
Science of Computer Programming 17 (1991) 35-75
Elsevier

35

Matthias Felleisen*
Department of Computer Science, Rice University, Houston, TX 77251-1892, USA

Communicated by N. B. Jones

Revised March 1991

Abstract

Felleisen, M., On the expressive power of programming languages, Science of Computer Program-
ming 17 (1991) X-75.

The literature on programming languages contains an abundance of informal claim; on the relative
expressive power of programming languages, but there is no framework for formalizing such
statements nor for deriving interesting sonsequences. As a first step in this direction, we develop
a formal notion of expressiveness and investigate its properties. To validate the theory, we analyze
some widely held beliefs about the expressive power of several extensions of functional languages.
Based on these results, we believe that our system correctly captures many of the informal ideas
on expressiveness, and that it constitutes a foundation for further research in this direction.

1. Comparing programming languages

The literature on programming languages contains an abundance of informal
claims on the expressive power of programming languages. Arguments in these
contexts typically assert the expressibility or non-expressibility of programming
constructs relative to a language. Unfortunately, programming language theory does
not provide a formal framework for specifying and verifying such statements.
Comparing the set of computable functions that a language can represent is useless
because the languages in question are usually universal; other measures do not exist.
The lack of a comparison relation makes it impossible to draw any firm conclusions
from expressiveness claims or to use them for an objective decision about the use
of a programming language.

Landin [24] was the first to propose the development of a formal framework for
comparing programming languages. He studied the relationship between program-
ming languages and constructs, and began to classify some as “essential” and some

* Supported in part by NSF gram CCR 89-17022 and Darpa/NSF grant CCR 87-20277.

0167.6423/91/$03.50 @ 199l--Elscvicr Science Publishers I&V. All rights reserved

36 M. Felleisen

as “syntactic sugar”. A typicai example of an inessential construct in Landin’s sense

is the let-expression in a functional language with first-class procedures. It declares

and initializes a new, lexically-scoped variable before evaluating an expression.
Whether it is present or absent is inconsequential for a programmer since

let x be u in e is expressible as apply (procedure (x) e) U.

Similarly, few programmers would consider it a loss if a goto-free, Algal-like
language had a while but not a repeat construct. After all,

repeat s until e is expressible as s; while le do s.

Others, most notably Reynolds [36, 371 and Steele and Sussman [40], followed
Landin’s example. They introduced the informal notion of the core of a language

and studied the expressiveness of imperative extensions of higher-order functional

languages. Steele and Sussman [SO: 291 summarized the crucial idea behind this
kind of classification of language features with the remark that a number of program-

ming constructs are expressible in an applicative notation based on syntactically
local, structure- all: behavior-preserving translations, but that some, notably control

statements and assignments, involve complex reformulations of large fractions of

programs.
In the realm of logic, Kleene anticipated the idea of expressible or eliminable

syntacticsymbols in his study of formal systems [21: $741. Troelstra [42: I.21 resumed
this work and introduced further refinements and extensions. Roughly, the additional

symbols of a conservative extension of a core logic are eliminable if there is a

translation from the extended logic to its core that satisfies a number of conditions.
Two of these are important for our purposes. First, the mapping is the identity on

the formulae of the core langtiage and is homomorphic in the logical connectors.

Second, if a formula is provable in the extension then so is its translation in the

core. Clearly, these two conditions imply that this translation preserves the structure
of formulae and removes symbols on a local basis.

By adapting the ideas about the relationship among formal systems to program-

ming languages, we obtain a relation that determine2 whether a programming

language can express a programming construct. More precisely, given two universal

programming language.5 rhat oniy differ by a set of programming constructs,

{c IV...? c,,}, the relation holds if the additional constructs do not make the larger

language more expressive than the smaller one. Here “more expressive” means that
the translation of a program with occurrences of one of the constructs c, to the

smaller language requires a global reorganization of the entire program. A first

analysis shows that this measure of expressiveness supports many informal judge-

ments in the literature. Moreover, we discover that an increase in expressive power
comes at the expense of less “intuitive” semantic equivalence relations. We also
discuss some attempts at generalizing the measure to a comparison relation for
arbitrary programming languages.

7&e expressive pow * qf ptwgramming languages 37

The next section briefly reviews the logical notions of eliminable symbols and

definitional extensions. In subsequent sections, we propose a formal model of

expressibility and expressiveness along the lines of logical expressiveness, investigate

some of its properties, and analyze the expressive powers of several extensions of

functional languages. More specifically, we introduce our formal framework of

expressiveness based on the notion of expressibility. We demonstrate the abstract

concepts by proving some sample theorems about A-calculus-based languages as
well as a number of meta-theorems. Next, we study the expressiveness of an idealized

version of Scheme and verify the informal expressiveness philosophy behind its

design [4i :. Following this analysis, we briefly speculate how the use of a more
expressive language increases programming convenience. Finally, we compare our

ideas to related work and address some open questions.

2. Eliminable symbols and definitional extensions

The theory of comparing fornal systems is a peripheral topic in logical studies
and finds little or no space in most textbooks. The following short overview summar-

izes and adapts Troelstra’s [42: I.21 descriptions of Kleene’s work [21].

A formal system is a triple of sets: expressions, formulae, and theorems. The second

is a subset of the first, the third a subset of the second. Expressions are freely
generated (in the sense of a term algebra) from a number of non-logical and logical

operators, e.g., A, +, -, etc. The set of formulae is a recursive subset of the set of

expressions and satisfies certain well-formedness criteria. The set of theorems is the

subset of the formulae that the formal system defines to be true. If 2 is a formal

system,, then Exp(Y) is its set of expressions, Fm(.Y) the set of formulae, and

Thm(9) the set of theorems; LZ I- t also means t is a theorem of 9.
A conservative extension 3 of a formal system 9’ is a forTa! system whose

expressions are a superset of the expressions over Y’, generated from a richer set

of operators, and whose formulae and theorems restricted to the expressions of 2’

are the formulae and theorems of .Y’:

Fm(.Y)n Exp(Yj = Fm(9’); Thm(9) n Exp(Y’) = Thm(Y’).

A conservative extension 9 is a definitional extension of 9 if there is a mapping

cp: Exp(Y) + Exp(Y) that satisfies the following conditions:

Fl <p(J) E Fm(Y’) for eachfE Fm(Z’);

F2 cp(f) =f for allfE Fm(Y’);

F3 cp is homomorphic in all logical operators;

F4 9 I- t if and only if 9’ t- cp(t); and

F5 Yl-- :=cp(f).

Kleene referred to those symbols that generate the additional expressions of the
extended formal system as eliminable.

38 M. Felleisen

Remark 1 (Weak Expressibil-cty). Kleene’s original definition contains a weaker
version of Condition 4, namely,

F4’ ifZ+ t then YI- (g(f).

Based on condition FS, it is possible to show that the two definitions are equivalent,
assuming the usual axioms for f) [21: 8 741. As we shall discuss in several remarks
below, this is not the: case in the context of programming languages. Instead,
condition F4’ leads to a different but related notion of language expressiveness. Cl

3. A formal theory of expressiveness

As a first step towards a formal theory of expressiveness for programming
languages, we adapt the logical theory of eliminable symbols to the programming
language context. We develop the idea of a programming language as a formal
system and reinterpret the concepts of conservative extension and eliminability
accordingly, Since many of the examples in the work of L.;ndin, Reynolds, Steele,
and Sussman preserve not only the global structure of the program but also the
local structure of the transformed phrases, we consider a stricter notion of elimin-
ability as a second step. We refer to this second notion as PMCYO expressibility. It
satisfies the additional constraint that the transformation pf eliminated phrases is
always compositional. In the twro subsections on the respective topics, we prove
theorems about the eliminability and non-eliminability of programming constructs
and apply them to a simplistic prototype language based on the A-calculus. Both
notions of expressibility suggest natural comparative measures of the expressive
power of programming languages, which we present in the third subsection.

3.1. Expressibility

Like a formal system, a programming language is a system of subsets of a general
language. More precisely, a programming language is a set of phrases, a subset of
programs, and a semantics that determines some aspects of the behavior of programs.

Definition 3.1 (Programming Language). A programming language 9 consists of

0 a set of Z-phrases, which is a set of freely generated abstract syntax trees (or
terms), based on a possibly infinite’ number of function symbols IF, IF,, . . . with
arities a, aI, . . . ;

a set of .Xprograms, which is a non-empty, recursive subset of the set of phrases;
and

’ We assume that there is enough structure on an infinite set of constructors for specifying the
decidability of predicates and the recursiveness of translations on the set of phrases. In the following
examples, this is obviously the case.

lhe expressive power of programming languages 39

a semantics, euul,, which is a recursively enumerable predicate on the set of
%programs. If eu& holds for a program P, the program terminates.

The fuflcthon symbols are referred to as programming constructs or programming

facilities. Cl

Definition 3.1 is an abstraction of the typical specifications of many rea!istic
programming languages. Most languages have a context-free syntax yet enforce
additional context-sensitive constraints by recursive’ decision procedures. Examples

of such constraints are scoping’ and typing rules, which ensure that names only

occur in certain pieces of text and only range over a restricted set of values.

To avoid restrictive assumptions about the set of programming languages, the

Gefinition only requires that the semantics observe the termination behavior of

programs. By omitting any references to the characteristics of results, it is possible
to consider programming languages with and without observable data. For program-
ming languages with simple output data, i.e., constants or opaque representations

of procedures, the definition is in many cases equivalent to a definition that refers

to the observable output of a program. For a consideration of languages with infinite

output, e.g., through imperative output statements or through potentially infinite

lists, the definition needs some adjustments.

Finally, the above definition of a programming language also shows that, in a

certain sense, a programming language is a formal system. The set of phrases
corresponds to the expressions of a formal system, the set of programs plays the

role of the set of formulae, and the set of terminating programs is the analog of the
set of theorems. In the terminology of universal algebra, the set of expressions is

the universe of a free term algebra [5]; instead of relying on the more typical

algebraic approach of equational restrictions, the definition uses arbitrary recursive

predicates for filtering out the interesting subset of programs. Unlike logic, the

programming language world does not know such ubiquitous constructs as the
logical connectors.

Our prototypical example of a programming language is a derivative of the

language A of the pure h-calculus [3]. Figure 1 summarizes its (concrete) syntax

and semantics. In order to compare the expressiveness of call-by-value and call-by-

name procedures later in this section, we extend A with a new constructor, A,, and

rename A to A,,. More specifically, the A-phrases are generated from a set of variables
(0-ary constructors), {x, J’, z, . . .}, and two families of unary constructors, one for

’ A notable exception is Scheme as defined in the standard report [35], which only has a recursively
enumerable set of programs: An expression is a Scheme program if and only if it has the same result

for all possible evaluation orders in its applications. We consider this an unfortunate aberration rather
than an interesting extension of our definition.

’ Although m=rst languages impose lexical scoping, Definition 3.1 or+ accounts for this fact through
the recursive selection of programs from the set of phrases. An explicit inclusion sf the lexical scoping

structure through a Church encoding [7] of the language in a typed lambda calcuius is a feasible and
interesting alternative but would probably lead to a slightly different definition of expressibility and

expressiveness.

40 M. Felleisen

Phrases

Programs

e ::= 2 1 V 1 (ee) (e;cpressions)

V ::= (&z.e) 1 (&z.e) (values)

e is a program if and only if fv(e) = 0

where fv(e) is f,he set of free variables in e

Semantics
e&A(e) holds if and only if e -* v for some v

Evaluation Contexts
E ::= a 1 ((X,z.e)E) I (Ee)

Reduction Steps

E((A,g.e)e’) - E(e[z/e’] j

E((U.e)V) - E(e[+])

where e[z/e’] is the capture-free substituion of e’ for all free x in e

(4

(P”)

Fig. 1. The programming language .t.

each variable X: h,x : term + term (call-by-value abstraction), hrrx : term + term (call-

by-name abstraction), and one binary constructor: . : term x term + term (juxtaposi-

tion). Below, A, and A,, denote the sets of all A-constructors. For readability, we
use concrete syntax for A-terms and adopt the traditional A-calculus conventions

about its use [3].
The constructors A,x and A,J bind the variable x in their term arguments. The

set of free variables in an expression e, fv(e), is the set of variables that are in e
and are not bound. If all variables in a A-term are bound, the term is closed. The

set of A-programs is the set of closed phrases, i.e., there is only one recursive

constraint that distinguishes programs from arbitrary phrases.

