q) −→∗bools true true.
2. e is normal but not neutral and θ(q) −→∗bools true

false.
3. e is not normal and θ(q) −→∗bools false false.

Proof. Suppose Γ ⊢ e : τ : q, and θ is of the required form
for Γ.

We proceed by induction on the structure of the deriva-
tion Γ ⊢ e : τ � q.

Suppose e is a variable x. Then (x:τ) ∈ Γ, and q = x.
Therefore, θ(q) = bools true true. Since e is a variable, it
is normal and neutral. Therefore, (1) is true.

Suppose e is a λ abstraction λx:τ1.e1. Then Γ,(x:τ1) ⊢
e1 : τ2 � q1, and q = abs Jτ1K Jτ2K (λx:F Jτ1K. q1). The
substitution (θ[x:=bools true true]) is of the required
form for Γ,(x:τ1), so by induction, one of (1), (2), or (3) is
true for Γ,(x:τ1) ⊢ e1 : τ2 � q1 and (θ[x:=bools true
true])(q1). Now, we have that:

θ(q)
= θ(abs Jτ1K Jτ2K (λx:F Jτ1K. q1))
= nfAbs θ(Jτ1K) θ(Jτ2K) (λx:KBools θ(Jτ1K). θ(q1))

−→∗ bools (fst (θ(q1)[x:=bools true true])) false)
= bools (fst θ(q1[x:=bools true true])) false
= bools (fst (θ[x:=bools true true])(q1)) false

There are two cases: either e is normal and not neutral, or
e is not normal.

Suppose e is normal and not neutral. Then e1 is normal.
Then (1) or (2) is true for e1. Then either (θ[x:=bools
true true])(q1) −→∗bools true true or (θ[x:=bools
true true])(q1) −→∗bools true false. In either case
fst (θ[x:=bools true true])(q1) −→∗true. Therefore,

θ(q)
−→∗ bools (fst (θ[x:=bools true true])(q1)) false
−→∗ bools true false
So (2) is true for e.

Suppose e is not normal. By Lemma A.32, e1 is not nor-
mal. Therefore, (θ[x:=bools true true])(q1) −→∗bools
false false, and we have that

θ(q)
−→∗ bools (fst (θ[x:=bools true true])(q1)) false
−→∗ bools (fst (bools false false)) false
−→∗ bools false false
So (3) is true for e.

Suppose e is an application e1 e2. Then Γ ⊢ e1 : τ2 →
τ � q1, and Γ ⊢ e2 : τ2 � q2, and q = app Jτ2K JτK q1 q2.
We have that

θ(q)
= θ(app Jτ2K JτK q1 q2)
= nfApp θ(Jτ2K) θ(JτK) θ(q1) θ(q2)

−→∗ bools (and (snd θ(q1)) (fst θ(q2)))
(and (snd θ(q1)) (fst θ(q2)))

By induction, one of (1), (2) or (3) is true for each of e1
and e2 with θ. Suppose e is normal and neutral. Then e1 is
normal and neutral and e2 is normal. Therefore, (1) is true
for e1 and either (1) or (2) is true for e2. In particular,
θ(q1) −→∗bools true true and either θ(q2) −→∗bools
true true or θ(q2) −→∗bool true false. Therefore, fst
θ(q2) −→∗true. Now, we have that

θ(q)
−→∗ bools (and (snd θ(q1)) (fst θ(q2)))

(and (snd θ(q1)) (fst θ(q2)))
−→∗ bools (and true true) (and true true)
−→∗ bools true true
Therefore, (1) is true for e.

Suppose e is normal but not neutral. By Lemma A.32, e
is neutral. Contradiction.

Suppose e is not normal. Then one of the following is
true e1 is not normal, e1 is normal but not neutral, or e2 is
not normal. Suppose e1 is not normal. Then (3) is true for
e1, so θ(q1) −→∗bools false false. Therefore,

θ(q)
−→∗ bools (and (snd θ(q1)) (fst θ(q2)))

(and (snd θ(q1)) (fst θ(q2)))
−→∗ bools (and false (fst θ(q2)))

(and false (fst θ(q2)))
−→∗ bools false false
So (3) is true for e.

Suppose e1 is normal but not neutral. Then (2) is true
for e1, so θ(q1) −→∗bools true false. Therefore θ(q)
−→∗bools false false similarly to the previous case, so
(3) is true for e.

Suppose e2 is not normal. Then (3) is true for e2, so
θ(q2) −→∗bools false false. Therefore,

θ(q)
−→∗ bools (and (snd θ(q1)) (fst θ(q2)))

(and (snd θ(q1)) (fst θ(q2)))
−→∗ bools (and (snd θ(q1)) false)

(and (snd θ(q1)) false)
−→∗ bools false false
So (3) is true for e.