The operational semantics of A reflects the semantics of realistic programming
languages like ISWIM, ML, and Scheme [33].4 The specification of the semantics in
Fig. 1 follows the style of extensible operational semantics [8, lo), which is easily

adaptable to the imperative extensions of A in the following section. An evaluation

is a sequence of reduction steps on programs according to the normal-order strategy.

If the program is a value (an abstraction), the evaluation stops. Otherwise the

reduction function (uniquely) decomposes the program into an evaluation context,

a term with a hole (cu), and a redex, the contents of the hole. A redex is either an
application of a call-by-name abstraction to an arbitrary expression (p) or an

application of a call-by-value abstraction to a value (&). In either case, the reduction

function replaces the redex, ((Ax.b)a), by a new version of the procedure body,
b[x/a]. Then the evaluation process starts over again.

Summarizing the standard reduction process as a predicate on programs yields

the operational semantics of 14. Some useful examples of phrases are the call-by-name

’ As usual, this operational semantics has only remote connections to the equational theory of the
A-calclllus.

The espressice power qf programming languages 41

and call-by-value fixed point operators, which facilitate the recursive definition of

functions:

and

Y, = (A,fx..(A,.g.gg)(A,xAA,x.(gg)x))x).

Two simple diverging programs are L!,, = Y,,(A,,x.x) and L!, = YJ A,,xy.xy)(A,x.x).

To illustrate the impact of syntactic constraints on programs, we also define A ‘,

a typed variant of A. 4’ has the same set of phrases as A but uses a type checking

algorithm for filtering out valid programs. A ‘4’ program is not only closed but is

also typable as either an integer or a higher-order functional on integers according

to the type inference system in Fig. 2. It easily follows from Mimer’s [27] initial

work on polymorphism that typability is a recursive predicate for A ‘. The semantics
of A’-programs is the same as that of their untyped counterparts.

Programs
e is a program if and only if it is closed and 0 I- e : T

Types
T ::= 11 T - 7

Type Assertion
A: Variables +w Types (finite functions)

where A[x/r](x) = 7 A[xld(y) = A(y) (functional update)

Type Inference

A I- x : T if A(x) = T
A[x/r] k e : r’ At-s:r’-r; A I- er : t’

A I- X,,,x.e : r - r’ A t- (ee’) : T

A t- Y, : (T - r) - r A I- Y, : ((T - T’) - (T - r’)) - (T. - T’)

Fig. 2. .I ‘,

A’ is a typical example of a monomorphic language: all occurrences of a A-bound

variable have the same type. As a consequence, the typing constraints of ,I’ exclude

typical A-programs like Ax.(xx) or phrases like (xx) in programs. Indeed, the Y

operator for defining recursive functions must be typed explicitly because it would

not pass the other type rules.
Based on the interpretation of a programming language as a formal system, it is

easy to define the notion of a conservative programming language extension.

Definition 3.2 (Conservative Extension and Restriction). A programming la.nguage

3 is a conservative extension of a language 2’ if

@ the constructors of 2” are a subset of the constructors of 2f with the difference

being {IF,, . . . , IF,,, . . . }, which are not constructors of 9’;

42 M. Felleisen

o the set of Y-phrases is the full subset of Z-phrases that do not contain any

constructs in {IF,, . . . , IF,, . . .};

o the set of Y-programs is the full subset of Z-programs that do not contain any

constructs in {IF 1,. . , IF n,. . .}; and

l the semantics of Y, eva& is a restriction of Z’s semantics, i.e., for all .Y-

programs P, evaf,(P) holds if and only if evaly(P j holds.

Conversely, 9 is a conservative restriction of .Z.

To emphasize the constructors on which the restriction and extension differ, we
write 9’ = 5?\{lF 1, . . . , ff n, . . .} and .Z = Y+ {IF,, . . . , IF,, . . .). We also use the notation

to denote the natural restriction and extension that result from subtracting or adding

facilities to the syntax (provided tha respective languages and, in the latter case, a
semantic specification exist). Cl

In our running example, the restricted language A,, is A without A,-abstractions,
A, is A without call-by-name abstractions:

A, =A’&; A, = A\&,.

A restriction of the above evaluation process to A,- and A,,-phrases yields a

call-by-value and a call-by-name semantics, respectively. The corresponding sub-

languages of A’ are defined similarly.
To enrich the set of examples, we add a let construct to A. There is one binary

let constructor for each variable X: let, : term x term + term. Like hx, let, binds its

variable, namely in the second subexpression. The concrete syntax for let,(e, e’) is

(let x be e in e’).

The semantics of A + {let,}, or A + let for short, requires an additional clause in the
specification of evaluation contexts

E ::=e l l I(letxbe E ine)

and an additional clause for the reduction function:

E(let x be v in e)+ E(e[x/v]). (let,)

Otherwise the definition of the semantic predicate in Fig. 1 stays the same. It is

trivial to check that A + let is a conservative extension of A.
The extension of A’ with let additionally requires a type inference rule for the

new construct. For greater flexibility, the new rule only requires that, at each
occurrence of the abstracted variable, the named subexpression is typable with some
type:

At-e:r; A C e[x/ e’] : 7’

AI-(letxbeeine’):~’ ’

A :+let is polymorphic in the spirit of ML 127, 28, 43: 43, 441. Unlike h-bound

variables, let-bound variables can have several types. For example, x in (let x be

The expressive power of programming languages 43

(hy.y) in (xx)) conceptually assumes two different types: (L + L) + (L + L) and (L + L),

which makes the expression a legal program despite the self-application of a variable.

Again, it is easy to see that the extension is conservative with respect to A’.

For the re-interpretation of the logical notion of eliminability, we need to be more

flexible. The non-existence of ubiquitous programming language features in the

sense of logical connectors raises the question whether the mapping from the

extended Janguage to the core should be homomorphic and, if so, on which set of
features. At this point, we recall the above-mentioned desire that our translations

be structure-preserving, and the idea that the homomorphic character of a translation

naturally corresponds to this property. To preserve the structure of programs as

much as possible, we require that the translations be homomorphic in ill program-

ming facilities of the core language.

Definition 3.3 (Eliminability; Expressible Programming Constructs). Let 9 be a

programming language and let {IF,, . . . , IF ,*, . . .} b e a subset of its constructors such
that 9’ = T\{ff , , . . . , IF n, . . .} is a conservative restriction. The programming facilities

IF I,..., IF n, l * l are eliminable if there is a recursive mapping cp from Z-phrases to

Y-phrases that satisfies the following conditions:

EP <p(e) is an Y-program for ~11 .Z-prograrrs e;

E2 cp(Ue, , . . . , e,)) = b(e,), . . . , ~(2~)) for all facilities IF of Y, i.e., cp is

homomorphic in all constructs of 9’; and
E3 eu&(e) holds if and only if eual,,,(cp(e)) holds for all Y-programs e.

We also say that 3’ can express the facilities IF,, . . . , IF,,, . . . with respect to Z We

omit the qualification if the language universe is clear from the context. By abuse

of notation, we write cp : Y+ 9’. Cl

Condition E2 in this defr&on u+plies that the mapping cp is the identity on the

language 2’. It corresponds to ce_taditions F2 and F3 of the logical notion of
eliminability. According to the ab@ve interpretation of a programming language as

a formal system, an interpretation of condition F4 in Section 2 requires that the
translation of a terminating program in the extended language is a terminating

program in the restricted language. This is precisely the contents of Condition E3.

Finally, the last condition of the logical notion of eliminability, F5, has no counter-

part in a programming language context because of the lack of a ubiquitous
programming construct.

Remark 2 (Weak Expressibility). By using an adaptation of Kleene’s original Condi-

tion F4’ (see Remark 1 in the previous section) instead of the third condition in the

preceding definition, we get a weak notion of expressibility. The revised condition

takes on the following shape:

E3’ Jf euat,(e) holds then eual,,(cg(e)) holds.

44 M. Felleisen

The intuition behind this definition is that the translated phrase has at least as many
capabilities as the original one. The terminology reflects our belief that any differen-

ces in behavior should be noted as a failure of complete expressibility. Moreover,

the terminology is also consistent with the fact that expressibility implies -weak
expressibility. Cl

An alternative understanding of the above definition is that the translation maps
phrases constructed from eliminated symbols to observationally indistinguishable

phrases in the smaller language. In other words, replacing the original phrase with

its translation does not affect the termination behavior of the surrounding programs.

This relation between two phrases of programming languages is widely studied in

semantics and is known as operational (or observational) equivalence [25,29,33,34].

,4fter developing the formal definition of operational equivalence, we can charact-

erize sufficient conditions for the eliminability of programming constructs.
A formal definition of the operational equivalence relation relies on the auxiliary

notion of a program context.

Definition 3.4 (Contexts; Program Contexts). An n-ary context over 2,

C(a I,***, (x,,), is a freely generated tree based on 2’s constructors and the addi-

tional, 0-ary constructors a,, . . . , a,, called meta-variablex All subtrees of

C(a I,***, cu,) are also n-ary contexts. If C(&, , . . . , au,) is a context and eI, I . . , en
are phrases in 2, then the instance C(e,, . . . , e,,) is a phrase in 2 that is like
C(cU 19***, a,) except at occurrences of (Y~ where it contains the phrase ei:

@ if C(a,, . . . , (Y,~)= a, then C(e,, . . . , e,,)= ei, and
@ if C(Q,,. . . , (~~)=lF(c,(a!,, . . . , IY”), . . . , C&X~, . . . , ar,,)) for some IF with arity

4 then C(e,, . . l , e,,)=lF(C,(e,, . . . , e,), . . . , C,(e,, . . . , e,,,)).

An Z-program context for a phrase e is a unary context, C(m), such that C(e) is
a program. CJ

For A,,, the context C&X) = (A.~y.a!)(A.xx)0,, is a program context for all

expressions whose free variables are among x and y.

Since the semantic predicate of a programming language only tests a program

for its termination behavior, our definition of operational equivalence compares the

termination behavior of programs?

Definition 3.5 (Operational Equivalence). Let 2 be a programming language and

let evalv be its operational semantics. The Z-phrases e, and e, are operationally

equivalent, e, + e2, if there are contexts that are program contexts for both e, and
e2, and if for all such contexts, C(Q), eva&(C(e,)) holds if and only if evalY (C(e2))
holds. El

’ In many cases, our definition is equivalent to the more traditional definition that compares the
termination behavior of programs’and the results, provided they are among a set of obseroable data.

The expressive power of programming languages 45

With the above program context CO, it is possible, for example, to differentiate

the phrases x and y. Since 0, diverges, CO(x) = (h,xy.x)(A,x.x)& terminates
whereas CO(y) = (h,xy.y)(h,x.x)J2, diverges.

Figure 3 contains a sequent calculus of operational equivalence on A, + let, which

is US,J below in Proposition 3.7; the proof system is sir;lilar to Riecke’s for a typed

version of A, [38]. The calculus proves equations over the language from premisses

(r) that are finite sets of equations. It is sound but incomplete, i.e., if 0 I- e = e’
then e = e’ but not vice versa,

P‘ I- (X,x:.e)v = e[x/v] rt-flRe=Q rl-eR=R

rl-e=e’

I? t- X,x.e = A,x.e’ x $ WY
rl-e=e’ rt-e=e’

r t- eel' = e'e" r t- e”e = e”e’

I’ I- (let x be v in e) = e[z/v] I’ I- (let x be $2 in e) = R

rl-e=e

I’ I- (let x be e in e”) = (let z be e’ in e”) z 4 W)

r U {e = e’) I- e = e’
r u {e = Q} I- el = e2; r u {e = 2~) I- el = e2 for all v

r I- el = e2

rl--e=e
rt-e=e

rl-d=e

r I- e = e’; r I- e’ = e”

r t- e = e”

Fig. 3. A calculus for operational equivalence on ‘IL, + let.

Remark 3 (Weak Expressibility). A replacement of the “if-and-only-if” condition

with a simple “if” condition yields the notion of operational approximation., which

plays the same role for weak expressibility as operational equivalence for expres-

sibility. More specifically, the term el operationally approximates e2, e, ~~ e2, if for
all program contexts, C(cw), for e, and e2, evalr(C(e2)) holds if walY(C(e,))

holds.-In conjunction with the above context Cfi, the program context C,(ar) =

~A,Jx.cx)~A,x.x)S~,, shows that x and y do not q.pproximate each other. Cl

We now have everything in place to formalize our above idea about the connection

between ‘eliminable programming constructs and their translations. The following

theorem shows that, at least to some extent, the elimination of expressible program-
ming constructs from a program is a local process and keeps the program structure

intact.

Theorem 3.6. Let Lf=.Y+{lF ,,... jlF,,,.. .) be a conservative extension of 3’. If
q : Y+ 2' is homomorphic in all facilities of 2” and preserves program-ness, and [f

46 Ad. Felleisen

IFi - - -, e,,) z.I/'<p(Fi(el,. . - , e,,)) for all (Fi and all Se.cpressions e, , . . . , e,, , then

2” can express the facilities IF,, . . . , IF,,,

Proof. It suffices to show that condition E3 of Definition 3.3 holds for 50. Assume

that P is an S-program such that eval,,(P) holds. By the construction of P, there

is a context C(a, , . . . , a,) such that

p=aP,,...,Pn)

wherep,,..., p,, are the finite number of outermost occurrences of phrases construc-

ted from some facilities in IF,, . . . , IF,, Thus, C(a,, p2,. . . 9 p,) is a program

context for pl . It follows from the theorem’s assumption that

er.44C(pl,...,_. P)) holds if and only if eval,(C(cp(p,), . . . , p,,)) holds.

Repeating this step n times proves that

eu&(C(p,, . . . , p,)) holds if and only if evalJ C(q(p,), . . . , cp(p,))) holds.

But, since C does not contain any facilities in IF,, . . . , IF,,, . . . ,

ad PA, l - l , cP(Pn))=(P(C(P,,“.,Pn))=(P(P).

Moreover, since 2 conservatively extends Z”,

eva[J P) holds if and only if evaI& cp(P)) holds.

This completes the proof. Cl

Remark 4 (Weak Expressibility). The theorem holds for weak expressibility even if

we replace operational equivalence by operational approximation:

If lFi(el,. . . , e,,) G I/ q(ffi(el,. . . , e”,)), then the IF,,. . . ,ff,,. =. are weakly
eliminable. Cl

An application of this theorem shows that let is an example of an eliminable
construct. For the typed setting, this provides a precise formalization of the folk
theorem that ML-style polymorphism is expressible in a monomorphic language?

The two examples also reveal a striking difference between the typed and the untyped

language variant. Whereas the untyped let expression simply abbreviates an applica-

tion as illustrated in the introduction, its typed counterpart maps to a version of

the let body in which each occurrence of the abstracted variable is substituted with

a copy of the named expression. The reason for this differe.lce is that in the typed

case the translation must not only preserve the semantics but also the typability in
order to preserve program-ness.

Proposition 3.7. The constructor let is eliminable in call-by-value languages.

(i) A, can express let with respect to A, + let.
(ii) A I can express let with respect to A k+ let.

’ An alternative approach to a formalization of this folk theorem is due to Wand [44].

The expressive power of programming languages 47

Proof. (i) Set rp(let x be e in e’)=(h,qo(e’))q(e). To show that the two phrases
are operationally equivalent we proceed by induction on the number of let’s in the

Eubexpression. The base case for e, e’ in A, proceeds as follows. By the homomor-

phism constraint, q(e) = e and cp(e’) = e’. By the laws in Fig. 3,

e = fl I- (let x be e in e’) = R = (hx.e’)e

and, for all values U,

e = v t- (let x be e in e’) = e’[x/v] = (Ax.e’)e,

and therefore,

(let x be e in e’) s..(+,~* (hx.e’)e.

The induction step proceeds along the same line.

(ii) Set cp(let x be e in e’) =((A,d.cp(e’)[x/cp(e)])cp(e)) where d does not occur
free in e or e’. To verify that this translation maps programs to programs, it suffices
to prove that the translation preserves the implicit type assignment. We proceed by
induction on the number of let-expressions in the program and show that, given a

fixed set of type assumptions, q(e) has the same type as e. Assume e and e’ are

let-free, and consider the typing of an instance of let:

At-(1etxtPeeine’)Y

for some A sind 7’. By the setup of the inference system, A I- e : r for some r and
A I- e’[x/sj: 7’. Since, by assumption, p(e) = e and p(e’) = e’, A I-- cp(e) : T and

A I- cpWCxld41 : 7’. The rest follows easily: A I- (A,d.<p(e’)[x/<p(e)]: T+ T’ and

also

ThG induction step requires a lemma that proves <p(e’)[x/ (p(e)] has the same type

as e’[x/ e] if 50 (e) and q(e’) have the same type as e and e’.
The proof that ~0 preserves the semantics of typed let-programs follows the same

pattern as part (i). Observe that

e = J2 I- (let x be e in e’) = R = (Ad.e’[x/e])R = (Ad.e’[x/e])e

and also, for all v,

e = v I- (let x be e in e’) = e’[x/v] = (Ad.e’[x/v])v = (Ad.e’[x/e])e.

The rest is obvious. Cl

The converse of Theorem 3.6 does not hold. That is, the facilities IF,, . . . , IF,,, . . .

may still be expressible in 9’ even though the translation from 2 to 2” maps an

eliminabk phrase to an observably distinct element. One reason for this is that the

set of programs may not contain an element such that IF i(PI, . . . , ea,) for some IFi

occurs in a context over the restricted language, in which case it is irrelevant how

the mapping <p translates this phrase. Thus, by imposing an appropriate condition,

we can get a theorem on the non-expressibility of programming constructs.

48 M. Felleisen

Theorem 3.8. Let S=ZZ’+{F,, . . .,ff,, . . .) be a conservative extension of 2”. If for
all mappings Q : 2 + 2%” that are homomorphic in all facilities of Y, IFi(e, , . . . , e,,)

74.y Q@i(el, l l l 9 e,,)) for some L&expressions e, , . . . , e,, and ff i in ff , , . . . , IF,, . . . ,

and if there is a context C(a) over 2’ that witnesses this inequality, then .Y cannot
express the facilities ff, , . . . , IF ,,,

Proof. Let p : L!?+ 2” be an arbitrary mapping that is homomorphic in all facilities
Of y. SUppOSe Q(ffi(el, . . . , ea,)) = e and let C(Q) be the context over 3’ that

observes the operational difference between e and IF i(el , . . . , e,,). Since Q is
homomorphic over .Y,

Q(C(Fi(e,, We l , e,,))) = C(Q(Fi(e,, . . . , e,,))) = C(e).

But, by assumption, eval,(C(ff i(e, , . . . , e,,))) holds while eval,(C(e)) and

evalY(C(e)) do not hold (or vice versa). This implies that no mapping that is
homomorphic over 9’ can possibly satisfy condition E3 of Definition 3.3 if the

antecedent of the theorem holds, and that consequently the programming constructs

IF I,_“, IF “, . . . cannot be eliminable. Cl

Based on this first non-expressibility theorem, we can now prove that call-by-name

A cannot express call-by-value abstractions and vice versa.

Proposition 3.9. A extends both A, and A,,.
(i) A,, cannot express A, with respect to A.

(ii) A, cannot express A, with respect to A.

Proof.’ (i) According to the semantics for A,,, the application of an abstraction
(h,y.p) to an argument can only proceed in one of the fallowing three manners:

1. it may uniformly diverge for all arguments: whenever (A,, y.p)e+ e’ there is always

an e” such that e’ + e”;

2. it may uniformly converge to a value for all arguments, including a,, : for all

expressions e there is a value v, such that (A,, y.p)e+ v, ;
3. it may activate the argument for a first time: (A,,y.p)e* eel l l - 2k for some

e,,...,ek.

The proof of this auxiliary claim is a simple induction on the length of the reduction

sequence. Ah, it is easy to check that whenever e* e’ then E(e)-t, E(e’).

Let (A,x.e) be an abstraction in A that converges upon application to some values.

More specifically, let e and v be ii: A,, and assume that for some value

u, (Avx.e)v(A,,x.x) -t-, u. Then we claim that C(a) = (av)(A,,x.x) is the context that
we are looking for in order to apply Theorem 3.8.

7 Improved by Carolyn Talcott.

The qxessive power of progrumming languages 49

Assume that ye : A + A,, is a structure-preserving translation. Then (o(h,u.e) is, or

reduces to, a value in .A,,. Let h,,y.p be this value. Since the original abstraction
terminates upon application to some value, the translation of this application must

terminate as well. Therefore A,y.p cannot diverge uniformly. On the other hand,

the pre-image, A,x.e, also diverges upon application to a,,, which implies that the

translation cannot converge uniformly. Thus, let e, , . . . , ek be the expressions such

that

C(rp(A,X.e)) = cp(A,x.e)u(A,x.x)~(A,y.p)u(A,x.x)~ ue, l l l C’k(h,lX.X).

Setting e = A,,x.x and v = A,,x.& (which satisfy the original assumptions), it is trivial
to see that this program now diverges. If k = 0 the reduction continues with:

l . -(h,i~.R,,)(h,l~.~)+Ll,i-, l . c;

otherwise, it is:

l l -(A,,xd!,,)e, l l l ek(A,,X.X)-,&e,* ’ - e&,X.X)+ - * -

That is, whereas C(A,x.e) converges to (A,,x.x), C(p(A,x.e)) diverges. By the

preceding theorem, we have shown our claim.

(ii) This part is i:;uch simpler. Take C(au) = (cd&), e = (A,,x.(A,,x.x)) and assume

that (9 is a structure-preserving translation. Clearly, eoal(C(A,,x.(A,,x.x))) holds, but,

C(q((A,lx.(&,x.x)))) diverges. Hence, a structure-preserving translation cannot pre-

serve operational equivalence, which proves the claim. Cl

Remark 5 (Weak Expressibility). By Remark 4, A,, can weakly express A, because

A,x.\s t__., A,,x.e. q

An immediate corollary of Theorem 3.8 is that if for some phrase with an eliminable

symbol there is no operationally indistinguishable expression in the restricted

language, then the restricted language is less expressive than the full language. We

use this corollary instead of the full theorem in Section 4.2.

Corollary 3.10. Let 9 = .Y + {at, , . . . , IF,, , . . . } be a conservative extension of Y’. Iffor

some IFJe,, . . . 9 e,,) there is a program context C over 2” but there is no e in ofp’ such

thaf Si(e,, . . . , e,,) = Y e, then 2” cannot express the,facilities IF,, . . . , ff ,,,

3.2. Macro expre3sibiliry

Although the definition of eliminable programming construct is a sati:factory first

step towards a better understanding of the formal structure of programming
languages, it does not completely account for the idealized notion of “syntactic

sugar” of Landin and others [24,36,37,40] as discussed in the introduction. In

many cases, the elimination of “syntactic sugar” constructs not only preserves the

global program structure but also the structure of the subexpressions of phrases

built from eliminable constructs.

50 M. Felleiserl

Recall the two examples from the introduction:

1. In a functional language with first-class functions, a let expression is simply
abbreviation of the immediate application of an anonymous procedure to

argument:

let x be v in e is expressible as apply (procedure (x) e) v.

2. In a goto-free, Algol-like language,

repeat s until e is expressible as s; while le do s.

r an

an

In both examples, the translation of a composite phrase is the (fixed) composition
of the translation of its subphrases. More technically, the translation of a phrase is

the evaluation of a term (in the sense of universal algebra [S]) over the restricted

language at the translations of the subphrases. As mentioned above, terms correspond

to contexts in our framework; for clarity, we refer to contexts as syntactic abstractions’

in relation to the following definition and its uses.

Definition 3.11 (Macro Eliminability; Macro Expressibility). Let 2’ be a programming

language and let {ff,, . . . , IF,,, . . . } be a subset of its constructors such that 2”=

P\{F I,**., IF,,, l * .I is a conservative restriction. The programming facilities

IF (F,,... I,..‘, are macro eliminable if they are eliminable and if the eliminating

mapping 50 from 2’ to .Y’ satisfies the following, additional condition:

E4 For each a-ary construct IF E {IF,, . . . , IF,,, . . .} there exists an a-ary syntactic

abstraction, A, over 2’ such that

cs(Ucl,. . . , e,H = AWeA.. . ,4pkd.