Suppose e is a type abstraction Λα:κ.e1. Then τ =
(∀α:κ.τ1), and Γ,(α:κ) ⊢ e1 : (∀α:κ.τ1) � q1, and κ �

σ, and q = tabs J∀α:κ.τ1K strip(KBools,J∀α:κ.τ1K,Jτ1K[α:=σ],σ)

(Λα:κ.q1). From now on we will abbreviate
strip(KBools,J∀α:κ.τ1K,Jτ1K[α:=σ],σ) as strip. By Lemma A.11,
we have that (θ(strip) Bools (Λα:*.λx:Bools.x)
(Λα:κ.θ(q1))) −→∗(θ(q1)[α:=σ]). Therefore,

θ(q)
= θ(tabs J∀α:κ.τ1K strip (Λα:κ.q1))
= nfTAbs θ(J∀α:κ.τ1K) θ(strip) (Λα:κ.θ(q1))

−→∗ bools
(fst (θ(strip) Bools (Λα:*.λx:Bools.x)
(Λα:κ.θ(q1))))

false)
= bools

(fst (strip Bools (Λα:*.λx:Bools.x)
(Λα:κ.θ(q1))))

false
−→∗ bools (fst (θ(q1)[α:=σ])) false
By induction, one of (1), (2), or (3) is true for e1 and θ.
We have two cases: either e is normal and not neutral, or e
is not normal. Suppose e is normal and not neutral. Then
e1 is normal, and either (1) or (2) is true for e1 and θ.
Then either θ(q1)[α:=σ] −→∗(bools true true)[α:=σ]
= bools true true, or θ(q1)[α:=σ] −→∗(bools true
false)[α:=σ] = bools true false. In either case,
fst (θ(e1)[α:=σ]) −→∗true. Therefore,

θ(q)
−→∗ bools (fst (θ(q1)[α:=σ])) false
−→∗ bools true false
So (2) is true for e.

Suppose e is not normal. Then by Lemma A.32, e1
is not normal. Therefore, θ(q1)[α:=σ] −→∗(bools false
false)[α:=σ] = bools false false. Therefore,

θ(q)
−→∗ bools (fst (θ(q1)[α:=σ])) false
−→∗ bools (fst (bools false false)) false

= bools false false
So (3) is true for e.

Suppose e is a type application e1 σ. Then Γ ⊢ e1 :
(∀α:κ.τ1) � q1, and τ = τ1[α:=σ], and q = tapp J∀α:κ.τ1K
q1 Jτ1[α:=σ]K inst(J∀α:κ.τ1K,JσK). From now on, we abbre-
viate inst(J∀α:κ.τ1K,JσK) as inst. We have that

θ(q)
= θ(tapp J∀α:κ.τ1K q1 Jτ1[α:=σ]K inst)
= nfTApp θ(J∀α:κ.τ1K) θ(q1) θ(Jτ1[α:=σ]K) θ(inst)

−→∗ bools (snd θ(q1)) (snd θ(q1))
By induction, one of (1), (2), or (3) is true for e1 and θ. Sup-
pose e is normal and neutral. Then e is normal and neutral.
Therefore, θ(q1) −→∗bools true true. Then we have that

θ(q)
−→∗ bools (snd θ(q1)) (snd θ(q1))
−→∗ bools true true
So (1) is true for e.

Suppose e is normal and not neutral. By Lemma A.32,
e is neutral. Contradiction. Therefore, it is false that e is
normal and not neutral.

Suppose e is not normal. By Lemma A.32, e1 is not nor-
mal and neutral. Therefore, either (2) or (3) is true for e1, so
either θ(q1) −→∗bools false false, or θ(q1) −→∗bools
true false. In either case, snd θ(q1) −→∗false. There-
fore, we have that:

θ(q)
−→∗ bools (snd θ(q1)) (snd θ(q1))
−→∗ bools false false
So (3) is true for e.

Theorem 7.10. Suppose ⟨⟩ ⊢ e : τ .

1. If e is β-normal, then nf τ e −→∗true.
2. If e is not β-normal, then nf τ e −→∗false.

Proof. Suppose ⟨⟩ ⊢ e : τ . Let q be such that ⟨⟩ ⊢ e : τ� q. By Theorem 7.2, we have that nf τ e −→∗fst (q[F
:= KNat, abs := nfAbs, app := nfApp, tabs := nfTAbs,
tapp := nfTApp]). Let θ=[F := KNat, abs := nfAbs, app
:= nfApp, tabs := nfTAbs, tapp := nfTApp], so nf τ e
−→∗fst θ(q). Since ⟨⟩ is empty, θ is of the required form
for lemma A.33.

We proceed by case analysis on e.
Suppose e is normal and neutral. By Lemma A.33,

θ(q) −→∗bools true true. Therefore, nf τ e −→∗fst
θ(q) −→∗true.

Suppose e is normal and not neutral. By Lemma A.33,
θ(q) −→∗bools true false. Therefore, nf τ e −→∗fst
θ(q) −→∗true.

Suppose e is not normal. By Lemma A.33, θ(q)−→∗bools
false false. Therefore, nf τ e −→∗fst θ(q) −→∗false.