We also say that .Y’ can macro-express the facilities ff,, . . . , IF,, . . . with respect

to 9. 17

Remark 6 (Weak Expressibility). If some facilities are weakly expressible and satisfy

the additional condition, we call them weakly macro-expressible. 0

Since macro expressibility is a restriction of simple expressibility, Theorem 3.6

on the eliminability of constructs requires some adaptation.

Theorem 3.12. Let .Z=Y+(ff,, . . . , IF,,, . . .) be a conservative extension of 9’. If

50 : 9+ 2’ is homomorphic in all facilities of 2’ and preserves program-ness, and if

there is a syntactic abstraction Ai for each IFi in IF,, . . . , IF,,, . . . such that

Fi(e,,. . -,G,) ~~,Ai(~(e,),..., p (e,,)) for all .%-expressions e, , . . . , en,, then 2’ can
macro-express the jbcilities O-, , . . . , IF ,,,

’ In Lisp-like languages, syntactic abstractions are realized as macros [22]; logical frameworks know

them as notarioru7l ahhreoiafions [173. The terminology of equational algebraic specifications [161 refers
to syntactic abstractions as derived operarors.

The expressive power of programming languages 51

Proof. It is easy to see that the additional condition in the antecedent is precisely

what is needed to adapt the proof of Theorem 3.6 to the stronger conclusion. Cl

Moreover, the additional condition E4 permits a simplification of the theorem to

a corollary that no longer makes any reference to the translating map. The corollary

is used in Section 4.

Corollary ‘3.13. Let Z=Y+{ff,, . . . JF,,, . . .} 6 e a conservative extension of 2’. Lj-
there is a syntactic abstraction Ai for each lFi in IF., . . . , IF ,,? . . . so that

k(e,, . . . 9 eO,) syAi(e,,..., e,,) for all 2%expressions e, , . . . , e,, , then 9’ can mucro-
express the facilities IF, , . . . , IF ,1,

By Proposition 3.7, A, can express let. A simple check of the proof reveals that

the translation between the two languages satisfies the antecedent of the corollary,
and that therefore let is also macro-expressible. More importantly, however, the

additional condition E4 in Definition 3.11 also leads to a stronger meta-theorem on

the non-expressibility of facilities. The new theorem shows that new programming
constructs add expressive power to a language if their addition affects existing

operational equivalences.

Theorem 3.14, Ler 9, = 2ZO+ {IF,, . . . , IF,,, . . .) be a conservative extension of &,. Let
+, and s, be the operational equivalence relations of &, and 2,) respectively.

(i) If the operational equivalence relation of 9, restricted to YO expressions is not

equal to the operational equivalence relation of 2?0, i.e., so # (=, I&,), then .Z& cannot

macro-express the facilities IF,, . . . , IF ,,,9

(ii) The converse of (i) does not hold. That is, there are cases where 5&, cannot

express some jacilities IF, , . . . , IF ,, , . . . , even though the operational equivalence relation

of 2, restricted to &, is identical to the operational equivalence relation of go, i.e.,
=o = (=,12&J.

Proof. Let eval, and eval, be the respective evaluation predicates for &, and 2,.

(i) A difference between the restricted operational equivalence relation of 2, and

that of JZO implies that there are two phrases e and e’ in 2’,, and 2’1 such that either

e zO e’ and e g, e’ and e f. e’ and e =, e’. For the first case, let C(cu) be a context

over 2, that can differentiate the two phrases e and e’. Let us say, without loss of
generality, that

eval, holds for C(e) but not for C(e’).

Now, assume contrary to the claim in the theorem that .2’(, can express the facilities

IF IF IS”‘, II%.... Then, there is a mapping (9 : .Z’, + JZo that satisfies conditions El

‘) An extension of an equivalence relation to a larger language is also called conservative if the restriction

to the old syntax yields the original equivalence relation. To avoid confusion, we will not use this
terminology here.

52 M. Felleisen

through E4 of Definitions 3.3 and 3.11. By conditions El and E3, the programs

C(e) and C(e’) have counterparts in L&, cp(C(e)) and p(C(e’)), that have the same

termination behavior:

eual,-,(q(C(e))) holds because eual,(C(e)) holds

and

enaZ,(p(C(e’))) does not hold because eual, (C(e’)) does not hold. (Q

By conditions E2 and E4, the programs cp(C(e)) and q(C(e’)) can only differ in

a finite number of occurrences of e and e’. In other words, there is a program

context D(a) over LZO such that cp(C(e)) = D(e) and po(C(e’)) = D(e’): for the

proof, see the Translation Lemma below. Next, from the assumption e sO e’, it
follows that p(C(e)) = D(e) and q(C(e’)) = D(e’) have the same termination

benavior in L&, i.e.,

eval,(D(e)) holds if and only if eval,(D(e’)) holds.

But this contradicts the above fact (t) that v(C(e)) = D(e) converges and q(C(e’)) =
D(e’) diverges, which concludes the first case.

For the second case, assume e P, e’ and e = I e’. This assumption actually implies

that

there are no contexts over SO that _omplete both e and e’ to programs. (*)

For otherwise, there must be a context C(a) such that eval,(C(e)) holds while
eval,(C(e’)) does not. Since 9, is a conservative extension of PO, eval, (C(e)) holds,

eval,(C(e’)) does not, and therefore contrary to the assumption, e 34, e’.
Now again, assume contrary to the claim of the theorem that L$, can express the

additional facilities in LZl via an appropriate translation q : 2, + L?,. Since e and e’

are operationally equivalent in 9, , there must be a context C(a) over 9, such that

eval,(C(e)) and eval,(C(e’)). By assumption, evalO(q(C(e))) and eval,(cp(C(e’))).
Again by the Translation Lemma, the two translated programs are instances of the
same program context D(cw) such that cp(C(e)) = D(e) and p(C(e’)) = D(e’). But

by the above fact (*), such a context cannot exist, and we have thereby arrived at

a contradiction. This concludes the second case of claim (i).

To finish the proof of claim (i), we must finally show that a homomorphic function

preserves the structure of a program.

Translation Lemma. Let cp : Lfl + .Lfo be a translation that satisfies Conditions El
through E4 in Dejinitions 3.3 and 3.11. Let C(o) be a context over 2, . Then, there
is o context D(a) over JfO such that cp(C(e)) = D(e) and cp(C(e’)) = D(e’).

hoof. The proof is an induction on the structure of C(a). The only interesting

caseisthefollowing.Say,C(~)=ff(C,(Q) ,..., C,(cl!))forsomeIFinff; ,..., IF,, ,....

Then,

73e expressive power of programming languages 53

cPW(Cde’), . . . , CA0 = A(dG(e’)), . . . 9 cp(C,(e’)))

for some fixed syntactic abstraction A over .2$ by condition E4. By inductive

hypothesis, there are contexts Di(a), for 1 s id U, such that p(Ci(e)) = Q(e) and
q(Ci(e’)) = Q(e’). But then D(a) = A(&(a,), . . . , Da(a)) is the context corre-

sponding to C(G). The other cases are similar but easier. q lLemma

The proof of the Translation Lemma finishes the proof of case (i).

(ii) We only sketch the construction of an example that proves claim (ii). For

another example that is more interesting and fits more smoothly into this paper,
see Subsection 4.2 on the control structure of Idealized Scheme.

For the base language, take the simply typed A-calculus with a fixed point operator,

whose types are either base types or arrow types. Because of the type system, it is

impossible to define the typical cons, car, and cdr functions for pairs of values of
arbitrary types. Hence this simply-typed language cannot express these functions.

On the other hand, also due to the type system of the language, the new functions
cannot be bound to free variables in phrases of the sublanguage, which implies that

the additional functions on pairs (of distinctly typed components) cannot be used

to distinguish phrases in the simply typed language. It follows that pairing functions

and selectors increase the expressive power without destroying operational

equivalences of the underlying language. 0

Based on Theorem 3.14, we can show that the sublanguage A, is not strong

enough to macro-express call-by-name abstraction, and that A,, is not strong enough
to macro-express call-by-value abstraction. The proofs utilize the first half of the

proof of claim (i).

Proposition 3.15. A extends both AL, and A,,.

(i) A, cannot macro-express h, with respect to A.
(ii) A, cannot macro-express A,, with respect to A.

Proof. The claims are obviously consequences of Proposition 3.9.

(i) A direct proof for the first claim is derived from a theorem by Ong [31:

Theorem 4.1.1],‘” based on the preceding meta-theorem. Consider the phrases

x(h,,y.x(YK)fiy)(YK) and x(x(YK)O)(YK). The two are equivalent in an adequate

model of A,, [31] and are therefore operationally equivalent:

x(A,,y.x(YK)L?y)(YK) = \,, x(x(YK)R)(YK),

The operational reasoning for a verification of this equivalence is as follows. No

matter which argument the procedure x evaluates first, the expression (YK) event-

ually appears in the hole of the evaluation context, which leads to an immediate

termination of the program evaluation.

“’ Gordon Plotkin pointed out Abramsky’s [l] and Ong’s [31] work on the iaty h-calculus, which
corrected a mistake in an early draft.

54 M. Felleisen

In the full language A, the above analysis no longer holds: Call-by-value pro-
cedures can evaluate and discard the expression (YK) in a way that does not affect
the rest of the program. Thus, the context

C(a) = (A,x*a)(A,x.(A,y.y))

can distinguish between the two phrases: C(x(A,,y.x(YK)s2y)(YK)) terminates, but
C(x(x(YK)a)(YK)) diverges. By Theorem 3.14, A, cannot express A,.

(ii) Consider the expressions A,Jf(A,x.x)0 and A&i?. In the pure call-by-value
setting, the two are operationally equivalent:

Both abstractions are values; upon application to an arbitrary value, both of them
diverge, A formal proof is straightforward, based on the proof rules in Fig. 3. In
the extended language A, however, we can differentiate the two with the context

C(a) = a(A,x.(A,y.x)).

The context applies a phrase to a function that returns the value of the first argument
after absorbing the second argument without evaluating it, Hence, C(A,Af(A,x.x)J2)
terminates while c(A,J.'fi!) diverges, which proves that the extension of A, to A

does not preserve the operational equivalence relation. Again by Theorem 3.14, A,,
is not expressible. Cl

Remark 7 (Weak Expressibility). Remark 5 and the proof of Proposition 3.15 show
that Theorem 3.14 does not carry over to weak expressibility because A,, can weakly
macro-express A, and yet = ,,, SZ = i. That is, even in the case of a language extension
that does not preserve the operational equivalence or approximation relation, the
restricted language may already be able to express the new facilities in a weak
sense. 0

For a second application of Theorem 3.14, we show that the polymorphic let
construct of A b is not macro-expressible in A ‘. On one hand, this lemma confirms
the folk knowledge that a polymorphic let adds expressive power to a monomorphi-
tally typed programming language. It does not contradict the above proposition,
which only shows that a polymorphic let is expressible in a monomorphic !anguage.
On the other hand, this lemma provides an example of an interesting facility that
is expressible but not macro-expressible relative to the same language. The proof
relies on the second part of claim (i) in the meta-theorem.

Proposition 3.16. A iq cannot macro-express let with respect to A l, + let.

Proof. Consider the expressions ((gx)(jj))) and (A,d.((gx)(ff)))(gx). Since both
contain a self-application of the variable f; there is no A i, program context for the
two expressions, and the two programs cannot be operationally equivalent:

(&x)(H))) F \’ (AJ.((gx)(fs)))(gx)

77te expressive power of programming languages 55

Still their dynamic behavior is the same. The difference between the two programs

is that the second computes the application of g to x twice, throwing away the first

result via a vacuous abstraction:

gx = fi k (gx)(ff) = NH) = 0 = (&Mgx)(ff))).n

= (A,Ngx)(ff)))(gx)

and, for all values v,

gx = v I- (gx)(ff) = an = (~L~~.((gxKf.n))~

= (h,d.((gx)(ff)))(gx).

Thus, in the extended language, where the variable f can be let-bound in an

appropriate context, the two program fragments are equivalent:

((gX)(ff)) s \‘+let (Ad*((gX)(ff)))(SX)-

Together with the above inequality, this proves the proposition. Cl

Propositions 3.15 and 3.16 provide several examples of pairs of universal program-
ming languages that we can differentiate according to our expressiveness criterion.

With the full language A, it also provides an example of a language that can express

more than A, and A,,. We have come to a point where we can formally distinguish

the expressive power of programming languages.

3.3. Expressiveness

The two notions of expressibility are also simple comparison relations for
languages and their conservative extensions. For a comphrison of arbitrary program-

ming languages, these relations are too weak. One solution is to conceive of our

abstract programming languages as signatures (or types in the sense of universal

algebra [51) for classes of real programming languages. It is then possible to compare

languages by comparing their signatures if one signature happens to be a conservative

extension of the other. Though appealing at first glance, this idea only relaxes
syntactic constraints such that the languages under comparison do not have to have
the same syntax.

An alternative solution is to consider a common language universe that is a

conservative extension of two or more programming languages. Given a common

universe that fixes the meaning of a number of interesting programming constructs,

there is a natural extension of the notion of expressibility to a notion of relative

expressive power. Intuitively, a programming language is less expressive than another
if the latter can express all the facilities the former can express in the language

universe.

Definition 3.17 ((Macro) Expressiveness). Let 2’” and 2, be conservative language

restrictions of 2’. 2, is at least as (macro-) expressive as Z(, with respect to 28 if 9,

contains or can (macro-) express a set of .2’-constructs whenever L& contains or can

(macro-) express the additional facilities. Cl

56 M. Felleisen

The expressiveness relation is obviously a pre-order on sublanguages in a given

language framework; it is also monotonic in its third argument provided the extension

to the universe is conservative.

Theorem 3.18. Let ZO, 2,) iZ2 be conservative restrictions of 9, and let 2 be a

conservative restriction of alp’.
(i) Y0 is less expressive than 2$ with respect to 2’.

(ii) If ZO is less expressive than 2, with respect to 2 and 2, is less expressive than

JZ2 with respect to 2, then ZO is less expressive than 2$ with respect to 9.
(iii) If olpO is less expressive than 2, with respect to 23, then 2Z,, is less expressive

than 2, with respect to 2’.

Proof. The proof is an easy calculation, verifying the conditions based on the above

definitions. El

However, a uniform change to all languages can change expressiveness relations.

Theorem 3.19. Expressiveness
of the languages.

relationships are not invariant under uniform extensions

Proof. For a simple example, consider A, A,,, and A,, and recall that the two

sublanguages are incomparable by Propositions 3.9 and 3.15. To prove the claim,
we uniformly add a begin coflstruct, (begin e e), that evaluates two expressions in

sequence and then discards the first value. The formal specification requires an
extension of the set of evaluation contexts to

E ::= l * l I(begin E e)

and an additional reduction clause:

E(begin ve)+ E(e).

Now, A,, +{begin} can (macro-) express A,x.e as A,,x.(begin x e), but begin does

not add anything to the power of A,, : after all (begin eI eJ is (macro-) expressible
as (A,xy.y)e,e, in A,. Thus, in the extended setting A,, +{begin) is more expressive

than A, + {begin}.
The claim is still valid if the new facility is already in the language universe. Take

the same example and add h,xy.y, i.e., Abramsky’s [l] convergence tester C for A,,,
to both sub-languages, which is equivalent to adding begin. Cl

The example in the preceding theorem formalizes Algol6O’s definition of call-by-
value as an abbreviation of a call-by-name procedure preceded by an additional

block or statement [30: 121; i.e., it is not the pure call-by-name subset of Algol that

can define call-by-value but an extension thereof that includes a “strict” facility.

The theorem thus shows how dangerous it is to use such informal claims as

call-by-name can or cannot express call-by-value etc. These claims only tend to be

The expressive power of programming languages

true in specific language universes for specific conservative

they often have no justification in other contexts!

57

language restrictions:

4. The structure of Idealized Scheme

Pure Scheme is a simple functional programming language. It has multi-ary,
call-by-value procedures and algebraic constants. There are basic constants and
functional constants. Following Plotkin, we assume the existence of a partial function
(6) from functional constants and closed values to closed values that specifies the

behavior of constants in hre Scheme and its extensions. Typically, the constants

include integers, characters, booleans, and some appropriate functions; Fig. 4 con-
tains the appropriate definition of 6. In order to gain a complete understanding of

Idealized Scheme, Pure Scheme only contains integers and a minimal set of functions

on integers, elements that are expressible in a A-calculus-based language like A,.

Syntax
::=

; ::=
O(lj -l/2) -2) . . . (numerals)

O? II+ I I- I + I - (numeric funclions)

V ..- ..-

e ..- .*-

Semant its

elf (constants)

I (lambda (5. . .) e) (abstractions)
V (values)

X (variables)

(e e...) (apptications)

e&(e) holds iff e -* v for some v

Evaluation Contexts

Reduction Steps

E ::=(I I (v...E e...)

E((fv.. .)) - I=(a(f, v,. . .)) if c5(f, v,. . .) is defined

E(((lambda (21.. .zn) e) vi.. .v,)) - E(e[zl/ul.. . ., G?/%l~

Constant Interpretation

a(l+,n) = n + 1
f5(l-,n) = 71- 1

b(+,n,m) = n+m

6(-,n,m) = R.-m

b(O?,O) = (lambda (z Y) 5)

S(O?,n) = (lambda (z y) Y)
for n jt 0

Fig. 4. Pure Sdjer,:e.

Figure 4 contains the complete specification of Pure Scheme, based on a reduction

semantics in the style of the previous section. Scheme programs satisfy two context-

sensitive definitions: They are closed expressions, and they do not contain lamda-
abstractions with repeated parameter names. The predicate eual holds for a program

if the program reduces to an answer, that is, values in the case of Pure Scheme. If
eval does not hold for a program, the program is either in an infinite ioop or the

58 M. Felleisen

reduction process is stuck. I’ In Pure Scheme, an evaluation can become stuck because

of the application of a constant symbol to a A-expression, the application of a

numeral to a value, the application of a constant .Function to a value for which 6

is undefined, or the application of a lambda-abstraction to the wrong number of

arguments. As before, the reduction rules for Pure Scheme constitutti the basis for

-proof systems for the operational equivalence relation in the spirit of Fig. 3. For

brevity, however, we shall carry out most of the proofs in this section in an informal
setting; it should be clear from the proofs, though, how to formalize the various

steps, In the following subsections, sps denotes the operational equivalence relation

on Pure Scheme; other indexes correspond to extensiorls of Pure Scheme and should

be self-explanatory.

The main characteristic of Idea!ized Scheme [11,12,13] is the extension of the

functional core language Pure Scheme with type predicates, local branching con-
structs, and imperative facilities:

0 branching expressions for the local manipulation of control,

@ predicate constants for determining the type of a value,

l control operators for the non-local manipulation of control, and

l assignment statements for the manipulation of state variables.

The extensions reflect the belief that these constructs increase the expressive power

of the language [40,41]. In this section, we demonstrate how to formulate these
beliefs in our formal macro-expressiveness framework.

Subsection 4.1 simultaneously deals with local control and type predicates because

the two sets of constructs are closely related. The second subsection is a study of

two different control operators, one for stopping the execution of a program and

another for handling the general flow of control. The third subsection shows how

imperative assignments add expressive power to the core language. Finally, the last

subsection addresses the unrelated issue of how Pure Scheme relates to so-called
“lazy” functional languages, or more precisely, to call-by-value languages with

call-by-name data constructors. We thus hope to reconcile Proposition 3.15 on the
non-expressibility of call-by-name abstractions in A, and Pure Scheme with the

wide-spread belief that “lazy” data constructions are available in higher-order,
by-value languages.

4.1. Local control and dynamic types

The programming language world knows two types of local branching statements:

ihe booiean-value based if-construct for distinguishing two values from each other,

and the Lisp-style if-construct for distinguishing one special value from all others.

” Although this is common practice in semantic considerations, a more realistic specification would

have to consider the introduction of an error mechanism. However, an error mechanism actually
introduced additional expressive power, which is the rea:ion why we consider it separately.

The expressive power cf programming languages 59

The semantics of the former relies on the presence of two distinct values: false and
true, or 0 and 1. Assuming an extension of the set of evaluation contexts to

E ::= l l l I(Bif Eee),

the following two additional reduction rules characterize the behavior of truth-value

based Bif:

E(Bif 1 e, ef)+ E(e,) (Bif.true)

E(Bif 0 e, er)+ E(es). (Bif.false)

If the test value in a Bif-expression is neither 0 nor 1, the evaluation of the program

is undefined, or equivalently, such a Bif-expression is operationally indistinguishable

from a diverging expression. The extension is obviously conservative; we refer to

it as PS(Bif).

Clearly, Pure Scheme can express such a simple Bif.

Proposition 4.1. Pure Scheme can macro-express Bif.

Proof Sketch. The proposition follows from Corollary 3.13 and is basically due to
Landin and Burge [23: 1151, who realized that vacuous lambda abstractions could
be used to suspend computations. Consider the syntactic abstraction:

(Bif (Y LY, a]) = ((lambda (t thn e/s)

(((O? (I- t)) thn ((O? t) el!s (lambda () 0)))))
a! (Iambda () a,) (lambda () cuf)).

It is easy to show that this abstraction is operationally equivalent to Bif. If the
replacement for Q is neither 0 nor 1, then both expressions diverge. Otherwise, both

expressions select one of the replacements for LY, or cyr and eliminates the other.

The right-hand side accomplishes this by suspending the two expressions in 0-ary

procedure and invoking one of them after the selection has been made. q

Remark 8 (Weak Expressibility). An extension of Pure Scheme with Bif and two
distinct new values, true and false, would not be macro-eliminable. Otherwise cp

would have to map true to a term t in Pure Scheme, which implies that the programs

(Bif true 1 2),

and

(Bif t 1 2),

map to the same image, namely

AU, deA ded

for some fixed syntactic abstraction A. But it is then impossible that the translation

preserves program behavior because the first program terminates and the second

one diverges.

60 M. Felleisen

Clearly, Bif is still weakly expressible since th, translation will only force more

programs to terminate. In a typed version of Pure Scheme, the problem would

disappehzr. The type system would not admit a program with an ill-typed Bif-

expression. Put diflerently, since a typed version of Pure Scheme admits fewer
programs, expressiveness propositions are stronger. Cl

The Lisp-style if assumes that there is one distinct value for false, in Lisp usually
called nil, and ail other values represent true. With 0 again serving as false, the

reduction rules differ accordingly from (Bif.true) and (Bif.false):

(Lif v e, e& + e, for v f 0, (Lif.v)

(LifOe,eJ)++ (Lif.nil)

Proposition 4.2. Pure Scheme cannot macro-express Lif.

Proof Sketch. For readability, we carry out the proof in PS(Bif). Since Bif is

macro-expressible by Proposition 4.1, operational equivalences of terms hold in

Pure Scheme after expanding the Bif-expressions.

The proposition is a consequence of Theorem 3.14. The interesting operational

equivalence is based on the following context:

C(a)=(Bif(p(lambda()cR))(Bif(pO)l a!)n).

In Pure Scheme, the evaluation of (an instance of) this context cannot reach (the

replacement of) LY. First, if p is not bound to a procedure, the evaluation process

diverges at the first invocation of p on (lambda () 0). Thus assume p is replaced

by a procedure. The rest of the proof proceeds by a case analysis on the following

property of procedures: a procedure of one argument may (1) ignore its argument

and return a constant result, or (2) apply a constant function symbol to its argument,
or (3) use its argument in the procedure position of an application. For the evaluation
of C(a) to reach LY, the procedure must return two different results: 1 on
(lambda () a), and 0 and 0. Let us then consider the other two alternatives. On one

hand, if p applies a functional constant in Pure Scheme to its argument, then the

application (p (lambda () 0)) diverges. On the other, when p uses its argument as

a procedure, the evaluation again diverges in the first test position. In short, either

the evaluation of C diverges at the frrst test position, or the procedure p produces

a result that is independent of its argument. Both cases imply that an evaluation
cannot reduce a redex in the replacement of CY.

It’follows from the above that it is inconsequential what cr represents. Therefore,

C(1) spr C(0). In the larger setting of PS(Lif), however, the preceding analysis

does not hold. A context over PS(Lif), could bind the variable p to the procedure

(lambda (x) (Lif x 0 l)),

which can distinguish the arguments 0 and (lambda () 0) in ;he correct manner:

C(1) G,. C(O). Cl

The expressive power of programming languages 61

As an alternative to the addition of Lif, dynamically typed languages generally

include type ,predicates. For extending Pure Scheme with a predicate symbol like

int?, it suffices to extend the interpretation function S with the clauses

S(int?, c) = (lambda (xy) x),

S(int?, (lambda (. . .) e)) = (lambda (xy) y).

Again, the extension, PS(int?), is clearly conservative.
With int?, programs in the extended language can now effectively test the type

of a value, and indeed, int? can express Lif. It follows that int? is not expressible

in Pure Scheme.

Proposition 4.3. (i) Pure Scheme cannot express int?.

(ii) PS(int?) can express Lif.

Proof Sketch. First, PS(int?) can macro-express Lif:

(Lif LY cy, q) = (Bif (sand ((int? a) (O? (l- a))) a, aj.),

where

(cand aI a,) = (Bif cyI cxz 0)

and Bif is expressed as in Proposition 4.1 above. Second, since PS(int?) can express
Lif, it is stronger than Pure Scheme by the preceding proposition. Cl

The converse does not hold: A Lisp-style Lif can distinguish between 0 and all

other values but not a,~ arbitrary integer from the class of procedures.

Proposition 4.4. PS(Lif) cannot macro-express int?.

Proof Sketch. The proof proceeds along the lines of the proof of Proposition 4.2.
Instead of applying the procedure variable p to 0, the modified context invokes

ponl:

C’(a) = (Bif (p (lambda () 0)) (Bif (p 1) 1 a) 0).

The analysis uses the same reasoning as the above proposition with one exception:

a procedure argument may now also appear in the test position of a Lif-expression.
As above, for the evaluation of (an instance of) C’ to reach (the replacement of)

cy, the procedure may not invoke its argument, may not submit it to a constant

function, but can test it with a Lif-expression. But this is irrelevant because both 1

and (lambda () 0) cause a Lif-expression to take the same branch. Hence,

C’(1) = Llf‘ C’(n), yet, with int? in the language, this is no longer the case:

C’(1) gi,j,‘! C’(0). q

Putting it all together, we see that Pure Scheme can handle some but not all types

of local branching decisions. A simple, boolean-valued if construct is expressible.

62 M. Felleisen

The more typical Lisp-style if adds the expressive power to distinguish one integer

value from all other values, whereas the domain predicate int? permits a distinction
between each integer value and the class of ail other values.

4.2. Non-local control

A more interesting expressiveness constellation arises in the context of non-local

cpntroi abstractions. Idealized Scheme has the operations abort and caH/cc. The
former facility abandons the current evaluation context, realizing a simplistic form

of error handling. The latter applies its subexpression to an abstraction of the current

control state, permitting almost arbitrary manipulations of the flow of control. Its

name stands for “call with current continuation” because the Scheme-terminology
refers to an abstraction of the control state as a “continuation*’ in analogy to

denotational semantics. Figure 5 specifies the syntax and a simple reduction seman-
tics of Pure Scheme with both control operators. We refer to the entire extension
as PS(contro1); = E+(r denotes its operational equivalence. Two interesting con-

servative restrictions of PS(contro1) are PS(abort) = PureScheme + abort and

PS(call/cc) = Pure Scheme +call/cc with =a and + as their respective operational

equivalences.

Additional Syntax

e ..- ..- . . . 1 (call/cc e) (continualion captures)
1 (abort e) (progmm stops)

Additional Reduction Steps

E(call/cc e) - E(e (lambda (t) (abort E(z))))

E(abort e) - e

Fig. 5. Pure Scheme with control.

With the semantics of Figure -Sj it is trivial to verify that the extensions are

conservative ober Pure Scheme. The semantics forms the basis of a simple equational

calculus for abort and call/cc, and permits simple, zlgebra-like reasoning about

programs with control operations [12,131. Ail three languages are more expressive

than Pure Scheme.

Proposition 4.5. Pure Scheme cannot macro-express non-local control constructs: Pure

Scheme cannot macro-express abort or call/cc relative to PS(abort), PS(eall/cc), and

PS(control).

Proof Sketch. The proof relies on Theorem 3.14, i.e., the addition of abort and

call/cc invalidate operational equivalences over Pure Scheme. A typical example”

‘* This example is a folk theorem example in the theoretical “continuation” community, but it was
also used by Meyer and Rieckc to argue the “unredsonablelleds” of continuations [26].

The expressive power of programming languages 63

is the operational equivalence

(lambda (f) ((f0) a)) sps (lambda (f) a).

As argued in the proof of Proposition 3.15(i), these two procedures are equivalent

in a functional setting: both diverge when applied to a value. It is easy to check

that this argument still holds in Pure Scheme.

With abort and call/cc, however, there are contexts that invalidate this equivalence.
Two examples are (LY (lambda (x) (abort x))) and (call/cc a). Whereas the composi-

tion of the first expression with these contexts evaluates to 0, the second expression

diverges in the same contexts:

(lambda (f) (MO) 0)) % (lambda (f) 0).

for x ranging over a, c, and c + 0. Cl

The next natural question is whether the two control operations are related or
whether they provide distinct facilities. The following proposition shows that in

Idealized Scheme, the two are actually independent enhancements of the expressive

power of the core language.13

Proposition 4.6. The control constructs abort and call/cc cannot express each other:

ii) PS(abort) cannot macro-express call/cc with respect to PS(contro1) [39:.
(ii) PS(call/cc) cannot (macro-) express abort with respect to PS(contro1).

Proof Sketch. (i) The p-oof of the first claim shows that call/cc destroys operational
equivalences in PS(abort). A typical example is C(1) =0 C(L!) where

C(a) =(Bif (f(lambda (k) ((k 1) 0)))

(Bif (f(lambda (k) ((ka) C!))) 0 1)

0).

These two terms could only dither if the procedure J invokes its argument, and if
this invocation could return a result. In PS(abort), this is impossible because
expressions can either produce a value, diverge, or abort. Therefore, the body of

f’s first argument, (lambda (k) ((k ((k 1) iI)), either aborts or diverges, but certainly

cannot return a value. After adding call/cc, however, a context that binds f to

(lambda (x) (call/cc x))

can distinguish the term C(1) from C(n): C(1) $c+a C(n).

I3 The non-expressibility of abort appears to be an artifact of our modeling of Scheme. A more realistic
model of Scheme systems (as opposed to the Scheme semantics [35]) would have to include the interactive
loop, which provides a delimiter for control Lctions [9]. tsy including an appropriate version of this
de!imiter in PS(control), abort becomes macro-expressible as a combination of call/cc and the control
delimiter [29]. Put differently, interactive programming systems actually add expressive power to the
programming language. Peter Lee [personal communication] pointed out another example of this
phenomenon: The addition of a read-eval-print loop also introduces true, non-climinable polymorphism
into a language like A’ -I- let by providing top-level let declarations with an open-ended body expression.
The fact that such interactive programming environments add power to their underlying languages
suggests that they should be specified as a part of !he language standards!

64 M. Felleisen

(ii) The second claim is a consequence of Corollary 3.10, i.e., there is a program
with an abort expression for which it is impossible to find an operationally equivalent

call/cc expression. The program is ((lambda (d) 0) (abort 1)); it is the composition

of the context ,(lambda (d) 0) a) over PS(call/cc) and an abort expression.
The absence of an operationally equivalent expression for (abort 1) from

PS(call/cc) follows from the property that expressions in the restricted language

cannot eliminate their evaluation context. More technically, if E(e) is a program
over PS(contro1) such that all occurrences of abort expressions have the form

(abort E(e’)) for some e’, then either E(e) * E(U) or e =c+a 0. The proof of this
auxiliary claim is a routine induction on n in the following statement:

If E(e) + n E (e’) then either (1) e’ is a value, or (2) e’ contains a stuck

redex, or (3) there is an err such th,at E (e’) + E (e”) and E (e”) satisfies the

above condition on abort subexpressions.

Since an expression over PS(call,‘cc) does not contain any abort expression, it

vacuously satisfies the antecedent sf the auxiliary claim. Hence, it either diverges
or it returns a value and cannot be interchanged with an abort expression without

effect on the behavior of a PS(contro1) program.

From the existence of a program that contains (abort 1) and the non-existence of

an operationally equivalent exprtission, it follows that PS(call/cc) cannot express
abort in PS(contro1). El

The preceding proposition not only establishes the formal expressiveness relation-

ship among the control operators of Idealized Scheme, but it also provides a concrete

example for the second claim in Theorem 3.14.

Theorem 3.14 (restated). Let .2’, = ZO+ {IF,, . . . , IF,,, . . .) be a conservative restriction

of 2$. Let GO and =, bc the operational equivalence relations of ZO and 2, , respectively.

(ii) IIe converse of’ (1) *does not hold. That is, there are cases where YO cannot
iTpress _rr?me_facilitim IF, , . . . , IF 119 - * l 9 even though the operational equivalence relation

of .2’, restricted to 2&, is identical to the operational equivalence relation of 2?,,, i.e.,

=o=(=&)).

Proof. By the preceding proposition we know that PS(calljcc) cannot express abort.

To finish the proof, we only need to prove that the operational equivalence relation

of PS(call/cc) is a subset of the operational equivalence relation of PS(contro1):
z c (=r+a -c- 1 PS(call/cc)); the other direction is obvious.

Assume that e ++a e’. We prove that e & e’. Suppose there is a context C that

can distinguish. e and e’ in PS(contro1). If the context is also a context over

PS(call/scj, the result is immediate. Otherwise, C contains a number of abort

expressions, and there exists a context D(LY, cyI, . . . , a,,) such that

C(a) = D(cy, (abort e,), . . . , (abort e,,)).

NOW let a be a variable that does not occur in C, and let the context C’(e) be

The expressive power of programming languages 65

defined as follows:

C’(Q) = ((call/cc (lambda (a)

(lambda (j

D(a, (4 (lambda 0 4,. . . , (a (lambda 0 ed)))))).

Next, we show that eval(C(e)) holds if and only if eval(C’(e)) holds. First, the

program C’ evaluates to an intermediate program with a few administrative steps:

C’(e) ++ D(e, ((lambda(x) (abort(x))) (lambda (j e,)), . . . ,

((lambda (x) (abort (x))) (lambda (j e,))).

Second, by a generalized version of the call-by-value p axiom,

((lambda (x) (abort (x))) (lambda (j ei)) sr+o (abort ei),

and therefore

D(e, ((lambda (x) (abort(x))) (lambda (j e,)), . . . ,

((lambda (x) (abort (x))) (lambda (j e,)))

terminates if and only if

D(e, [abort e,), . . . , (abort e,,)) = C(e)

terminates. The same analysis holds for the program C(e’), and we have thus shown

that the context C’(a) distinguishes e and e’: e f, e’. I4 Cl

111 summary, we have shown that PS(contro1) extends both PS(abort) and
PS(call/cc) with respect to expressive power, and the latter two individually extend

Pure Scheme itself. An interesting point is that the extension of PS(abort) to

PS(contro1) is qualitatively different from the extension of PS(call/cc) to

PS(contro1). We expect this point to be a topic of further investigations.

4.3. Assignments

The final addition to Pure Scheme is the set!-construct, Scheme’s form of assign-

ment statement. Like in a traditional Algol-like programming language, the set!-

expression destructively alters a binding of an identifier to a value. A simple reduction

semantics for PS(state), Pure Scheme with set! and letrec (for recursive declarations

of variables with initial values), is given in Fig. 6. Clearly, PS(state) is a conservative

extension of Pure Scheme; the new semantics is the basis for an equational calculus

for reasoning about operational equivalences in PS(state) [11,121.

Proposition 4.7. Pure Scheme cannot express set! and letrec.

Proof Sketch. Consider the expression ((lambda (d) (f0)) (JO)), which contains

the same subexpression, (f 0), twice. In a functional language like Pure Scheme, the

” The transformation of C’(e) into C(e’) is not a homomorphic translation because it changes the
top-level structure of the program. Since such a translation could encode a program as an integer and
an interpreter as a function on the integers, a restricted language with all computable functions could
express any feature if we allowed such global changes to programs.

66 M. Felleisen

Additional Syntax

e ::= . , . 1 (set! 5 e)
1 (letrec ([x v] I m .> e)

Extended Semantics

Additional Evaluation Cantexts

E l .- *.- , . . I (set! 5

Additional Reduction Steps

(Iletrec (. II J E((fu. (I .))) -4

(ktrec f.. _) E((lambda (31~. *) e) ZII . I l)) --+

two subexpressions return the same value, if any, and, given that the value of the
first subexpression is discarded, the expression is operationally equivalent to (f 0):

((lambda (d) (SO)) (f@) =Ps (jT6),

The verification of this equivalence in the proof system of Fig. 3 is straightforward.
In the extended language, this is no longer true. Consider the context

C(a) = (letrec (f(lambda (x) (set!f(lambda (x) 65)))) a),

which declares a proceduref: Upon the first application, the procedure modifies its
declaration so that a second invocation leads to divergence. Consequently, an
expression with a single use of the function converges, but an expression with two
uses diverges:

((Iambda (4 0)) (f(V) %sel? (DV q

Not surprisingly, assignments increase the expressive power of Idealized Scheme.

Without proof, we add that Scheme’s form of assignment is equivalent to cells with
a destructive update operation but without domain predicate.

4.4. Non-evaluating constructors

Functional languages often use the call-by-name para~l~etera~assi~g protocol
instead of &re Scheme’s call-by-value technique. Alternatively, such languages offer

The expressir)e power of programming languages 67

data constructors, say cons, that do not evaluate their arguments [151. It is a widely

held belief that such provisions are superfluous in the presence of higher-order

procedural abstractions.
As shown in the previous section, call-by-value languages cannot express csll-by-

name abstractions. This result also holds in the extended framework of Pure Scheme.

However, the introduction of non-evaluating data constructors is a bit more subtle.

To study this issue more thoroughly, we consider two different conservative
extensions of Pure Scheme, each of which incorporates a different form of a call-by-
name constructor. The first extension, PS(lazy), provides the constructor as a

first-class function:

V ::= l - l Icons$ (call-by-name cons)

1 (cons$ e e) (“lazy” values).

For simplicity, “lazy” values are functions, and 1 and 2 serve as selector arguments.
Figure 7 contains the corresponding extension of the reduction relation. Though

not equivalent to full call-by-name abstractions, this addition of a single call-by-name

primitive still introduces new semantic capabilities. A proof of this statement is

easily derivable from Proposition 3.15.

Evaluation Contexts

E ::=a 1 (u...E ea..) where u = v \ (con&)

Additional Reduction Steps

E((cons$ el e2) 1) - E(a)

E((cons$ el e2) 2) - Et4

Fig. 7. Pure Scheme(cons$).

The second extension, PS(delayed), is a restriction of tne first. The non-evaluating

constructor is no longer a first-class function but is only available in first-order form:

V ::= l l l 1 (cons$ e e) (“lazy” values)

The reduction relation remains the same (Fig. 7). It is this restricted extension that

is expressible in Pure Scheme.

Proposition 4.8. Pure Scheme can macro-express cons$ relative to PS(delayed).

Proof. The desired syntactic abstraction is

(cons$ al cyZ) = (lambda (s)

if(O? (l- s))al (Bif(O? (l-(l-~)))a? a))).

It is easy to check that the corresponding translation satisfies the reduction clauses

of the original functions. The result follows from Corollary 3.13. Cl

68 M. Felleisen

Remark 9 (Weak Expressibility). If the extended language contained selector func-
tions for lazy values, the new values would only be weakly expressible for the same
reason as Bif, true, and false are only weakly expressible (see Remark 8). III

5. The conciseness conjecture

If a programming language can represent all computable functions (on the
integers), it contains a functionally equivalent counterpart to each program in a
more expressive language. This raises the question as to what advantages there are
to programming in the more expressive language when equivalent programs in the
simpler language already exist. By the definition of an expressible construct, pro-
grams in a less expressive language generally have a globally different structure
from functionally equivalent programs in a more expressive language. But, is this
really all we can say about programming in more expressive languages?

By studying a number of examples, we have come to the conclusion that programs
in less expressive languages exhibit repeated occurrences of programming patterns,
and that this pattern-oriented style is detrimental to the programming process. To
illustrate our point, we begin by presenting two examples. The first example compares
two equivalent programs in variants of full Scheme and Scheme without
assignment. ” Consider the following program fragment:

(let (. . .
[TramManager (let (TransCounter 0)

(lambda (TramType)
(if (counter ? TramType)

TransCounter
(begirr

(set! TransCounter (add! TramCounter))
BO‘DW))]

. . . 1
. . . (TransManager tl) . . .)

The program first binds the variable TramManager to a pygcedure that handles
transactions and simultaneously counts how many transactions it performs. The
procedure accomplishes the counting by allocating a local variable, TransCounter,
in its private scope with initial value 0. For every subsequent proper transaction,
the procedure then uses an assignment to increase TramCounter DY 1. There is a
special transaction of appropriate type that can check the number of past
transactions.

A program in Rue Scheme-or any other ‘functional language without assign-
ments-must realize the counting of transactions in a different way. For example,

” This comparison is part of the folklore of the el,pressiveness discussion 124: 1651; the particular
example is adap’9.d from wr previous paper or, the cquationnl semantics of assignments [I I].

The expressive power of programming languages 69

the above program fragment would have to be rewritten into something like the

following code:

(let i . .

1 bansManager (lambda (TransType TransCounter)

(if (counter? TransType)

TransCoun ter

(COIIS (add 1 TransCoun ter)

BO~Y)))I
[TransCounter 0]

. . .)
. . . (let (result (TransManager tl TransCounter))

(let ([TransCounter (car result)]
[ProperResult (cdr result])

- - J))

This functional version of the program declares a variable for transaction counting

in the same scope as the transaction manager procedure, which now takes the

current value of the counter as an additional argument. Upon completion of the

transaction, TransManager returns a pair whose first component is the increased

counter value and whose second component is the proper result of the transaction.

All calls to TransManager pass the current value of TransCounter as an extra

argument. Finally, at every call site there is also some additional code to disassemble
the result in the desired way.

The functional version offers many opportunities for code simplifications.

Specifically, every call site for the transaction procedure could immediately update

the counter if the transaction is a proper transaction, and could return the value of

the counter if the transaction causes a check on the number of previous calls:

(let (. . .
[TransManager (lambda (TransType) BODY)]
[TransCounter 0]

. . .)
. . . (let (TransCounter (add1 TransCounter))

(Trans Manager t 1)

l .J)

But, even after simplifying the functional version as much as possible, it always

contains a large number of repeated kccurrences of add1 expressions, one per call
site for TransManager, distributed rover the whelp program.

The second example concerr?; the use of control operators. Imagine a large

functional program consisting af several modules. The interfaces of these modules

have fully formal specificatio;ls in the form of (variants of) parameter descriptions.

Now suppose that because of some extension of the program’s requirements, one

of the modules needs the capability to stop the execution of the (revised) program.

70 M. Felleisen

In a functional setting, this task is accomplished by eonveriing the relevant parts
of the program into (simplified) continuation-passing style. Specifically, each func-
tion that (transitively) uses the critical module passes a functional abstraction of
the rest of the computation to the critical module, and its call sites are in such a
position that upon return, no further work needs to be done. It is thus up to the
critical module to stop or to continue the execution of the rest of the program. If
the former is necessary, the module discards the additional argument; otherwise, it
invokes the argument on some intermediate result. This programming style, however,
requires fundamental changes to the original, non-abortive program. First, the
interface to the critical module must now indicate the possibility that the module
could abort the program execution. Second, and more importantly, the code for
every call site of a function with connections to the critical module must now satisfy
special conditions. Again, as in the above example, there are alternatives, but for
each of them, the lack of a non-expressible facility, this time the abort operation,
causes the occurrence of programming patterns throughout the entire program.

Based on these examples and others with a similar flavor, we have come to believe
that the major negative consequence of a lack of expressiveness is the abundance
of programming patterns to make up for the missing, non-expressible constructs.
Clearly, a more specific conjecture about this issue must address the question of
which programs actually benefit from the additional expressive power of larger
languages since not all of them do. A relatively naive answer would be that improved
programs use non-expressible constructs in a sensible, obseroatrle rnunrrer. An example
of a Scheme program that does not use assignments sensibly is a function whose
only assignment statement occurs at procedure entry and affects the parameter. A
more formal approach to the notion of “observable manner” could be the idea that
a program with a sensible use of an additional feature must be transformable into
a context that can witness operational distinctions between phrases in the restricted
language. Despite the lack of a good definition for “sensible uses of constructs” or
even for “programming patterns”, we still venture to formulate the following
conjecture about the use of expressive programming languages.

Conciseness Conjecture. Programs in more expressive programming 1angu;lge.s that
use the additional facilities in a sensible manner contain fewer programming patterns
than equivalent programs in less expressive languages.

The most disturbing consequence of programming patterns is that they are an
obstacle to an understanding of programs for both human readers and program-
processing programs. In the above TrunsManager example, only a global program
analysis can verify that the add1 expressions really count the number of transactions.
Even worse there are two distinct explanations for a contirluation-passing style
subprogram in a call-by-name functional setting: it may either implement some
sophisticated control structure, or it may implement a call-by-value protocol [34].
Oniy a thorough analysis of the details of the continuation-passing program fragment

The expresshe power of programming languages 71

can reveal the true purpose behind the occurrence of the programming patterns.

Thus, the main benefit of the use of expressive languages seems to be the ability to

abstract from programming patterns with simple statements and to state the purpose

of a program in the concisest possible manner.

6. Related work

The earliest attempt at defining and comparing the expressive power of program-

ming languages is the work on comparative schematology by Chandra, Hewitt,

Manna, Paterson, and others in the early and mid seventies [6,32]. &hematology

studies programming languages with a simple set of control constructs, e.g., while-

foop programs or recursion equations, and with uninterpreted constant and function

symbcls. As in predicate logic without arithmetic, it is possible to decide certain

questions about such uninterpreted program schemas. Moreover, the languages are
not universal, and it makes sense to compare the set of functions that are computable
based on different sets of control constructs, or based on an interpretation of a

subset of the function symbols as operations on data structures like stacks, arrays,

queues. In the presence of full arithmetic, i.e., representations of integers with an
addition and multiplication function, the approach can no longer compare the

expressive power of programming languages since everything can be encoded and

all functions become computable.
A second approach is due to Fortune et al. [141. Their basic observation is that

statically typed languages without facilities for constructing diverging programs can

only encode a subset of the total computable functions. For exalmple, whereas the

simply typed h-calculus-language can define the elementary recursive functions, the

second-ceder version of the calculus comprises the ~~ elementary recursive functions.

Like schematology, this approach crucially relies on the fact that the languages

under consideration are not universal. While these two approaches illuminate some
of the issues about the expressiveness of data and type structures, their applicability

to full-fledged programming languages is impossible because an equating of express-

iveness with computational power is uninteresting from the programmer’s

perspective.
Recently, Hoare [20 J proposed classifying programming languages according to

the equational and inequational laws that their programming constructs satisfy. He

illustrates this idea with a collection of examples. The laws are based on denotational
semantics, which are generally sound with respect to operational equivalences. Given

our theorems that connect expressiveness with the validity of operational equiva-

lences in programming languages, this approach seems to be a related attempt at

formalizing or comparing the expressiveness of languages.
Williams [45] looks at a whole spectrum of formalization techniques for semantic

conventions in formal systems and, in particular, programming languages. His work

starts with ideas of applicative and definitional extensions of formal systems but

72 M. Felleisen

also considers techniques that are more relevant in computational settings, e.g.,
compilation and interpretation. The goal of Williams’s research is a comparison of

formalization techniques and not a study of the expressiveness of programming

languages. Some of his results may be relevant for future extensions of our work.
A secondary piece of related work is the study of the full abstraction property of

mathematical models [25,31,33] and the representability of functions in A-calculi

[3,4]. In many cases, the natural denotational model of a programming language
contains too many elements so that operationally equivalent phrases have different

mathematical meanings. Since it is relatively easy to reverse-engineer a programming

language from a model, the equality relation of models without the full abstraction

property directly corresponds to the operational equivalence of a conservative

extension. As a consequence, such models naturally lead to the discovery of non-

expressible programming constructs. In the framework of A-calculus languages,
such facilities are multiple argument functions that do not require the values of all

arguments to determine their result [33,1]. Still, the study of full abstraction does
not provide true insight into the expressive power of languages. On one hand, the

discovery of new facilities directly depends on the choice of a model. For example,

whereas a direct model of A,, requires the above-mentioned facility for exploiting

deterministic parallelism, a continuation model leads to operations on continuations

and to restrictions of such operations [39]. On the other hand, by Theorem 3.14 we

also know that a change in the operational equivalence relation is only a su#cient

but not a ycessary condition for the non-expressibility of a programming construct,
In short,’ research on full abstraction is a valuable contribution to, but not a

replacement for, the study of expressiveness (see Proposition 3.15).

7. Towards a formal programming language design space

In the preceding sections we developed several ideas on a formal framework for

comparing the expressive power of programming languages. Based on informal
claims in the literature, we argued that

0 the key to programming language comparisons is a restriction on the set of

admissible translations between programming languages.

Specifically, we proposed that

0 the translations between languages should preserve as much of a program’s

structure as possible.

An application of this principle to conservative language extensions produced a

number of criteria for deciding whether additional operators increase the expressive

power or not. For a concrete example, we considered several language extensions

of Pure Scheme, a simple functional programming language, and found that our

formal expressiveness results are close to the intuitive ideas in the literature,

The expressive power of programming languages 73

The most important criterion for comparing programming languages showed that

an increase in expressive power may destroy semantic properties of the core language

that programmers may have become accustomed to (Theorem 3.14). Among other
things, this invalidation .bf operational laws through language extensions implies

that there are now more distinctions to be considered for semantic analyses of

expressions in the core language. On the other hand, the use of more expressive

languages seems to facilitate the programming process by making programs more
concise and abstract (Conciseness Conjecture). Put together, this result says that

0 an increase in expressive power is related to a decrease of the set of “natural”

(mathematically appealing) operational equivalences.

An interesting challenge is to find expressive extensions of languages whose addi-

tional facilities do not invalidate operational laws. I6

The current framework is only a first step towards a formal programming language
design space. On one hand, we must investigate our comparison relation for arbitrary

languages in more depth before we can judge its general usefulness. On the other

hand, our set of restrictions on language translations is clearly not the only interesting
basis for comparing programming languages. There is an entire spectrum of feasible

restrictions that yield alternative notions of expressiveness, and these alternatives

deserve exploration, too. Finally, we have not yet tackled the problem of deriving

properties from expressiveness claims but expect to do so in the future. In the long
run, we hope that some theory of language expressiveness develops into a formal
theory of the programming language design space, and that such a theory can help

a programmer in selecting the right set of constructs for solving a problem.

Acknowledgement

Dan Friedman directed my attention to the idea of expressiveness by insisting

that an understanding of new programming constructs in terms of procedures or

macro implementations is superior to an implementation based on interpreters.

Conversations with Bruce Duba and Mitchell Wand provided the motivation for

further work in this direction. Bob Harper pointed out the relationship to logic,

which ultimately led to the current formalization. Tim Griffin’s remark that my

original approach focused too much on macro expressiveness, redirected my efforts
towards the broader framework of expressiveness of Section 3.1. Hans Boehm,

Robert Cartwright, Dan Friedman, Robert Hieb, John Lamping, Scott Smith,

Rebecca Selke, Carolyn Talcott, .Mitchell Wand and numerous of my patient seminar

students suggested many improvements in the presentation of the material. Thanks

are also due to Carl Gunter (University of Pennsylvania), Peter Lee (Carnegie-

“’ This is not to be confused with compiler annotations, which also preserve the operationai equivalen-
ces but do not increase the expressive power of a language, e.g., futures for indicating opportunities for
parallel evaluations [_, 3 191 and single-threaded destructive updates in functiona\ languages [183.

74 M. Felleisen

Meiion University), and Carolyn Talcott (Stanford University) for giving me oppor-
tunities to expose my ideas to a wider audience before writing them up in this form.

Finally, comments by members of the POPL’88 committee, and by the anonymous

referees of ESOP’BO and of this special issue of Science of Computer Programming

exposed weaknesses in early drafts.

Reference;:

111

VI

II31

141

[Sl
WI

171
181

[91

WI

WI

WI

[I31

U41

WI

1161

1171

[I81

1191

I201

s. Abramsky, The lazy A-calculus; in: D. Turner, ed., Declarative Programming (Addison-Wesley,
Reading, MA, 1988) 63-116.
H.G. Baker and C. Hewitt, The incremental garbage collection of processes, Proc. Symposium on
Artificial Intelligence and Programming Languages, SIGPLAN Notices 12(8) (1977) 55-59.
HP. Barer&e@, The Lambda Calculus: Its Syntax and Semantics, revised edition (North-Holland,
Amsterdam, 1984).
G. Berry, Sequentialite de l’evaluation formelle des A-expressions. Proc. 3rd International Colloquium

on Programming, 1978.
S. Burris and H.P. Sankappanaras, A Course in Universal Algebra (Springer, Berlin, 1981).
A.K. Chandra and 2. Manna, The power of programming features, Computer Languages (Pergamon
Press) 1 (1975) 219-232.
A. Church, A formulation of the simple theory of types, J. Symbolic Logic S(1) (1940) 56-68.
M. Felleisen, The Calculi of Lambda-v-CS-Conversion: A Syntactic Theory of Control and State
in Imperative Higher-Order Programming Languages, Ph.D. dissertation, Indiana University, 1987.
M. Felleisen, The theory and practice of first-class prompts, Froc. 15th ACM Symposium on Principles
of Programming Languages, 1988, 180-190.
M. Felleisen and D.P. Friedman, Control operators, the SECD-machine, and the A-calculus, in:
M. Wirsing, ed., Formal Description of Programming Concepts 111 (North-Holland, Amsterdam,
1986) 193-217.
M. Felleisen and D.P. Friedman, A syntactic theory of sequential state, Theor. Comput. Sci. 69(3)

(1989) 243-287. Preliminary version in: Proc. 14th ACM Symposium on Principles of Programming
Languages, 1987, 314-325.
M. Felleisen and R. *Hieb, The revised report on the syntactic theories of sequential control and
state, Tech. Rep. 100, Rice University, June 1989. To appear in Theor. Comput. Sci.
M. Felleisen, D.P. Friedman, E. Kohlbecker and B. Dubra, A syntactic theory of sequential controi,
Theor. Comput. Sci. 52(3) (1987) 205-237. Preliminary version in: Proc. Symposium on Logic in
Computer Science, 1986, 131-141.
S. Fortune, D. Leivant and M. O’Donnell, The expressiveness of simple and second-order type
structures, J. ACM 30(l) (1980) 151-185.
D.P. Friedman and D.S. Wise, Cons should not evaluate its arguments, in: S. Michaelson and
R. Milner, eds., Automata, Languages and Programming ((Edinburgh Univ. Press, Edinburgh, 1976)
257-284.
J. Goguen, J. Thatcher and E. Wagner, An initial algebra approach to the specification, correctness,
and implementation of abstract data types, in: R. Yeh, ed., Current Trends in Programming

Methodology IV (Prentice-Hall, Englewood Cliffs, NJ, 1979) 80-149.
T. Griffin, Notational definition-A formal account, Proc. Symposium on Logic in Computer Science,
1988,372-383.
J.C. Guzman and P. Hudak, Single-threaded polymorphic lambda-calculus, Proc. Symposium on
Logic in Computer Science, 1990, 333-345.
R. Halstead, Multilisp: A language for concurrent symbolic computation. ACM Trans. Program.
Lang. Syst. 7(4) (1985) 501-538.
CAR. Hoare, The varieties of programming languages, Proc. International Joint Conference or;
Theory and Practice of Software Development, Lecture Notes in Computer Science (Springer, Berlin,
1989) 1-18.

The expressive power of programming languages 75

[21] SC. Kleene, Introduction to Metamathematics (Van Nostrand, New York, 1952).

[22] E. Kohlbecker, Syntactic Extensions in the Programming Language Lisp, Ph.D. dissertation, Indiana
University, 1986.

[23] P.J. Landin, A.A-calculus approach, in: L. FOX, ed., Advances in Programming and Non-numerical
Compufation (Pergamon Press, New York, 1966) 97-141.

[24] P.J. Landin, The next 700 programming languages. Common. ACM 9(3) (1966) 157-166.
[25] A.R. Meyer, Semantical paradigms, Proc. Symposium on Logic in Compufer Science, 1988,236-255.
[26] A.R. Meyer and J.R. Riecke, Continuations mav be unreasonable, Proc. 1988 Conference o;z Lisp

and Functional Programming, 1988,63-71.
[27] R. Milner, A theory of type polymorphism in programming, J. Compuf. Sysr. Sci. 17 (1978) 348-375.
[28] R. Milner, M. Tofte and R. Harper, The Definition of Standard ML (MIT Press, Cambridge, Ma,

1990).
[29] J.H. Morris, Lambda-Calculus Models of Programming Languages, Ph.D. dissertation, MIT, 1968.
[30] P. Naur (ed.), Revised report on the algorithmic language ALGOL 60, Commun. ACM 6(1) (1963)

l-17.

[31] L.C.-H. Ong, Fully abstract models of the lazy lambda-calculus, Proc. 29th Symposium on Foundation
of Computer Science, 1988,368-376.

[32] M.S. Paterson and C.E. Hewitt, Comparative schematology, Proc. Rec. ACM Conference on Concur-
rent Systems and Parallel Computation, 1970, 119-127.

[33] G.D. Plotkin, LCF considered as a programming language, Theor. Comput. Sci. 5 (1977) 223-255.
[34] G.D. Plotkin, Call-by-name, call-by-value, and the A-calculus, Theor. Comput. Sci. l(l975) 125-159.
[35] J. Rees and W. Clinger (eds.), The revised3 report on the algorithmic language scheme, SZGPLAN

Norices 21(12) (1986) 37-79.
[36] J.C. Reynolds, GEDANKEN-A simple typeless language based on the principle of completeness

and the reference concept, Commun. ACM 13(5) (1970) 308-319.
[37] J.C. Reynolds, The essence of Algol, in: J.W. de Bakker and J.C. van Vliet, eds., Algorithmic

Languages (North-Holland, Amsterdam, 1981) 345-372.
[38] J.G. Riecke, A complete and decidable proof system for call-by-value equalities, Proc. 27th Znfer-

national Conference on Automata, Languages and Programming, Lecture Notes in Computer Science
443 (Springer, Berlin, 1990) 20-31.

[39] D. Sitaram and M. Felleisen, Reasoning with continuations II: Full abstraction for models of
control, Proc 1990 ACM Conference on Lisp and Functional Z’rogramming, 1990, 161-175.

[40] G.L. Steele !lr. and G.J. Sussman, Lambda: The ultimate imperative, Memo 353, MIT AI Lab, 1976.
[41] G.J. Sussman and G.L. Steele, Jr., Scheme: An interpreter for extended lambda calculus, Memo

349, MIT AI Lab, 1975.
[42] A.S. Troelstra, Metamathematical Znvesfigarion of Znfuitionistic Arithmetic and Analysis, Lecture

Notes in Mathematics 344 (Springer, Berlin, 1973).
[43] M. Wand, Complete type inference for simple objects, fioc. Symposium on Logic in Computer

Science, 1987, 37-44.
[44] M. Wand, A types-as-sets semantics for Milner-styly polymorphism, Proc. 11th Symposium on

Principles of Programming Languages, 1984, 158-164.
[45] J.G. Williams, On the formalization of semantic conventions. Draft version: September 1988. To

appear in J. Symbolic Logic, 1990.

